Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Environ Microbiol ; 23(7): 3370-3383, 2021 07.
Article in English | MEDLINE | ID: mdl-31919959

ABSTRACT

Some haloarchaea avoid the harsh conditions present in evaporating brines by entombment in brine inclusions within forming halite crystals, where a subset of haloarchaea survives over geological time. However, shifts in the community structure of halite-entombed archaeal communities remain poorly understood. Therefore, we analysed archaeal communities from in situ hypersaline brines collected from Trapani saltern (Sicily) and their successional changes in brines versus laboratory-grown halite over 21 weeks, using high-throughput sequencing. Haloarchaea were dominant, comprising >95% of the archaeal community. Unexpectedly, the OTU richness of the communities after 21 weeks was indistinguishable from the parent brine and overall archaeal abundance in halite showed no clear temporal trends. Furthermore, the duration of entombment was less important than the parent brine from which the halite derived in determining the community composition and relative abundances of most genera in halite-entombed communities. These results show that halite-entombed archaeal communities are resilient to entombment durations of up to 21 weeks, and that entombment in halite may be an effective survival strategy for near complete communities of haloarchaea. Additionally, the dominance of 'halite specialists' observed in ancient halite must occur over periods of years, rather than months, hinting at long-term successional dynamics in this environment.


Subject(s)
Archaea , Archaea/genetics
2.
Proc Natl Acad Sci U S A ; 115(51): 13081-13086, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30498029

ABSTRACT

The climate-active gas isoprene (2-methyl-1,3-butadiene) is released to the atmosphere in huge quantities, almost equaling that of methane, yet we know little about the biological cycling of isoprene in the environment. Although bacteria capable of growth on isoprene as the sole source of carbon and energy have previously been isolated from soils and sediments, no microbiological studies have targeted the major source of isoprene and examined the phyllosphere of isoprene-emitting trees for the presence of degraders of this abundant carbon source. Here, we identified isoprene-degrading bacteria in poplar tree-derived microcosms by DNA stable isotope probing. The genomes of isoprene-degrading taxa were reconstructed, putative isoprene metabolic genes were identified, and isoprene-related gene transcription was analyzed by shotgun metagenomics and metatranscriptomics. Gram-positive bacteria of the genus Rhodococcus proved to be the dominant isoprene degraders, as previously found in soil. However, a wider diversity of isoprene utilizers was also revealed, notably Variovorax, a genus not previously associated with this trait. This finding was confirmed by expression of the isoprene monooxygenase from Variovorax in a heterologous host. A Variovorax strain that could grow on isoprene as the sole carbon and energy source was isolated. Analysis of its genome confirmed that it contained isoprene metabolic genes with an identical layout and high similarity to those identified by DNA-stable isotope probing and metagenomics. This study provides evidence of a wide diversity of isoprene-degrading bacteria in the isoprene-emitting tree phyllosphere and greatly enhances our understanding of the biodegradation of this important metabolite and climate-active gas.


Subject(s)
Butadienes/metabolism , Comamonadaceae/metabolism , Genome, Bacterial , Hemiterpenes/metabolism , Metagenomics , Mixed Function Oxygenases/metabolism , Populus/metabolism , Rhodococcus/metabolism , Biodegradation, Environmental , Comamonadaceae/classification , Comamonadaceae/genetics , DNA, Bacterial/genetics , Mixed Function Oxygenases/genetics , Phylogeny , Populus/microbiology , Rhodococcus/classification , Rhodococcus/genetics , Soil Microbiology
3.
Curr Issues Mol Biol ; 38: 123-162, 2020.
Article in English | MEDLINE | ID: mdl-31967579

ABSTRACT

Several icy moons of the outer solar system have been receiving considerable attention and are currently seen as major targets for astrobiological research and the search for life beyond our planet. Despite the limited amount of data on the oceans of these moon, we expect them to be composed of brines with variable chemistry, some degree of hydrothermal input, and be under high pressure conditions. The combination of these different conditions significantly limits the number of extreme locations, which can be used as terrestrial analogues. Here we propose the use of deep-sea brines as potential terrestrial analogues to the oceans in the outer solar system. We provide an overview of what is currently known about the conditions on the icy moons of the outer solar system and their oceans as well as on deep-sea brines of the Red Sea and the Mediterranean and their microbiology. We also identify several threads of future research, which would be particularly useful in the context of future exploration of these extra-terrestrial oceans.


