ABSTRACT
Global climate change has altered the timing of seasonal events (i.e., phenology) for a diverse range of biota. Within and among species, however, the degree to which alterations in phenology match climate variability differ substantially. To better understand factors driving these differences, we evaluated variation in timing of nesting of eight Arctic-breeding shorebird species at 18 sites over a 23-year period. We used the Normalized Difference Vegetation Index as a proxy to determine the start of spring (SOS) growing season and quantified relationships between SOS and nest initiation dates as a measure of phenological responsiveness. Among species, we tested four life history traits (migration distance, seasonal timing of breeding, female body mass, expected female reproductive effort) as species-level predictors of responsiveness. For one species (Semipalmated Sandpiper), we also evaluated whether responsiveness varied across sites. Although no species in our study completely tracked annual variation in SOS, phenological responses were strongest for Western Sandpipers, Pectoral Sandpipers, and Red Phalaropes. Migration distance was the strongest additional predictor of responsiveness, with longer-distance migrant species generally tracking variation in SOS more closely than species that migrate shorter distances. Semipalmated Sandpipers are a widely distributed species, but adjustments in timing of nesting relative to variability in SOS did not vary across sites, suggesting that different breeding populations of this species were equally responsive to climate cues despite differing migration strategies. Our results unexpectedly show that long-distance migrants are more sensitive to local environmental conditions, which may help them to adapt to ongoing changes in climate.
Subject(s)
Animal Migration , Climate Change , Nesting Behavior , Seasons , Animals , Arctic Regions , Animal Migration/physiology , Female , Charadriiformes/physiology , ReproductionABSTRACT
Determining the dynamics of where and when individuals occur is necessary to understand population declines and identify critical areas for populations of conservation concern. However, there are few examples where a spatially and temporally explicit model has been used to evaluate the migratory dynamics of a bird population across its entire annual cycle. We used geolocator-derived migration tracks of 84 Dunlin (Calidris alpina) on the East Asian-Australasian Flyway (EAAF) to construct a migratory network describing annual subspecies-specific migration patterns in space and time. We found that Dunlin subspecies exhibited unique patterns of spatial and temporal flyway use. Spatially, C. a. arcticola predominated in regions along the eastern edge of the flyway (e.g., western Alaska and central Japan), whereas C. a. sakhalina predominated in regions along the western edge of the flyway (e.g., N China and inland China). No individual Dunlin that wintered in Japan also wintered in the Yellow Sea, China seas, or inland China, and vice-versa. However, similar proportions of the 4 subspecies used many of the same regions at the center of the flyway (e.g., N Sakhalin Island and the Yellow Sea). Temporally, Dunlin subspecies staggered their south migrations and exhibited little temporal overlap among subspecies within shared migration regions. In contrast, Dunlin subspecies migrated simultaneously during north migration. South migration was also characterized by individuals stopping more often and for more days than during north migration. Taken together, these spatial-temporal migration dynamics indicate Dunlin subspecies may be differentially affected by regional habitat change and population declines according to where and when they occur. We suggest that the migration dynamics presented here are useful for guiding on-the-ground survey efforts to quantify subspecies' use of specific sites, and to estimate subspecies' population sizes and long-term trends. Such studies would significantly advance our understanding of Dunlin space-time dynamics and the coordination of Dunlin conservation actions across the EAAF.
Subject(s)
Animal Migration , Charadriiformes , Animals , Birds , Ecosystem , Humans , SeasonsABSTRACT
Kubelka et al (Reports, 9 November 2018, p. 680) claim that climate change has disrupted patterns of nest predation in shorebirds. They report that predation rates have increased since the 1950s, especially in the Arctic. We describe methodological problems with their analyses and argue that there is no solid statistical support for their claims.