ABSTRACT
The detrimental effect of fungal pathogens on forest trees is an increasingly important problem that has implications for the health of our planet. Despite this, the study of molecular plant-microbe interactions in forest trees is in its infancy, and very little is known about the roles of effector molecules from forest pathogens. Dothistroma septosporum causes a devastating needle blight disease of pines, and intriguingly, is closely related to Cladosporium fulvum, a tomato pathogen in which pioneering effector biology studies have been carried out. Here, we studied D. septosporum effectors that are shared with C. fulvum, by comparing gene sequences from global isolates of D. septosporum and assessing effector function in both host and non-host plants. Many of the effectors were predicted to be non-functional in D. septosporum due to their pseudogenization or low expression in planta, suggesting adaptation to lifestyle and host. Effector sequences were polymorphic among a global collection of D. septosporum isolates, but there was no evidence for positive selection. The DsEcp2-1 effector elicited cell death in the non-host plant Nicotiana tabacum, whilst D. septosporum DsEcp2-1 mutants showed increased colonization of pine needles. Together these results suggest that DsEcp2-1 might be recognized by an immune receptor in both angiosperm and gymnosperm plants. This work may lead to the identification of plant targets for DsEcp2-1 that will provide much needed information on the molecular basis of gymnosperm-pathogen interactions in forests, and may also lead to novel methods of disease control.
Subject(s)
Ascomycota/growth & development , Ascomycota/genetics , Fungal Proteins/genetics , Host-Pathogen Interactions/genetics , Pinus/microbiology , Ascomycota/pathogenicity , Fungal Proteins/metabolism , Pinus/immunology , Plant Diseases/immunology , Plant Diseases/microbiology , Nicotiana/microbiology , VirulenceABSTRACT
Fungal secondary metabolites have many important biological roles and some, like the toxic polyketide aflatoxin, have been intensively studied at the genetic level. Complete sets of polyketide synthase (PKS) genes can now be identified in fungal pathogens by whole genome sequencing and studied in order to predict the biosynthetic potential of those fungi. The pine needle pathogen Dothistroma septosporum is predicted to have only three functional PKS genes, a small number for a hemibiotrophic fungus. One of these genes is required for production of dothistromin, a polyketide virulence factor related to aflatoxin, whose biosynthetic genes are dispersed across one chromosome rather than being clustered. Here we evaluated the evolution of the other two genes, and their predicted gene clusters, using phylogenetic and population analyses. DsPks1 and its gene cluster are quite conserved amongst related fungi, whilst DsPks2 appears to be novel. The DsPks1 protein was predicted to be required for dihydroxynaphthalene (DHN) melanin biosynthesis but functional analysis of DsPks1 mutants showed that D. septosporum produced mainly dihydroxyphenylalanine (DOPA) melanin, which is produced by a PKS-independent pathway. Although the secondary metabolites made by these two PKS genes are not known, comparisons between strains of D. septosporum from different regions of the world revealed that both PKS core genes are under negative selection and we suggest they may have important cryptic roles in planta.