Subject(s)
Archaea/isolation & purification , Bacteria/isolation & purification , Extraterrestrial Environment/chemistry , Salts/chemistry , Hydrogen-Ion Concentration , Ice , Indian Ocean , Jupiter , Mediterranean Sea , Metagenomics , Oceans and Seas , RNA, Ribosomal, 16S/genetics , Salinity , Temperature
4.
Microbiology (Reading) ; 166(7): 600-613, 2020 07.
Article in English | MEDLINE | ID: mdl-32441612

ABSTRACT

The climate-active gas isoprene is the major volatile produced by a variety of trees and is released into the atmosphere in enormous quantities, on a par with global emissions of methane. While isoprene production in plants and its effect on atmospheric chemistry have received considerable attention, research into the biological isoprene sink has been neglected until recently. Here, we review current knowledge on the sources and sinks of isoprene and outline its environmental effects. Focusing on degradation by microbes, many of which are able to use isoprene as the sole source of carbon and energy, we review recent studies characterizing novel isoprene degraders isolated from soils, marine sediments and in association with plants. We describe the development and use of molecular methods to identify, quantify and genetically characterize isoprene-degrading strains in environmental samples. Finally, this review identifies research imperatives for the further study of the environmental impact, ecology, regulation and biochemistry of this interesting group of microbes.


Subject(s)
Bacteria/genetics , Bacteria/metabolism , Butadienes/metabolism , Hemiterpenes/metabolism , Metabolic Networks and Pathways/genetics , Biodegradation, Environmental , Genes, Bacterial , Plants/microbiology , Seawater/microbiology , Soil Microbiology
5.
Environ Microbiol ; 19(9): 3526-3537, 2017 09.
Article in English | MEDLINE | ID: mdl-28654185

ABSTRACT

Approximately one-third of volatile organic compounds (VOCs) emitted to the atmosphere consists of isoprene, originating from the terrestrial and marine biosphere, with a profound effect on atmospheric chemistry. However, isoprene provides an abundant and largely unexplored source of carbon and energy for microbes. The potential for isoprene degradation in marine and estuarine samples from the Colne Estuary, UK, was investigated using DNA-Stable Isotope Probing (DNA-SIP). Analysis at two timepoints showed the development of communities dominated by Actinobacteria including members of the genera Mycobacterium, Rhodococcus, Microbacterium and Gordonia. Representative isolates, capable of growth on isoprene as sole carbon and energy source, were obtained from marine and estuarine locations, and isoprene-degrading strains of Gordonia and Mycobacterium were characterised physiologically and their genomes were sequenced. Genes predicted to be required for isoprene metabolism, including four-component isoprene monooxygenases (IsoMO), were identified and compared with previously characterised examples. Transcriptional and activity assays of strains growing on isoprene or alternative carbon sources showed that growth on isoprene is an inducible trait requiring a specific IsoMO. This study is the first to identify active isoprene degraders in estuarine and marine environments using DNA-SIP and to characterise marine isoprene-degrading bacteria at the physiological and molecular level.


Subject(s)
Butadienes/metabolism , Gordonia Bacterium/metabolism , Hemiterpenes/metabolism , Mixed Function Oxygenases/metabolism , Mycobacterium/metabolism , Pentanes/metabolism , Rhodococcus/metabolism , Base Sequence , Environment , Genome, Bacterial/genetics , Gordonia Bacterium/classification , Gordonia Bacterium/genetics , Mixed Function Oxygenases/genetics , Mycobacterium/classification , Mycobacterium/genetics , Rhodococcus/classification , Rhodococcus/genetics , Sequence Analysis, DNA , Volatile Organic Compounds/metabolism
6.
Environ Microbiol ; 18(12): 5048-5062, 2016 12.
Article in English | MEDLINE | ID: mdl-27459511

