Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Proc Biol Sci ; 291(2024): 20232847, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38864338

ABSTRACT

Gene loss is an important mechanism for evolution in low-light or cave environments where visual adaptations often involve a reduction or loss of eyesight. The plaat gene family encodes phospholipases essential for the degradation of organelles in the lens of the eye. These phospholipases translocate to damaged organelle membranes, inducing them to rupture. This rupture is required for lens transparency and is essential for developing a functioning eye. Plaat3 is thought to be responsible for this role in mammals, while plaat1 is thought to be responsible in other vertebrates. We used a macroevolutionary approach and comparative genomics to examine the origin, loss, synteny and selection of plaat1 across bony fishes and tetrapods. We showed that plaat1 (probably ancestral to all bony fish + tetrapods) has been lost in squamates and is significantly degraded in lineages of low-visual-acuity and blind mammals and fishes. Our findings suggest that plaat1 is important for visual acuity across bony vertebrates, and that its loss through relaxed selection and pseudogenization may have played a role in the repeated evolution of visual systems in low-light environments. Our study sheds light on the importance of gene-loss in trait evolution and provides insights into the mechanisms underlying visual acuity in low-light environments.


Subject(s)
Vertebrates , Animals , Vertebrates/genetics , Vertebrates/physiology , Selection, Genetic , Gene Deletion , Fishes/genetics , Fishes/physiology , Phylogeny , Biological Evolution , Light , Evolution, Molecular
2.
J Hered ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39079020

ABSTRACT

A major goal of modern biology is connecting phenotype with its underlying genetic basis. The Mexican cavefish (Astyanax mexicanus), a characin fish species comprised of a surface ecotype and a cave-derived ecotype, is well suited as a model to study the genetic mechanisms underlying adaptation to extreme environments. Here we map 206 previously published quantitative trait loci (QTL) for cave-derived traits in A. mexicanus to the newest version of the surface fish genome assembly, AstMex3. These analyses revealed that QTL cluster in the genome more than expected by chance, and this clustering is not explained by the distribution of genes in the genome. To investigate whether certain characteristics of the genome facilitate phenotypic evolution, we tested whether genomic characteristics associated with increased opportunities for mutation, such as highly mutagenic CpG sites, are reliable predictors of the sites of trait evolution but did not find any significant trends. Finally, we combined the QTL map with previously collected expression and selection data to identify 36 candidate genes that may underlie the repeated evolution of cave phenotypes, including rgrb, which is predicted to be involved in phototransduction. We found this gene has disrupted exons in all non-hybrid cave populations but intact reading frames in surface fish. Overall, our results suggest specific regions of the genome may play significant roles in driving adaptation to the cave environment in Astyanax mexicanus and demonstrate how this compiled dataset can facilitate our understanding of the genetic basis of repeated evolution in the Mexican cavefish.

3.
PLoS Genet ; 17(7): e1009642, 2021 07.
Article in English | MEDLINE | ID: mdl-34252077

ABSTRACT

Circadian rhythms are nearly ubiquitous throughout nature, suggesting they are critical for survival in diverse environments. Organisms inhabiting largely arrhythmic environments, such as caves, offer a unique opportunity to study the evolution of circadian rhythms in response to changing ecological pressures. Populations of the Mexican tetra, Astyanax mexicanus, have repeatedly invaded caves from surface rivers, where individuals must contend with perpetual darkness, reduced food availability, and limited fluctuations in daily environmental cues. To investigate the molecular basis for evolved changes in circadian rhythms, we investigated rhythmic transcription across multiple independently-evolved cavefish populations. Our findings reveal that evolution in a cave environment has led to the repeated disruption of the endogenous biological clock, and its entrainment by light. The circadian transcriptome shows widespread reductions and losses of rhythmic transcription and changes to the timing of the activation/repression of core-transcriptional clock. In addition to dysregulation of the core clock, we find that rhythmic transcription of the melatonin regulator aanat2 and melatonin rhythms are disrupted in cavefish under darkness. Mutants of aanat2 and core clock gene rorca disrupt diurnal regulation of sleep in A. mexicanus, phenocopying circadian modulation of sleep and activity phenotypes of cave populations. Together, these findings reveal multiple independent mechanisms for loss of circadian rhythms in cavefish populations and provide a platform for studying how evolved changes in the biological clock can contribute to variation in sleep and circadian behavior.