Subject(s)
Ascomycota/enzymology , Ascomycota/genetics , Dihydroxyphenylalanine/analogs & derivatives , Evolution, Molecular , Polyketide Synthases/genetics , Polyketides/metabolism , Secondary Metabolism/genetics , Ascomycota/classification , Dihydroxyphenylalanine/genetics , Dihydroxyphenylalanine/metabolism , Forests , Melanins/biosynthesis , Melanins/genetics , Multigene Family , Naphthols , Phylogeny , Pinus/microbiology , Plant Diseases/microbiology , Polymorphism, Single NucleotideABSTRACT
Fungi possess genetic systems to regulate the expression of genes involved in complex processes such as development and secondary metabolite biosynthesis. The product of the velvet gene veA, first identified and characterized in Aspergillus nidulans, is a key player in the regulation of both of these processes. Since its discovery and characterization in many Aspergillus species, VeA has been found to have similar functions in other fungi, including the Dothideomycete Mycosphaerella graminicola. Another Dothideomycete, Dothistroma septosporum, is a pine needle pathogen that produces dothistromin, a polyketide toxin very closely related to aflatoxin (AF) and sterigmatocystin (ST) synthesized by Aspergillus spp. Dothistromin is unusual in that, unlike most other secondary metabolites, it is produced mainly during the early exponential growth phase in culture. It was therefore of interest to determine whether the regulation of dothistromin production in D. septosporum differs from the regulation of AF/ST in Aspergillus spp. To begin to address this question, a veA ortholog was identified and its function analyzed in D. septosporum. Inactivation of the veA gene resulted in reduced dothistromin production and a corresponding decrease in expression of dothistromin biosynthetic genes. Expression of other putative secondary metabolite genes in D. septosporum such as polyketide synthases and non-ribosomal peptide synthases showed a range of different responses to loss of Ds-veA. Asexual sporulation was also significantly reduced in the mutants, accompanied by a reduction in the expression of a putative stuA regulatory gene. The mutants were, however, able to infect Pinus radiata seedlings and complete their life cycle under laboratory conditions. Overall this work suggests that D. septosporum has a veA ortholog that is involved in the control of both developmental and secondary metabolite biosynthetic pathways.
Subject(s)
Anthraquinones/metabolism , Ascomycota/metabolism , Genes, Regulator/genetics , Pinus/microbiology , Spores/growth & development , Ascomycota/genetics , Ascomycota/growth & development , Gene Expression Regulation, Fungal , Mutation , Peptide Synthases/metabolism , Plant Diseases/microbiology , Polyketide Synthases/metabolism , Spores/metabolismABSTRACT
Dothistroma septosporum (Ds) and Fulvia fulva (Ff; previously called Cladosporium fulvum) are two closely related Dothideomycete fungal species that cause Dothistroma needle blight in pine and leaf mold in tomato, respectively. During host colonization, these pathogens secrete virulence factors termed effectors to promote infection. In the presence of corresponding host immune receptors, however, these effectors activate plant defenses, including a localized cell death response that halts pathogen growth. We identified two apoplastic effector protein families, Ecp20 and Ecp32, which are conserved between the two pathogens. The Ecp20 family has four paralogues in both species, while the Ecp32 family has four paralogues in D. septosporum and five in F. fulva. Both families have members that are highly expressed during host infection. Members of the Ecp20 family have predicted structural similarity to proteins with a ß-barrel fold, including the Alt a 1 allergen from Alternaria alternata, while members of the Ecp32 family have predicted structural similarity to proteins with a ß-trefoil fold, such as trypsin inhibitors and lectins. Using Agrobacterium tumefaciens-mediated transient transformation assays, each family member was assessed for its ability to trigger cell death in leaves of the non-host species Nicotiana benthamiana and N. tabacum. Using this approach, FfEcp20-2, DsEcp20-3, and FfEcp20-3 from the Ecp20 family, and all members from the Ecp32 family, except for the Ds/FfEcp32-4 pair, triggered cell death in both species. This cell death was dependent on secretion of the effectors to the apoplast. In line with recognition by an extracellular immune receptor, cell death triggered by Ds/FfEcp20-3 and FfEcp32-3 was compromised in N. benthamiana silenced for BAK1 or SOBIR1, which encode extracellular co-receptors involved in transducing defense response signals following apoplastic effector recognition. We then investigated whether DsEcp20-3 and DsEcp20-4 triggered cell death in the host species Pinus radiata by directly infiltrating purified protein into pine needles. Strikingly, as in the non-host species, DsEcp20-3 triggered cell death, while DsEcp20-4 did not. Collectively, our study describes two new candidate effector families with cell death-eliciting activity from D. septosporum and F. fulva and provides evidence that members of these families are recognized by plant immune receptors.