ABSTRACT

Although desert soils support functionally important microbial communities that affect plant growth and influence many biogeochemical processes, the impact of future changes in precipitation patterns on the microbiota and their activities is largely unknown. We performed in-situ experiments to investigate the effect of simulated rainfall on bacterial communities associated with the widespread perennial shrub, Rhazya stricta in Arabian desert soils. The bacterial community composition was distinct between three different soil compartments: surface biological crust, root-attached, and the broader rhizosphere. Simulated rainfall had no significant effect on the overall bacterial community composition, but some population-level responses were observed, especially in soil crusts where Betaproteobacteria, Sphingobacteria, and Bacilli became more abundant. Bacterial biomass in the nutrient-rich crust increased three-fold one week after watering, whereas it did not change in the rhizosphere, despite its much higher water retention. These findings indicate that between rainfall events, desert-soil microbial communities enter into stasis, with limited species turnover, and reactivate rapidly and relatively uniformly when water becomes available. However, microbiota in the crust, which was relatively enriched in nutrients and organic matter, were primarily water-limited, compared with the rhizosphere microbiota that were co-limited by nutrients and water.


Subject(s)
Bacteria/isolation & purification , Soil Microbiology , Soil/chemistry , Bacteria/classification , Bacteria/genetics , Desert Climate , Ecosystem , Microbiota , Rain/chemistry , Rhizosphere , Water/analysis
7.
Environ Microbiol ; 18(8): 2743-53, 2016 09.
Article in English | MEDLINE | ID: mdl-27102583

ABSTRACT

Emissions of biogenic volatile organic compounds (bVOCs), are an important element in the global carbon cycle, accounting for a significant proportion of fixed carbon. They contribute directly and indirectly to global warming and climate change and have a major effect on atmospheric chemistry. Plants emit isoprene to the atmosphere in similar quantities to emissions of methane from all sources and each accounts for approximately one third of total VOCs. Although methanotrophs, capable of growth on methane, have been intensively studied, we know little of isoprene biodegradation. Here, we report the isolation of two isoprene-degrading strains from the terrestrial environment and describe the design and testing of polymerase chain reaction (PCR) primers targeting isoA, the gene encoding the active-site component of the conserved isoprene monooxygenase, which are capable of retrieving isoA sequences from isoprene-enriched environmental samples. Stable isotope probing experiments, using biosynthesized (13) C-labelled isoprene, identified the active isoprene-degrading bacteria in soil. This study identifies novel isoprene-degrading strains using both culture-dependent and, for the first time, culture-independent methods and provides the tools and foundations for continued investigation of the biogeography and molecular ecology of isoprene-degrading bacteria.


Subject(s)
Bacteria/metabolism , Butadienes/metabolism , Carbon Cycle/physiology , Hemiterpenes/metabolism , Oxygenases/metabolism , Pentanes/metabolism , Plants/metabolism , Volatile Organic Compounds/metabolism , Atmosphere/analysis , Bacteria/genetics , Base Sequence , Climate Change , DNA/metabolism , DNA Probes , DNA, Bacterial/genetics , Genome, Bacterial/genetics , Methane/metabolism , Sequence Analysis, DNA , Soil , Soil Microbiology
8.
Appl Environ Microbiol ; 82(8): 2288-2299, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26850299

ABSTRACT

High-molecular-weight polycyclic aromatic hydrocarbons (HMW-PAHs) are natural components of fossil fuels that are carcinogenic and persistent in the environment, particularly in oil sands process-affected water (OSPW). Their hydrophobicity and tendency to adsorb to organic matter result in low bioavailability and high recalcitrance to degradation. Despite the importance of microbes for environmental remediation, little is known about those involved in HMW-PAH transformations. Here, we investigated the transformation of HMW-PAHs using samples of OSPW and compared the bacterial and fungal community compositions attached to hydrophobic filters and in suspension. It was anticipated that the hydrophobic filters with sorbed HMW-PAHs would select for microbes that specialize in adhesion. Over 33 days, more pyrene was removed (75% ± 11.7%) than the five-ring PAHs benzo[a]pyrene (44% ± 13.6%) and benzo[b]fluoranthene (41% ± 12.6%). For both bacteria and fungi, the addition of PAHs led to a shift in community composition, but thereafter the major factor determining the fungal community composition was whether it was in the planktonic phase or attached to filters. In contrast, the major determinant of the bacterial community composition was the nature of the PAH serving as the carbon source. The main bacteria enriched by HMW-PAHs were Pseudomonas, Bacillus, and Microbacterium species. This report demonstrates that OSPW harbors microbial communities with the capacity to transform HMW-PAHs. Furthermore, the provision of suitable surfaces that encourage PAH sorption and microbial adhesion select for different fungal and bacterial species with the potential for HMW-PAH degradation.