Subject(s)
Biological Evolution , Characidae/physiology , Circadian Clocks/genetics , Fish Proteins/genetics , Animals , Brain/physiology , Caves , Characidae/genetics , Circadian Clocks/physiology , Evolution, Molecular , Gene Expression Regulation , Genetics, Population , In Situ Hybridization, Fluorescence , Liver/physiology , Melatonin/metabolism , Mutation , Sleep/genetics , Sleep/physiology
4.
Mol Ecol ; 32(20): 5626-5644, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37712324

ABSTRACT

The Astyanax mexicanus complex includes two different morphs, a surface- and a cave-adapted ecotype, found at three mountain ranges in Northeastern Mexico: Sierra de El Abra, Sierra de Guatemala and Sierra de la Colmena (Micos). Since their discovery, multiple studies have attempted to characterize the timing and the number of events that gave rise to the evolution of these cave-adapted ecotypes. Here, using RADseq and genome-wide sequencing, we assessed the phylogenetic relationships, genetic structure and gene flow events between the cave and surface Astyanax mexicanus populations, to estimate the tempo and mode of evolution of the cave-adapted ecotypes. We also evaluated the body shape evolution across different cave lineages using geometric morphometrics to examine the role of phylogenetic signal versus environmental pressures. We found strong evidence of parallel evolution of cave-adapted ecotypes derived from two separate lineages of surface fish and hypothesize that there may be up to four independent invasions of caves from surface fish. Moreover, a strong congruence between the genetic structure and geographic distribution was observed across the cave populations, with the Sierra de Guatemala the region exhibiting most genetic drift among the cave populations analysed. Interestingly, we found no evidence of phylogenetic signal in body shape evolution, but we found support for parallel evolution in body shape across independent cave lineages, with cavefish from the Sierra de El Abra reflecting the most divergent morphology relative to surface and other cavefish populations.

5.
Biol Lett ; 18(11): 20220361, 2022 11.
Article in English | MEDLINE | ID: mdl-36448295

ABSTRACT

Convergent evolution is central to the study of adaptation and has been used to understand both the limits of evolution and the diverse patterns and processes which result in adaptive change. Resistance to snake venom alpha-neurotoxins (αNTXs) is a case of widespread convergence having evolved several times in snakes, lizards and mammals. Despite extreme toxicity of αNTXs, substitutions in its target, the nicotinic acetylcholine receptor (nAChR), prevent αNTX binding and render species resistant. Recently, the published meerkat (Herpestidae) genome revealed that meerkats have the same substitutions in nAChR as the venom-resistant Egyptian mongoose (Herpestidae), suggesting that venom-resistant nAChRs may be ancestral to Herpestids. Like the mongoose, many other species of feliform carnivores prey on venomous snakes, though their venom resistance has never been explored. To evaluate the prevalence and ancestry of αNTX resistance in mammals, we generate a dataset of mammalian nAChR using museum specimens and public datasets. We find five instances of convergent evolution within feliform carnivores, and an additional eight instances across all mammals sampled. Tests of selection show that these substitutions are evolving under positive selection. Repeated convergence suggests that this adaptation played an important role in the evolution of mammalian physiology and potentially venom evolution.