ABSTRACT
Dothistroma needle blight, caused by Dothistroma septosporum, has increased in incidence and severity over the last few decades and is now one of the most important global diseases of pines. Disease resistance breeding could be accelerated by knowledge of pathogen virulence factors and their host targets. However, this is hindered due to inefficient targeted gene disruption in D. septosporum, which is required for virulence gene characterisation. Here we report the first successful application of CRISPR/Cas9 gene editing to a Dothideomycete forest pathogen, D. septosporum. Disruption of the dothistromin pathway regulator gene AflR, with a known phenotype, was performed using nonhomologous end-joining repair with an efficiency of > 90%. Transformants with a range of disruption mutations in AflR were produced. Disruption of Ds74283, a D. septosporum gene encoding a secreted cell death elicitor, was also achieved using CRISPR/Cas9, by using a specific donor DNA repair template to aid selection where the phenotype was unknown. In this case, 100% of screened transformants were identified as disruptants. In establishing CRISPR/Cas9 as a tool for gene editing in D. septosporum, our research could fast track the functional characterisation of candidate virulence factors in D. septosporum and helps set the foundation for development of this technology in other forest pathogens.
ABSTRACT
A new dsRNA virus from the oomycete Phytophthora pluvialis has been characterized and designated as Phytophthora pluvialis RNA virus 1 (PplRV1). The genome of the PplRV1 reference genome is 6742 bp that encodes two predicted open reading frames (ORFs). ORF1 and ORF2 overlap by a 47 nt "slippery" frameshift sequence. ORF1 encodes a putative protein of unknown function. ORF2 shows high similarity to the RNA-dependent RNA polymerase (RdRp) of other dsRNA viruses. Phylogenetic analysis of the putative PplRV1 RdRp and its most closely related viruses showed PplRV1 is distinct from other known viruses (below 33% amino acid similarity), which indicates this virus may belong to a new virus family. Analyses of the geographical distribution of PplRV1 in relation to two genetically distinct classes of its host revealed two corresponding genotypes of the PplRV1 (termed a and b), which share 92.3% nt identity. The reference genome for the second genotype is 6760 bp long and a prediction of its genetic organization shows three ORFs, with ORF2 being split into two ORFs, ORF2a and ORF2b, that is conserved in seven of eleven genotype b isolates. Additionally, a quick and simple diagnostic method using qPCR has been developed, which is suitable for large scale screens to identify PplRV1 in Phytophthora.
Subject(s)
Double Stranded RNA Viruses/genetics , Phytophthora/virology , Amino Acid Sequence , Double Stranded RNA Viruses/classification , Genome, Viral/genetics , Genotype , New Zealand , Open Reading Frames , Phylogeny , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/genetics , Species SpecificityABSTRACT
Phytophthora species are notorious plant pathogens, with some causing devastating tree diseases that threaten the survival of their host species. One such example is Phytophthora agathidicida, the causal agent of kauri dieback - a root and trunk rot disease that kills the ancient, iconic and culturally significant tree species, Agathis australis (New Zealand kauri). A deeper understanding of how Phytophthora pathogens infect their hosts and cause disease is critical for the development of effective treatments. Such an understanding can be gained by interrogating pathogen genomes for effector genes, which are involved in virulence or pathogenicity. Although genome sequencing has become more affordable, the complete assembly of Phytophthora genomes has been problematic, particularly for those with a high abundance of repetitive sequences. Therefore, effector genes located in repetitive regions could be truncated or missed in a fragmented genome assembly. Using a combination of long-read PacBio sequences, chromatin conformation capture (Hi-C) and Illumina short reads, we assembled the P. agathidicida genome into ten complete chromosomes, with a genome size of 57 Mb including 34% repeats. This is the first Phytophthora genome assembled to chromosome level and it reveals a high level of syntenic conservation with the complete genome of Peronospora effusa, the only other completely assembled genome sequence of an oomycete. All P. agathidicida chromosomes have clearly defined centromeres and contain candidate effector genes such as RXLRs and CRNs, but in different proportions, reflecting the presence of gene family clusters. Candidate effector genes are predominantly found in gene-poor, repeat-rich regions of the genome, and in some cases showed a high degree of duplication. Analysis of candidate RXLR effector genes that occur in multicopy gene families indicated half of them were not expressed in planta. Candidate CRN effector gene families showed evidence of transposon-mediated recombination leading to new combinations of protein domains, both within and between chromosomes. Further analysis of this complete genome assembly will help inform new methods of disease control against P. agathidicida and other Phytophthora species, ultimately helping decipher how Phytophthora pathogens have evolved to shape their effector repertoires and how they might adapt in the future.