Subject(s)
Bacteria/metabolism , Biota , Fungi/metabolism , Polycyclic Aromatic Hydrocarbons/metabolism , Water Pollutants/metabolism , Biotransformation
9.
Environ Microbiol ; 17(9): 3314-29, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25727256

ABSTRACT

Emissions of biogenic volatile organic compounds (VOCs) form an important part of the global carbon cycle, comprising a significant proportion of net ecosystem productivity. They impact atmospheric chemistry and contribute directly and indirectly to greenhouse gases. Isoprene, emitted largely from plants, comprises one third of total VOCs, yet in contrast to methane, which is released in similar quantities, we know little of its biodegradation. Here, we report the genome of an isoprene degrading isolate, Rhodococcus sp. AD45, and, using mutagenesis shows that a plasmid-encoded soluble di-iron centre isoprene monooxygenase (IsoMO) is essential for isoprene metabolism. Using RNA sequencing (RNAseq) to analyse cells exposed to isoprene or epoxyisoprene in a substrate-switch time-course experiment, we show that transcripts from 22 contiguous genes, including those encoding IsoMO, were highly upregulated, becoming among the most abundant in the cell and comprising over 25% of the entire transcriptome. Analysis of gene transcription in the wild type and an IsoMO-disrupted mutant strain showed that epoxyisoprene, or a subsequent product of isoprene metabolism, rather than isoprene itself, was the inducing molecule. We provide a foundation of molecular data for future research on the environmental biological consumption of this important, climate-active compound.


Subject(s)
Butadienes/metabolism , Carbon Cycle/physiology , Hemiterpenes/metabolism , Pentanes/metabolism , Rhodococcus/metabolism , Volatile Organic Compounds/metabolism , Base Sequence , Climate , Ecosystem , Gene Expression Profiling , Genome, Bacterial , Molecular Sequence Data , Plants/metabolism , Plasmids/genetics , RNA, Bacterial/genetics , Rhodococcus/genetics , Sequence Analysis, RNA
10.
Environ Microbiol ; 17(2): 257-77, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25142751

ABSTRACT

Since a key requirement of known life forms is available water (water activity; aw ), recent searches for signatures of past life in terrestrial and extraterrestrial environments have targeted places known to have contained significant quantities of biologically available water. However, early life on Earth inhabited high-salt environments, suggesting an ability to withstand low water-activity. The lower limit of water activity that enables cell division appears to be ∼ 0.605 which, until now, was only known to be exhibited by a single eukaryote, the sugar-tolerant, fungal xerophile Xeromyces bisporus. The first forms of life on Earth were, though, prokaryotic. Recent evidence now indicates that some halophilic Archaea and Bacteria have water-activity limits more or less equal to those of X. bisporus. We discuss water activity in relation to the limits of Earth's present-day biosphere; the possibility of microbial multiplication by utilizing water from thin, aqueous films or non-liquid sources; whether prokaryotes were the first organisms able to multiply close to the 0.605-aw limit; and whether extraterrestrial aqueous milieux of ≥ 0.605 aw can resemble fertile microbial habitats found on Earth.