Subject(s)
Herpestidae , Lizards , Animals , Neurotoxins/genetics , Neurotoxins/toxicity , Acclimatization , Museums
6.
J Hered ; 113(5): 538-551, 2022 10 21.
Article in English | MEDLINE | ID: mdl-35922036

ABSTRACT

Combining genetic and ecological measures of differentiation can provide compelling evidence for ecological and genetic divergence among lineages. The rough-footed mud turtle, Kinosternon hirtipes, is distributed from the Trans-Pecos region of Texas to the highlands of Central Mexico and contains 6 described subspecies, 5 of which are extant. We use ddRAD sequencing and species distribution models to assess levels of ecological and genetic differentiation among these subspecies. We also predict changes in climatically suitable habitat under different climate change scenarios and assess levels of genetic diversity and inbreeding within each lineage. Our results show that there is strong genetic and ecological differentiation among multiple lineages within K. hirtipes, and that this differentiation appears to be the result of vicariance associated with the Trans-Mexican Volcanic Belt. We propose changes to subspecies designations to more accurately reflect the evolutionary relationships among populations and assess threats to each subspecies.


Subject(s)
Turtles , Animals , Turtles/genetics , Ecosystem , Climate Change , Biological Evolution , Genomics
7.
Proc Biol Sci ; 288(1956): 20210693, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34344180

ABSTRACT

Variation in complex traits is the result of contributions from many loci of small effect. Based on this principle, genomic prediction methods are used to make predictions of breeding value for an individual using genome-wide molecular markers. In breeding, genomic prediction models have been used in plant and animal breeding for almost two decades to increase rates of genetic improvement and reduce the length of artificial selection experiments. However, evolutionary genomics studies have been slow to incorporate this technique to select individuals for breeding in a conservation context or to learn more about the genetic architecture of traits, the genetic value of missing individuals or microevolution of breeding values. Here, we outline the utility of genomic prediction and provide an overview of the methodology. We highlight opportunities to apply genomic prediction in evolutionary genetics of wild populations and the best practices when using these methods on field-collected phenotypes.


Subject(s)
Models, Genetic , Polymorphism, Single Nucleotide , Animals , Breeding , Genome , Genomics , Genotype , Humans , Phenotype
8.
BMC Genomics ; 21(1): 281, 2020 Apr 08.
Article in English | MEDLINE | ID: mdl-32264824

ABSTRACT

BACKGROUND: Advances in sequencing technologies have led to the release of reference genomes and annotations for multiple individuals within more well-studied systems. While each of these new genome assemblies shares significant portions of synteny between each other, the annotated structure of gene models within these regions can differ. Of particular concern are split-gene misannotations, in which a single gene is incorrectly annotated as two distinct genes or two genes are incorrectly annotated as a single gene. These misannotations can have major impacts on functional prediction, estimates of expression, and many downstream analyses. RESULTS: We developed a high-throughput method based on pairwise comparisons of annotations that detect potential split-gene misannotations and quantifies support for whether the genes should be merged into a single gene model. We demonstrated the utility of our method using gene annotations of three reference genomes from maize (B73, PH207, and W22), a difficult system from an annotation perspective due to the size and complexity of the genome. On average, we found several hundred of these potential split-gene misannotations in each pairwise comparison, corresponding to 3-5% of gene models across annotations. To determine which state (i.e. one gene or multiple genes) is biologically supported, we utilized RNAseq data from 10 tissues throughout development along with a novel metric and simulation framework. The methods we have developed require minimal human interaction and can be applied to future assemblies to aid in annotation efforts. CONCLUSIONS: Split-gene misannotations occur at appreciable frequency in maize annotations. We have developed a method to easily identify and correct these misannotations. Importantly, this method is generic in that it can utilize any type of short-read expression data. Failure to account for split-gene misannotations has serious consequences for biological inference, particularly for expression-based analyses.


Subject(s)
Genome, Plant , Molecular Sequence Annotation/methods , Zea mays/growth & development , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , High-Throughput Nucleotide Sequencing , High-Throughput Screening Assays , Humans , Open Reading Frames , Sequence Analysis, RNA , Tissue Distribution , Zea mays/classification , Zea mays/genetics
9.
J Exp Zool B Mol Dev Evol ; 334(7-8): 497-510, 2020 11.
Article in English | MEDLINE | ID: mdl-32351033

