Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nucleic Acids Res ; 42(Database issue): D1083-90, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24214965

ABSTRACT

ChEMBL is an open large-scale bioactivity database (https://www.ebi.ac.uk/chembl), previously described in the 2012 Nucleic Acids Research Database Issue. Since then, a variety of new data sources and improvements in functionality have contributed to the growth and utility of the resource. In particular, more comprehensive tracking of compounds from research stages through clinical development to market is provided through the inclusion of data from United States Adopted Name applications; a new richer data model for representing drug targets has been developed; and a number of methods have been put in place to allow users to more easily identify reliable data. Finally, access to ChEMBL is now available via a new Resource Description Framework format, in addition to the web-based interface, data downloads and web services.


Subject(s)
Databases, Chemical , Drug Discovery , Binding Sites , Humans , Internet , Ligands , Pharmaceutical Preparations/chemistry , Proteins/chemistry , Proteins/drug effects
2.
Nucleic Acids Res ; 40(Database issue): D1100-7, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21948594

ABSTRACT

ChEMBL is an Open Data database containing binding, functional and ADMET information for a large number of drug-like bioactive compounds. These data are manually abstracted from the primary published literature on a regular basis, then further curated and standardized to maximize their quality and utility across a wide range of chemical biology and drug-discovery research problems. Currently, the database contains 5.4 million bioactivity measurements for more than 1 million compounds and 5200 protein targets. Access is available through a web-based interface, data downloads and web services at: https://www.ebi.ac.uk/chembldb.


Subject(s)
Databases, Factual , Drug Discovery , Databases, Protein , Humans , Pharmaceutical Preparations/chemistry , Proteins/chemistry , Proteins/metabolism , User-Computer Interface
3.
Biochem Soc Trans ; 39(5): 1365-70, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21936816

ABSTRACT

The challenge of translating the huge amount of genomic and biochemical data into new drugs is a costly and challenging task. Historically, there has been comparatively little focus on linking the biochemical and chemical worlds. To address this need, we have developed ChEMBL, an online resource of small-molecule SAR (structure-activity relationship) data, which can be used to support chemical biology, lead discovery and target selection in drug discovery. The database contains the abstracted structures, properties and biological activities for over 700000 distinct compounds and in excess of more than 3 million bioactivity records abstracted from over 40000 publications. Additional public domain resources can be readily integrated into the same data model (e.g. PubChem BioAssay data). The compounds in ChEMBL are largely extracted from the primary medicinal chemistry literature, and are therefore usually 'drug-like' or 'lead-like' small molecules with full experimental context. The data cover a significant fraction of the discovery of modern drugs, and are useful in a wide range of drug design and discovery tasks. In addition to the compound data, ChEMBL also contains information for over 8000 protein, cell line and whole-organism 'targets', with over 4000 of those being proteins linked to their underlying genes. The database is searchable both chemically, using an interactive compound sketch tool, protein sequences, family hierarchies, SMILES strings, compound research codes and key words, and biologically, using a variety of gene identifiers, protein sequence similarity and protein families. The information retrieved can then be readily filtered and downloaded into various formats. ChEMBL can be accessed online at https://www.ebi.ac.uk/chembldb.


Subject(s)
Data Mining , Databases, Factual , Drug Discovery , Animals , Computational Biology/methods , Genomics , Humans , Information Storage and Retrieval , Molecular Structure , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/metabolism , Proteins/chemistry , Structure-Activity Relationship
4.
J Cheminform ; 5(1): 3, 2013 Jan 14.
Article in English | MEDLINE | ID: mdl-23317286

ABSTRACT

UniChem is a freely available compound identifier mapping service on the internet, designed to optimize the efficiency with which structure-based hyperlinks may be built and maintained between chemistry-based resources. In the past, the creation and maintenance of such links at EMBL-EBI, where several chemistry-based resources exist, has required independent efforts by each of the separate teams. These efforts were complicated by the different data models, release schedules, and differing business rules for compound normalization and identifier nomenclature that exist across the organization. UniChem, a large-scale, non-redundant database of Standard InChIs with pointers between these structures and chemical identifiers from all the separate chemistry resources, was developed as a means of efficiently sharing the maintenance overhead of creating these links. Thus, for each source represented in UniChem, all links to and from all other sources are automatically calculated and immediately available for all to use. Updated mappings are immediately available upon loading of new data releases from the sources. Web services in UniChem provide users with a single simple automatable mechanism for maintaining all links from their resource to all other sources represented in UniChem. In addition, functionality to track changes in identifier usage allows users to monitor which identifiers are current, and which are obsolete. Lastly, UniChem has been deliberately designed to allow additional resources to be included with minimal effort. Indeed, the recent inclusion of data sources external to EMBL-EBI has provided a simple means of providing users with an even wider selection of resources with which to link to, all at no extra cost, while at the same time providing a simple mechanism for external resources to link to all EMBL-EBI chemistry resources.

SELECTION OF CITATIONS
SEARCH DETAIL