Subject(s)
Cell Division , Ecosystem , Extraterrestrial Environment , Prokaryotic Cells/physiology , Water Microbiology , Water , Archaea/cytology , Ascomycota/cytology , Ascomycota/physiology , Bacteria/cytology , Exobiology , Prokaryotic Cells/cytology , Salinity , Sodium Chloride
11.
Curr Genet ; 61(3): 457-77, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26055444

ABSTRACT

Whereas osmotic stress response induced by solutes has been well-characterized in fungi, less is known about the other activities of environmentally ubiquitous substances. The latest methodologies to define, identify and quantify chaotropicity, i.e. substance-induced destabilization of macromolecular systems, now enable new insights into microbial stress biology (Cray et al. in Curr Opin Biotechnol 33:228-259, 2015a, doi: 10.1016/j.copbio.2015.02.010 ; Ball and Hallsworth in Phys Chem Chem Phys 17:8297-8305, 2015, doi: 10.1039/C4CP04564E ; Cray et al. in Environ Microbiol 15:287-296, 2013a, doi: 10.1111/1462-2920.12018 ). We used Aspergillus wentii, a paradigm for extreme solute-tolerant fungal xerophiles, alongside yeast cell and enzyme models (Saccharomyces cerevisiae and glucose-6-phosphate dehydrogenase) and an agar-gelation assay, to determine growth-rate inhibition, intracellular compatible solutes, cell turgor, inhibition of enzyme activity, substrate water activity, and stressor chaotropicity for 12 chemically diverse solutes. These stressors were found to be: (i) osmotically active (and typically macromolecule-stabilizing kosmotropes), including NaCl and sorbitol; (ii) weakly to moderately chaotropic and non-osmotic, these were ethanol, urea, ethylene glycol; (iii) highly chaotropic and osmotically active, i.e. NH4NO3, MgCl2, guanidine hydrochloride, and CaCl2; or (iv) inhibitory due primarily to low water activity, i.e. glycerol. At ≤0.974 water activity, Aspergillus cultured on osmotically active stressors accumulated low-M r polyols to ≥100 mg g dry weight(-1). Lower-M r polyols (i.e. glycerol, erythritol and arabitol) were shown to be more effective for osmotic adjustment; for higher-M r polyols such as mannitol, and the disaccharide trehalose, water-activity values for saturated solutions are too high to be effective; i.e. 0.978 and 0.970 (25 ºC). The highly chaotropic, osmotically active substances exhibited a stressful level of chaotropicity at physiologically relevant concentrations (20.0-85.7 kJ kg(-1)). We hypothesized that the kosmotropicity of compatible solutes can neutralize chaotropicity, and tested this via in-vitro agar-gelation assays for the model chaotropes urea, NH4NO3, phenol and MgCl2. Of the kosmotropic compatible solutes, the most-effective protectants were trimethylamine oxide and betaine; but proline, dimethyl sulfoxide, sorbitol, and trehalose were also effective, depending on the chaotrope. Glycerol, by contrast (a chaotropic compatible solute used as a negative control) was relatively ineffective. The kosmotropic activity of compatible solutes is discussed as one mechanism by which these substances can mitigate the activities of chaotropic stressors in vivo. Collectively, these data demonstrate that some substances concomitantly induce chaotropicity-mediated and osmotic stresses, and that compatible solutes ultimately define the biotic window for fungal growth and metabolism. The findings have implications for the validity of ecophysiological classifications such as 'halophile' and 'polyextremophile'; potential contamination of life-support systems used for space exploration; and control of mycotoxigenic fungi in the food-supply chain.


Subject(s)
Adaptation, Biological , Aspergillus/physiology , Osmotic Pressure , Stress, Physiological , Catalysis , Glucosephosphate Dehydrogenase/metabolism , Polymers/metabolism
12.
Glob Chang Biol ; 21(4): 1383-94, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25311223

ABSTRACT

Biogenic volatile organic compounds (BVOCs), in particular dimethyl sulphide (DMS) and isoprene, have fundamental ecological, physiological and climatic roles. Our current understanding of these roles is almost exclusively established from terrestrial or oceanic environments but signifies a potentially major, but largely unknown, role for BVOCs in tropical coastal marine ecosystems. The tropical coast is a transition zone between the land and ocean, characterized by highly productive and biodiverse coral reefs, seagrass beds and mangroves, which house primary producers that are amongst the greatest emitters of BVOCs on the planet. Here, we synthesize our existing understanding of BVOC emissions to produce a novel conceptual framework of the tropical marine coast as a continuum from DMS-dominated reef producers to isoprene-dominated mangroves. We use existing and previously unpublished data to consider how current environmental conditions shape BVOC production across the tropical coastal continuum, and in turn how BVOCs can regulate environmental stress tolerance or species interactions via infochemical networks. We use this as a framework to discuss how existing predictions of future tropical coastal BVOC emissions, and the roles they play, are effectively restricted to present day 'baseline' trends of BVOC production across species and environmental conditions; as such, there remains a critical need to focus research efforts on BVOC responses to rapidly accelerating anthropogenic impacts at local and regional scales. We highlight the complete lack of current knowledge required to understand the future ecological functioning of these important systems, and to predict whether feedback mechanisms are likely to regulate or exacerbate current climate change scenarios through environmentally and ecologically mediated changes to BVOC budgets at the ecosystem level.