ABSTRACT

Animals respond to sleep loss with compensatory rebound sleep, and this is thought to be critical for the maintenance of physiological homeostasis. Sleep duration varies dramatically across animal species, but it is not known whether evolutionary differences in sleep duration are associated with differences in sleep homeostasis. The Mexican cavefish, Astyanax mexicanus, has emerged as a powerful model for studying the evolution of sleep. While eyed surface populations of A. mexicanus sleep approximately 8 hr each day, multiple blind cavefish populations have converged on sleep patterns that total as little as 2 hr each day, providing the opportunity to examine whether the evolution of sleep loss is accompanied by changes in sleep homeostasis. Here, we examine the behavioral and molecular response to sleep deprivation across four independent populations of A. mexicanus. Our behavioral analysis indicates that surface fish and all three cavefish populations display robust recovery sleep during the day following nighttime sleep deprivation, suggesting sleep homeostasis remains intact in cavefish. We profiled transcriptome-wide changes associated with sleep deprivation in surface fish and cavefish. While the total number of differentially expressed genes was not greater for the surface population, the surface population exhibited the highest number of uniquely differentially expressed genes than any other population. Strikingly, a majority of the differentially expressed genes are unique to individual cave populations, suggesting unique expression responses are exhibited across independently evolved cavefish populations. Together, these findings suggest sleep homeostasis is intact in cavefish despite a dramatic reduction in overall sleep duration.


Subject(s)
Characidae/genetics , Sleep/genetics , Transcriptome/genetics , Animals , Biological Evolution , Caves , Characidae/physiology , Gene Expression/genetics , Gene Expression/physiology , Genes/genetics , Genes/physiology , Genetics, Population , Models, Animal , Sequence Analysis, RNA
10.
J Exp Zool B Mol Dev Evol ; 334(7-8): 397-404, 2020 11.
Article in English | MEDLINE | ID: mdl-32638529

ABSTRACT

A central question in biology is how naturally occurring genetic variation accounts for morphological and behavioral diversity within a species. The Mexican tetra, Astyanax mexicanus, has been studied for nearly a century as a model for investigating trait evolution. In March of 2019, researchers representing laboratories from around the world met at the Sixth Astyanax International Meeting in Santiago de Querétaro, Mexico. The meeting highlighted the expanding applications of cavefish to investigations of diverse aspects of basic biology, including development, evolution, and disease-based applications. A broad range of integrative approaches are being applied in this system, including the application of state-of-the-art functional genetic assays, brain imaging, and genome sequencing. These advances position cavefish as a model organism for addressing fundamental questions about the genetics and evolution underlying the impressive trait diversity among individual populations within this species.


Subject(s)
Biological Evolution , Characidae , Models, Animal , Animals , Behavior, Animal , Caves , Characidae/genetics , Characidae/growth & development , Characidae/physiology , Darkness , Fish Diseases
11.
Mol Ecol ; 29(22): 4249-4253, 2020 11.
Article in English | MEDLINE | ID: mdl-33058346

ABSTRACT

Different parts of the genome can vary widely in their evolutionary histories and sequence divergence from other species. Indeed, some of the most interesting biology (e.g., hybridization, horizontal gene transfer, variable mutation rates across the genome) is revealed by the discordant relationships between taxa across the genome. The goal for much of evolutionary genetics is centred on understanding the evolutionary processes by which such varied signatures arise and are maintained. Many evolutionary genetics studies seek to identify signatures of positive selection between two closely related ecotypes or taxa by delineating regions with particularly high divergence relative to a genome-wide average, often termed "divergence outliers." In a From the Cover article in this issue of Molecular Ecology, Booker et al. take a major step forward in showing that recombination rate differences are sufficient to create false positive divergence outliers, even under neutrality. They demonstrate that the variance of genome scan metrics is especially high in regions with low recombination rates, consistent with previous work. Furthermore, they show that both relative and absolute measures of divergence (FST and DXY , respectively) as well as other commonly used statistics in genome scans (e.g., πW , Tajima's D and H12) all have similar covariance between variance and local recombination rate. Finally, Booker et al. show that low recombination regions will tend to produce more outliers if genome-wide averages are used as cut-offs to define genomic outliers. Booker et al.'s results suggest that recombination rate variation, even under neutral conditions, can shape genome scans for selection, and this important variable can no longer be ignored.