ABSTRACT
Forests are under threat from pests, pathogens, and changing climate. A major forest pathogen worldwide is the hemibiotroph Dothistroma septosporum, which causes dothistroma needle blight (DNB) of pines. While D. septosporum uses effector proteins to facilitate host infection, it is currently unclear whether any of these effectors are recognised by immune receptors to activate the host immune system. Such information is needed to identify and select disease resistance against D. septosporum in pines. We predicted and investigated apoplastic D. septosporum candidate effectors (DsCEs) using bioinformatics and plant-based experiments. We discovered DsCEs that trigger cell death in the angiosperm Nicotiana spp., indicative of a hypersensitive defence response and suggesting their recognition by immune receptors in non-host plants. In a first for foliar forest pathogens, we developed a novel protein infiltration method to show that tissue-cultured pine shoots can respond with a cell death response to a DsCE, as well as to a reference cell death-inducing protein. The conservation of responses across plant taxa suggests that knowledge of pathogen-angiosperm interactions may also be relevant to pathogen-gymnosperm interactions. These results contribute to our understanding of forest pathogens and may ultimately provide clues to disease immunity in both commercial and natural forests.
Subject(s)
Ascomycota/physiology , Nicotiana/immunology , Pinus/immunology , Plant Diseases/microbiology , Cell Death , Disease Resistance/immunology , Host-Pathogen Interactions , Pinus/microbiology , Plant Diseases/immunology , Nicotiana/microbiologyABSTRACT
New Zealand kauri is an ancient, iconic, gymnosperm tree species that is under threat from a lethal dieback disease caused by the oomycete Phytophthora agathidicida. To gain insight into this pathogen, we determined whether proteinaceous effectors of P. agathidicida interact with the immune system of a model angiosperm, Nicotiana, as previously shown for Phytophthora pathogens of angiosperms. From the P. agathidicida genome, we defined and analysed a set of RXLR effectors, a class of proteins that typically have important roles in suppressing or activating the plant immune system. RXLRs were screened for their ability to activate or suppress the Nicotiana plant immune system using Agrobacterium tumefaciens transient transformation assays. Nine P. agathidicida RXLRs triggered cell death or suppressed plant immunity in Nicotiana, of which three were expressed in kauri. For the most highly expressed, P. agathidicida (Pa) RXLR24, candidate cognate immune receptors associated with cell death were identified in Nicotiana benthamiana using RNA silencing-based approaches. Our results show that RXLRs of a pathogen of gymnosperms can interact with the immune system of an angiosperm species. This study provides an important foundation for studying the molecular basis of plant-pathogen interactions in gymnosperm forest trees, including kauri.