Subject(s)
Butadienes/analysis , Climate Change , Ecosystem , Hemiterpenes/analysis , Pentanes/analysis , Sulfides/analysis , Volatile Organic Compounds/analysis , Coral Reefs , Oceans and Seas , Tropical Climate , Wetlands
14.
Microbiol Resour Announc ; 13(6): e0032424, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38767399

ABSTRACT

In this study, we report the draft genome sequence data of Methylobacterium sp. 37f, isolated from soil beneath Quercus semiserrata Roxb. in Thailand. The genome consists of 5,305,449 base pairs, with a GC content of 67.5%.

15.
Microbiol Resour Announc ; 13(2): e0069223, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38206017

ABSTRACT

We report here the genome sequence of moderately halophilic Halobacillus campisalis ASL-17, isolated from hypersaline sediment from the Yellow Sea, Korea. The bacterium was Gram variable, oval or coccoid, and mesophilic. The genome of H. campisalis ASL-17 has 3.8 Mbp, with 3,910 coding sequences, 76 RNAs, and 41.3% G + C content.

16.
Microb Biotechnol ; 17(5): e14456, 2024 May.
Article in English | MEDLINE | ID: mdl-38801001

ABSTRACT

EXECUTIVE SUMMARY: Microbes are all pervasive in their distribution and influence on the functioning and well-being of humans, life in general and the planet. Microbially-based technologies contribute hugely to the supply of important goods and services we depend upon, such as the provision of food, medicines and clean water. They also offer mechanisms and strategies to mitigate and solve a wide range of problems and crises facing humanity at all levels, including those encapsulated in the sustainable development goals (SDGs) formulated by the United Nations. For example, microbial technologies can contribute in multiple ways to decarbonisation and hence confronting global warming, provide sanitation and clean water to the billions of people lacking them, improve soil fertility and hence food production and develop vaccines and other medicines to reduce and in some cases eliminate deadly infections. They are the foundation of biotechnology, an increasingly important and growing business sector and source of employment, and the centre of the bioeconomy, Green Deal, etc. But, because microbes are largely invisible, they are not familiar to most people, so opportunities they offer to effectively prevent and solve problems are often missed by decision-makers, with the negative consequences this entrains. To correct this lack of vital knowledge, the International Microbiology Literacy Initiative-the IMiLI-is recruiting from the global microbiology community and making freely available, teaching resources for a curriculum in societally relevant microbiology that can be used at all levels of learning. Its goal is the development of a society that is literate in relevant microbiology and, as a consequence, able to take full advantage of the potential of microbes and minimise the consequences of their negative activities. In addition to teaching about microbes, almost every lesson discusses the influence they have on sustainability and the SDGs and their ability to solve pressing problems of societal inequalities. The curriculum thus teaches about sustainability, societal needs and global citizenship. The lessons also reveal the impacts microbes and their activities have on our daily lives at the personal, family, community, national and global levels and their relevance for decisions at all levels. And, because effective, evidence-based decisions require not only relevant information but also critical and systems thinking, the resources also teach about these key generic aspects of deliberation. The IMiLI teaching resources are learner-centric, not academic microbiology-centric and deal with the microbiology of everyday issues. These span topics as diverse as owning and caring for a companion animal, the vast range of everyday foods that are produced via microbial processes, impressive geological formations created by microbes, childhood illnesses and how they are managed and how to reduce waste and pollution. They also leverage the exceptional excitement of exploration and discovery that typifies much progress in microbiology to capture the interest, inspire and motivate educators and learners alike. The IMiLI is establishing Regional Centres to translate the teaching resources into regional languages and adapt them to regional cultures, and to promote their use and assist educators employing them. Two of these are now operational. The Regional Centres constitute the interface between resource creators and