Subject(s)
Genome , Selection, Genetic , Genomics , Hybridization, Genetic , Recombination, Genetic
12.
Dev Dyn ; 248(8): 679-687, 2019 08.
Article in English | MEDLINE | ID: mdl-30938001

ABSTRACT

BACKGROUND: Astyanax mexicanus is a well-established fish model system for evolutionary and developmental biology research. These fish exist as surface forms that inhabit rivers and 30 different populations of cavefish. Despite important progress in the deployment of new technologies, deep mechanistic insights into the genetic basis of evolution, development, and behavior have been limited by a lack of transgenic lines commonly used in genetic model systems. RESULTS: Here, we expand the toolkit of transgenesis by characterizing two novel stable transgenic lines that were generated using the highly efficient Tol2 system, commonly used to generate transgenic zebrafish. A stable transgenic line consisting of the zebrafish ubiquitin promoter expresses enhanced green fluorescent protein ubiquitously throughout development in a surface population of Astyanax. To define specific cell-types, a Cntnap2-mCherry construct labels lateral line mechanosensory neurons in zebrafish. Strikingly, both constructs appear to label the predicted cell types, suggesting many genetic tools and defined promoter regions in zebrafish are directly transferrable to cavefish. CONCLUSION: The lines provide proof-of-principle for the application of Tol2 transgenic technology in A. mexicanus. Expansion on these initial transgenic lines will provide a platform to address broadly important problems in the quest to bridge the genotype-phenotype gap.


Subject(s)
Gene Transfer Techniques , Transposases , Animals , Animals, Genetically Modified/genetics , Fishes , Green Fluorescent Proteins/genetics , Lateral Line System , Methods , Models, Animal , Promoter Regions, Genetic , Proof of Concept Study , Ubiquitin/genetics , Zebrafish/genetics
13.
Plant J ; 93(1): 131-141, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29124819

ABSTRACT

Maize is a diverse paleotetraploid species with considerable presence/absence variation and copy number variation. One mechanism through which presence/absence variation can arise is differential fractionation. Fractionation refers to the loss of duplicate gene pairs from one of the maize subgenomes during diploidization. Differential fractionation refers to non-shared gene loss events between individuals following a whole-genome duplication event. We investigated the prevalence of presence/absence variation resulting from differential fractionation in the syntenic portion of the genome using two whole-genome de novo assemblies of the inbred lines B73 and PH207. Between these two genomes, syntenic genes were highly conserved with less than 1% of syntenic genes being subject to differential fractionation. The few variably fractionated syntenic genes that were identified are unlikely to contribute to functional phenotypic variation, as there is a significant depletion of these genes in annotated gene sets. In further comparisons of 60 diverse inbred lines, non-syntenic genes were six times more likely to be variable than syntenic genes, suggesting that comparisons among additional genome assemblies are not likely to result in the discovery of large-scale presence/absence variation among syntenic genes.


Subject(s)
DNA Copy Number Variations , Genome, Plant/genetics , Zea mays/genetics , Synteny , Zea mays/metabolism
14.
BMC Evol Biol ; 18(1): 89, 2018 06 18.
Article in English | MEDLINE | ID: mdl-29909776