Subject(s)
Araucariaceae/parasitology , Genome/genetics , Host-Pathogen Interactions , Phytophthora/genetics , Plant Diseases/parasitology , Proteins/metabolism , Araucariaceae/immunology , Cycadopsida/immunology , Cycadopsida/parasitology , New Zealand , Phylogeny , Phytophthora/physiology , Plant Diseases/immunology , Plant Immunity , Plant Leaves/immunology , Plant Leaves/parasitology , Proteins/genetics , RNA Interference , Nicotiana/genetics , Nicotiana/immunology , Nicotiana/parasitologyABSTRACT
Dothistroma needle blight is one of the most devastating pine tree diseases worldwide. New and emerging epidemics have been frequent over the last 25 years, particularly in the Northern Hemisphere, where they are in part associated with changing weather patterns. One of the main Dothistroma needle blight pathogens, Dothistroma septosporum, has a global distribution but most molecular plant pathology research has been confined to Southern Hemisphere populations that have limited genetic diversity. Extensive genomic and transcriptomic data are available for a D. septosporum reference strain from New Zealand, where an introduced clonal population of the pathogen predominates. Due to the global importance of this pathogen, we determined whether the genome of this reference strain is representative of the species worldwide by sequencing the genomes of 18 strains sampled globally from different pine hosts. Genomic polymorphism shows substantial variation within the species, clustered into two distinct groups of strains with centres of diversity in Central and South America. A reciprocal chromosome translocation uniquely identifies the New Zealand strains. Globally, strains differ in their production of the virulence factor dothistromin, with extremely high production levels in strain ALP3 from Germany. Comparisons with the New Zealand reference revealed that several strains are aneuploids; for example, ALP3 has duplications of three chromosomes. Increased gene copy numbers therefore appear to contribute to increased production of dothistromin, emphasizing that studies of population structure are a necessary adjunct to functional analyses of genetic polymorphisms to identify the molecular basis of virulence in this important forest pathogen.
Subject(s)
Ascomycota/genetics , Ascomycota/pathogenicity , Chromosome Duplication/physiology , Gene Expression Regulation, Fungal/genetics , Plant Diseases/microbiology , Aneuploidy , Anthraquinones/metabolism , Ascomycota/metabolism , Chromosome Duplication/genetics , DNA Transposable Elements/genetics , Metagenomics , Plant Diseases/geneticsABSTRACT
Genome sequences were generated for six oomycete isolates collected from forests in Valdivia, Chile. Three of the isolates were identified morphologically as Phytophthora kernoviae, whereas two were similar to other clade 10 Phytophthora species. One isolate was tentatively identified as Nothophytophthora valdiviana based on nucleotide sequence similarity in the cytochrome oxidase 1 gene. This is the first genome sequence for this recently described genus. The genome assembly was more fragmented and contained many duplicated genes when compared with the other Phytophthora sequences. Comparative analyses were performed with genomic sequences of the P. kernoviae isolates from the UK and New Zealand. Although the potential New Zealand origin of P. kernoviae has been suggested, new isolations from Chile had cast doubt on this hypothesis. We present evidence supporting P. kernoviae as having originated in New Zealand. However, investigation of the diversity of oomycete species in Chile has been limited and warrants further exploration. We demonstrate the expediency of genomic analyses in determining phylogenetic relationships between isolates within new and often scantly represented taxonomic groups, such as Phytophthora clade 10 and Nothophytophthora. Data are available on GenBank via BioProject accession number PRJNA352331.
Subject(s)
Sequence Analysis, DNA/methods , Chile , New Zealand , Oomycetes/genetics , Oomycetes/pathogenicity , Phylogeny , Phytophthora/genetics , Phytophthora/pathogenicity , United KingdomABSTRACT
Pathogen incursions are a major impediment for global forest health. How pathogens and forest trees coexist over time, without pathogens simply killing their long-lived hosts, is a critical but unanswered question. The Dothistroma Needle Blight pathogen Dothistroma septosporum was introduced into New Zealand in the 1960s and remains a low-diversity, asexual population, providing a unique opportunity to analyze the evolution of a forest pathogen. Isolates of D. septosporum collected from commercial pine forests over 50 years were compared at whole-genome and phenotype levels. Limited genome diversity and increased diversification among recent isolates support the premise of a single introduction event. Isolates from the 1960s show significantly elevated virulence against Pinus radiata seedlings and produce higher levels of the virulence factor dothistromin compared to isolates collected in the 1990s and 2000s. However, later isolates have no increased tolerance to copper, used in fungicide treatments of infested forests and traditionally assumed to be a strong selection pressure. The isolated New Zealand population of this forest pathogen therefore appears to have become less virulent over time, likely in part to maintain the viability of its long-lived host. This finding has broad implications for forest health and highlights the benefits of long-term pathogen surveys.