educators-learners. As such, they will collect and analyse feedback from the end-users and transmit this to the resource creators so that teaching materials can be improved and refined, and new resources added in response to demand: educators and learners will thereby be directly involved in evolution of the teaching resources. The interactions between educators-learners and resource creators mediated by the Regional Centres will establish dynamic and synergistic relationships-a global societally relevant microbiology education ecosystem-in which creators also become learners, teaching resources are optimised and all players/stakeholders are empowered and their motivation increased. The IMiLI concept thus embraces the principle of teaching societally relevant microbiology embedded in the wider context of societal, biosphere and planetary needs, inequalities, the range of crises that confront us and the need for improved decisioning, which should ultimately lead to better citizenship and a humanity that is more sustainable and resilient. ABSTRACT: The biosphere of planet Earth is a microbial world: a vast reactor of countless microbially driven chemical transformations and energy transfers that push and pull many planetary geochemical processes, including the cycling of the elements of life, mitigate or amplify climate change (e.g., Nature Reviews Microbiology, 2019, 17, 569) and impact the well-being and activities of all organisms, including humans. Microbes are both our ancestors and creators of the planetary chemistry that allowed us to evolve (e.g., Life's engines: How microbes made earth habitable, 2023). To understand how the biosphere functions, how humans can influence its development and live more sustainably with the other organisms sharing it, we need to understand the microbes. In a recent editorial (Environmental Microbiology, 2019, 21, 1513), we advocated for improved microbiology literacy in society. Our concept of microbiology literacy is not based on knowledge of the academic subject of microbiology, with its multitude of component topics, plus the growing number of additional topics from other disciplines that become vitally important elements of current microbiology. Rather it is focused on microbial activities that impact us-individuals/communities/nations/the human world-and the biosphere and that are key to reaching informed decisions on a multitude of issues that regularly confront us, ranging from personal issues to crises of global importance. In other words, it is knowledge and understanding essential for adulthood and the transition to it, knowledge and understanding that must be acquired early in life in school. The 2019 Editorial marked the launch of the International Microbiology Literacy Initiative, the IMiLI. HERE, WE PRESENT: our concept of how microbiology literacy may be achieved and the rationale underpinning it; the type of teaching resources being created to realise the concept and the framing of microbial activities treated in these resources in the context of sustainability, societal needs and responsibilities and decision-making; and the key role of Regional Centres that will translate the teaching resources into local languages, adapt them according to local cultural needs, interface with regional educators and develop and serve as hubs of microbiology literacy education networks. The topics featuring in teaching resources are learner-centric and have been selected for their inherent relevance, interest and ability to excite and engage. Importantly, the resources coherently integrate and emphasise the overarching issues of sustainability, stewardship and critical thinking and the pervasive interdependencies of processes. More broadly, the concept emphasises how the multifarious applications of microbial activities can be leveraged to promote human/animal, plant, environmental and planetary health, improve social equity, alleviate humanitarian deficits and causes of conflicts among peoples and increase understanding between peoples (Microbial Biotechnology, 2023, 16(6), 1091-1111). Importantly, although the primary target of the freely available (CC BY-NC 4.0) IMiLI teaching resources is schoolchildren and their educators, they and the teaching philosophy are intended for all ages, abilities and cultural spectra of learners worldwide: in university education, lifelong learning, curiosity-driven, web-based knowledge acquisition and public outreach. The IMiLI teaching resources aim to promote development of a global microbiology education ecosystem that democratises microbiology knowledge.