ABSTRACT

BACKGROUND: An essential question in evolutionary biology is whether shifts in a set of polygenic behaviors share a genetic basis across species. Such a behavioral shift is seen in the cave-dwelling Mexican tetra, Astyanax mexicanus. Relative to surface-dwelling conspecifics, cavefish do not school (asocial), are hyperactive and sleepless, adhere to a particular vibration stimulus (imbalanced attention), behave repetitively, and show elevated stress hormone levels. Interestingly, these traits largely overlap with the core symptoms of human autism spectrum disorder (ASD), raising the possibility that these behavioral traits are underpinned by a similar set of genes (i.e. a repeatedly used suite of genes). RESULT: Here, we explored whether modification of ASD-risk genes underlies cavefish evolution. Transcriptomic analyses revealed that > 58.5% of 3152 cavefish orthologs to ASD-risk genes are significantly up- or down-regulated in the same direction as genes in postmortem brains from ASD patients. Enrichment tests suggest that ASD-risk gene orthologs in A. mexicanus have experienced more positive selection than other genes across the genome. Notably, these positively selected cavefish ASD-risk genes are enriched for pathways involved in gut function, inflammatory diseases, and lipid/energy metabolism, similar to symptoms that frequently coexist in ASD patients. Lastly, ASD drugs mitigated cavefish's ASD-like behaviors, implying shared aspects of neural processing. CONCLUSION: Overall, our study indicates that ASD-risk genes and associated pathways (especially digestive, immune and metabolic pathways) may be repeatedly used for shifts in polygenic behaviors across evolutionary time.


Subject(s)
Autistic Disorder/genetics , Biological Evolution , Characidae/genetics , Genetic Predisposition to Disease , Quantitative Trait, Heritable , Animals , Autistic Disorder/drug therapy , Caves , Crosses, Genetic , Female , Gene Expression Regulation , Genome , Humans , Hybridization, Genetic , Male , Phenotype , Quantitative Trait Loci/genetics , Risk Factors
15.
Mol Ecol ; 27(22): 4397-4416, 2018 11.
Article in English | MEDLINE | ID: mdl-30252986

ABSTRACT

Understanding the molecular basis of repeatedly evolved phenotypes can yield key insights into the evolutionary process. Quantifying gene flow between populations is especially important in interpreting mechanisms of repeated phenotypic evolution, and genomic analyses have revealed that admixture occurs more frequently between diverging lineages than previously thought. In this study, we resequenced 47 whole genomes of the Mexican tetra from three cave populations, two surface populations and outgroup samples. We confirmed that cave populations are polyphyletic and two Astyanax mexicanus lineages are present in our data set. The two lineages likely diverged much more recently than previous mitochondrial estimates of 5-7 mya. Divergence of cave populations from their phylogenetically closest surface population likely occurred between ~161 and 191 k generations ago. The favoured demographic model for most population pairs accounts for divergence with secondary contact and heterogeneous gene flow across the genome, and we rigorously identified gene flow among all lineages sampled. Therefore, the evolution of cave-related traits occurred more rapidly than previously thought, and trogolomorphic traits are maintained despite gene flow with surface populations. The recency of these estimated divergence events suggests that selection may drive the evolution of cave-derived traits, as opposed to disuse and drift. Finally, we show that a key trogolomorphic phenotype QTL is enriched for genomic regions with low divergence between caves, suggesting that regions important for cave phenotypes may be transferred between caves via gene flow. Our study shows that gene flow must be considered in studies of independent, repeated trait evolution.


Subject(s)
Biological Evolution , Caves , Characidae/genetics , Gene Flow , Genetics, Population , Animals , Mexico , Models, Genetic , Phenotype , Phylogeny , Quantitative Trait Loci
16.
Genome ; 61(4): 254-265, 2018 Apr.
Article in English | MEDLINE | ID: mdl-28738163

ABSTRACT

In this study, we report evidence of a novel duplication of Melanocortin receptor 1 (Mc1r) in the cavefish genome. This locus was discovered following the observation of excessive allelic diversity in a ∼820 bp fragment of Mc1r amplified via degenerate PCR from a natural population of Astyanax aeneus fish from Guerrero, Mexico. The cavefish genome reveals the presence of two closely related Mc1r open reading frames separated by a 1.46 kb intergenic region. One open reading frame corresponds to the previously reported Mc1r receptor, and the other open reading frame (duplicate copy) is 975 bp in length, encoding a receptor of 325 amino acids. Sequence similarity analyses position both copies in the syntenic region of the single Mc1r locus in 16 representative craniate genomes spanning bony fish (including Astyanax) to mammals, suggesting we discovered tandem duplicates of this important gene. The two Mc1r copies share ∼89% sequence similarity and, within Astyanax, are more similar to one another compared to other melanocortin family members. Future studies will inform the precise functional significance of the duplicated Mc1r locus and if this novel copy number variant may have adaptive significance for the Astyanax lineage.


Subject(s)
Characidae/genetics , Fish Proteins/genetics , Gene Duplication , Receptor, Melanocortin, Type 1/genetics , Amino Acid Sequence , Animals , Fish Proteins/classification , Genome/genetics , Geography , Mexico , Open Reading Frames/genetics , Phylogeny , Receptor, Melanocortin, Type 1/classification , Sequence Homology, Amino Acid
17.
Proc Natl Acad Sci U S A ; 112(22): 7055-60, 2015 Jun 02.
Article in English | MEDLINE | ID: mdl-25991861

ABSTRACT

The insulin/insulin-like signaling and target of rapamycin (IIS/TOR) network regulates lifespan and reproduction, as well as metabolic diseases, cancer, and aging. Despite its vital role in health, comparative analyses of IIS/TOR have been limited to invertebrates and mammals. We conducted an extensive evolutionary analysis of the IIS/TOR network across 66 amniotes with 18 newly generated transcriptomes from nonavian reptiles and additional available genomes/transcriptomes. We uncovered rapid and extensive molecular evolution between reptiles (including birds) and mammals: (i) the IIS/TOR network, including the critical nodes insulin receptor substrate (IRS) and phosphatidylinositol 3-kinase (PI3K), exhibit divergent evolutionary rates between reptiles and mammals; (ii) compared with a proxy for the rest of the genome, genes of the IIS/TOR extracellular network exhibit exceptionally fast evolutionary rates; and (iii) signatures of positive selection and coevolution of the extracellular network suggest reptile- and mammal-specific interactions between members of the network. In reptiles, positively selected sites cluster on the binding surfaces of insulin-like growth factor 1 (IGF1), IGF1 receptor (IGF1R), and insulin receptor (INSR); whereas in mammals, positively selected sites clustered on the IGF2 binding surface, suggesting that these hormone-receptor binding affinities are targets of positive selection. Further, contrary to reports that IGF2R binds IGF2 only in marsupial and placental mammals, we found positively selected sites clustered on the hormone binding surface of reptile IGF2R that suggest that IGF2R binds to IGF hormones in diverse taxa and may have evolved in reptiles. These data suggest that key IIS/TOR paralogs have sub- or neofunctionalized between mammals and reptiles and that this network may underlie fundamental life history and physiological differences between these amniote sister clades.


Subject(s)
Birds/genetics , Evolution, Molecular , Genetic Variation , Mammals/genetics , Metabolic Networks and Pathways/genetics , Reptiles/genetics , Signal Transduction/physiology , Animals , Humans , Insulin/genetics , Insulin/metabolism , Metabolic Networks and Pathways/physiology , Models, Genetic , Selection, Genetic , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
18.
BMC Genomics ; 18(1): 338, 2017 05 02.
Article in English | MEDLINE | ID: mdl-28464824

ABSTRACT

BACKGROUND: Previous studies examining post-feeding organ regeneration in the Burmese python (Python molurus bivittatus) have identified thousands of genes that are significantly differentially regulated during this process. However, substantial gaps remain in our understanding of coherent mechanisms and specific growth pathways that underlie these rapid and extensive shifts in organ form and function. Here we addressed these gaps by comparing gene expression in the Burmese python heart, liver, kidney, and small intestine across pre- and post-feeding time points (fasted, one day post-feeding, and four days post-feeding), and by conducting detailed analyses of molecular pathways and predictions of upstream regulatory molecules across these organ systems. RESULTS: Identified enriched canonical pathways and upstream regulators indicate that while downstream transcriptional responses are fairly tissue specific, a suite of core pathways and upstream regulator molecules are shared among responsive tissues. Pathways such as mTOR signaling, PPAR/LXR/RXR signaling, and NRF2-mediated oxidative stress response are significantly differentially regulated in multiple tissues, indicative of cell growth and proliferation along with coordinated cell-protective stress responses. Upstream regulatory molecule analyses identify multiple growth factors, kinase receptors, and transmembrane receptors, both within individual organs and across separate tissues. Downstream transcription factors MYC and SREBF are induced in all tissues. CONCLUSIONS: These results suggest that largely divergent patterns of post-feeding gene regulation across tissues are mediated by a core set of higher-level signaling molecules. Consistent enrichment of the NRF2-mediated oxidative stress response indicates this pathway may be particularly important in mediating cellular stress during such extreme regenerative growth.


Subject(s)
Boidae/physiology , Eating , Regeneration , Stress, Physiological , Animals , Boidae/genetics , Boidae/growth & development , Gene Expression Profiling , NF-E2-Related Factor 2/metabolism , Organ Specificity , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
19.
PLoS Biol ; 10(11): e1001422, 2012.
Article in English | MEDLINE | ID: mdl-23152720

ABSTRACT

One of the most influential observations in molecular evolution has been a strong association between local recombination rate and nucleotide polymorphisms across the genome. This is interpreted as evidence for ubiquitous natural selection. The alternative explanation, that recombination is mutagenic, has been rejected by the absence of a similar association between local recombination rate and nucleotide divergence between species. However, many recent studies show that recombination rates are often very different even in closely related species, questioning whether an association between recombination rate and divergence between species has been tested satisfactorily. To circumvent this problem, we directly surveyed recombination across approximately 43% of the D. pseudoobscura physical genome in two separate recombination maps and 31% of the D. miranda physical genome, and we identified both global and local differences in recombination rate between these two closely related species. Using only regions with conserved recombination rates between and within species and accounting for multiple covariates, our data support the conclusion that recombination is positively related to diversity because recombination modulates Hill-Robertson effects in the genome and not because recombination is predominately mutagenic. Finally, we find evidence for dips in diversity around nonsynonymous substitutions. We infer that at least some of this reduction in diversity resulted from selective sweeps and examine these dips in the context of recombination rate.


Subject(s)
Drosophila/genetics , Genetic Linkage , Genome, Insect , Recombination, Genetic , Selection, Genetic , Animals , Base Sequence , Chromosome Mapping , Chromosomes, Insect/genetics , Codon/genetics , Confidence Intervals , Conserved Sequence , Evolution, Molecular , Genetic Variation , Genetics, Population/methods , Linear Models , Species Specificity , Telomere/genetics
20.
bioRxiv ; 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38585759

ABSTRACT

A major goal of modern evolutionary biology is connecting phenotypic evolution with its underlying genetic basis. The Mexican cavefish (Astyanax mexicanus), a characin fish species comprised of a surface ecotype and a cave-derived ecotype, is well suited as a model to study the genetic mechanisms underlying adaptation to extreme environments. Here we map 206 previously published quantitative trait loci (QTL) for cave-derived traits in A. mexicanus to the newest version of the surface fish genome assembly, AstMex3. This analysis revealed that QTL cluster in the genome more than expected by chance, and this clustering is not explained by the distribution of genes in the genome. To investigate whether certain characteristics of the genome facilitate phenotypic evolution, we tested whether genomic characteristics, such as highly mutagenic CpG sites, are reliable predictors of the sites of trait evolution but did not find any significant trends. Finally, we combined the QTL map with previously collected expression and selection data to identify a list of 36 candidate genes that may underlie the repeated evolution of cave phenotypes, including rgrb which is predicted to be involved in phototransduction. We found this gene has disrupted exons in all non-hybrid cave populations but intact reading frames in surface fish. Overall, our results suggest specific "evolutionary hotspots" in the genome may play significant roles in driving adaptation to the cave environment in Astyanax mexicanus and demonstrate how this compiled dataset can facilitate our understanding of the genetic basis of repeated evolution in the Mexican cavefish.

SELECTION OF CITATIONS
SEARCH DETAIL