Subject(s)
Microbiology , Microbiology/education , Humans , Biotechnology
17.
Environ Microbiol ; 20(12): 4213-4220, 2018 12.
Article in English | MEDLINE | ID: mdl-30328239
18.
Environ Microbiol ; 15(1): 242-52, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22978606

ABSTRACT

Coastal and estuarine ecosystems are highly susceptible to crude oil pollution. Therefore, in order to examine the resilience of benthic phototrophs that are pivotal to coastal ecosystem functioning, we simulated an oil spill in tidal mesocosms consisting of intact sediment cores from a mudflat at the mouth of the Colne Estuary, UK. At day 21, fluorescence imaging revealed a bloom of cyanobacteria on the surface of oiled sediment cores, and the upper 1.5 cm thick sediment had 7.2 times more cyanobacterial and 1.7 times more diatom rRNA sequences when treated with oil. Photosystem II operating efficiency (Fq'/Fm') was significantly reduced in oiled sediments at day 7, implying that the initial diatom-dominated community was negatively affected by oil, but this was no longer apparent by day 21. Oil addition significantly reduced numbers of the key deposit feeders, and the decreased grazing pressure is likely to be a major factor in the increased abundance of both diatoms and cyanobacteria. By day 5 concentrations of dissolved inorganic nitrogen were significantly lower in oiled mesocosms, likely resulting in the observed increase in nifH-containing, and therefore potentially dinitrogen-fixing, cyanobacteria. Thus, indirect effects of oil, rather than direct inhibition, are primarily responsible for altering the microphytobenthos.


Subject(s)
Bacteria/metabolism , Biodiversity , Geologic Sediments/microbiology , Nitrogen Fixation , Petroleum Pollution , Petroleum , Bacteria/genetics , Bacterial Load , Cyanobacteria/genetics , Diatoms/genetics , Diatoms/physiology , Geologic Sediments/chemistry , Molecular Sequence Data , Oxidoreductases/genetics , Photosystem II Protein Complex/metabolism , Water Pollutants, Chemical/analysis
19.
Science ; 381(6659): 728-729, 2023 08 18.
Article in English | MEDLINE | ID: mdl-37590354

ABSTRACT

Microbes reshape oil droplets to speed biodegradation.


Subject(s)
Alcanivoraceae , Petroleum , Biodegradation, Environmental , Petroleum/metabolism , Alcanivoraceae/metabolism
20.
Appl Environ Microbiol ; 78(10): 3638-48, 2012 May.
Article in English | MEDLINE | ID: mdl-22407688

ABSTRACT

Mudflats and salt marshes are habitats at the interface of aquatic and terrestrial systems that provide valuable services to ecosystems. Therefore, it is important to determine how catastrophic incidents, such as oil spills, influence the microbial communities in sediment that are pivotal to the function of the ecosystem and to identify the oil-degrading microbes that mitigate damage to the ecosystem. In this study, an oil spill was simulated by use of a tidal chamber containing intact diatom-dominated sediment cores from a temperate mudflat. Changes in the composition of bacteria and diatoms from both the sediment and tidal biofilms that had detached from the sediment surface were monitored as a function of hydrocarbon removal. The hydrocarbon concentration in the upper 1.5 cm of sediments decreased by 78% over 21 days, with at least 60% being attributed to biodegradation. Most phylotypes were minimally perturbed by the addition of oil, but at day 21, there was a 10-fold increase in the amount of cyanobacteria in the oiled sediment. Throughout the experiment, phylotypes associated with the aerobic degradation of hydrocarbons, including polycyclic aromatic hydrocarbons (PAHs) (Cycloclasticus) and alkanes (Alcanivorax, Oleibacter, and Oceanospirillales strain ME113), substantively increased in oiled mesocosms, collectively representing 2% of the pyrosequences in the oiled sediments at day 21. Tidal biofilms from oiled cores at day 22, however, consisted mostly of phylotypes related to Alcanivorax borkumensis (49% of clones), Oceanospirillales strain ME113 (11% of clones), and diatoms (14% of clones). Thus, aerobic hydrocarbon biodegradation is most likely to be the main mechanism of attenuation of crude oil in the early weeks of an oil spill, with tidal biofilms representing zones of high hydrocarbon-degrading activity.


Subject(s)
Bacteria, Aerobic/metabolism , Biofilms/growth & development , Biota , Diatoms/metabolism , Hydrocarbons/metabolism , Soil Microbiology , Water Microbiology , Bacteria, Aerobic/classification , Bacteria, Aerobic/genetics , Bacteria, Aerobic/physiology , Biotransformation , Diatoms/classification , Diatoms/genetics , Diatoms/physiology , Molecular Sequence Data , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL