Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Mol Ecol ; 29(3): 578-595, 2020 02.
Article in English | MEDLINE | ID: mdl-31872482

ABSTRACT

Along with manipulating habitat, the direct release of domesticated individuals into the wild is a practice used worldwide to augment wildlife populations. We test between possible outcomes of human-mediated secondary contact using genomic techniques at both historical and contemporary timescales for two iconic duck species. First, we sequence several thousand ddRAD-seq loci for contemporary mallards (Anas platyrhynchos) throughout North America and two domestic mallard types (i.e., known game-farm mallards and feral Khaki Campbell's). We show that North American mallards may well be becoming a hybrid swarm due to interbreeding with domesticated game-farm mallards released for hunting. Next, to attain a historical perspective, we applied a bait-capture array targeting thousands of loci in century-old (1842-1915) and contemporary (2009-2010) mallard and American black duck (Anas rubripes) specimens. We conclude that American black ducks and mallards have always been closely related, with a divergence time of ~600,000 years before present, and likely evolved through prolonged isolation followed by limited bouts of gene flow (i.e., secondary contact). They continue to maintain genetic separation, a finding that overturns decades of prior research and speculation suggesting the genetic extinction of the American black duck due to contemporary interbreeding with mallards. Thus, despite having high rates of hybridization, actual gene flow is limited between mallards and American black ducks. Conversely, our historical and contemporary data confirm that the intensive stocking of game-farm mallards during the last ~100 years has fundamentally changed the genetic integrity of North America's wild mallard population, especially in the east. It thus becomes of great interest to ask whether the iconic North American mallard is declining in the wild due to introgression of maladaptive traits from domesticated forms. Moreover, we hypothesize that differential gene flow from domestic game-farm mallards into the wild mallard population may explain the overall temporal increase in differentiation between wild black ducks and mallards, as well as the uncoupling of genetic diversity and effective population size estimates across time in our results. Finally, our findings highlight how genomic methods can recover complex population histories by capturing DNA preserved in traditional museum specimens.


Subject(s)
Animals, Wild/genetics , Ducks/genetics , Genome/genetics , Animals , Gene Flow/genetics , Genomics/methods , Humans , Hybridization, Genetic/genetics , North America
2.
Biol Lett ; 13(3)2017 Mar.
Article in English | MEDLINE | ID: mdl-28330975

ABSTRACT

Many ecological aspects of tool-use in sea otters are similar to those in Indo-Pacific bottlenose dolphins. Within an area, most tool-using dolphins share a single mitochondrial haplotype and are more related to each other than to the population as a whole. We asked whether sea otters in California showed similar genetic patterns by sequencing mitogenomes of 43 otters and genotyping 154 otters at 38 microsatellite loci. There were six variable sites in the mitogenome that yielded three haplotypes, one found in only a single individual. The other two haplotypes contained similar percentages (33 and 36%) of frequent tool-users and a variety of diet types. Microsatellite analyses showed that snail specialists, the diet specialist group that most frequently used tools, were no more related to each other than to the population as a whole. The lack of genetic association among tool-using sea otters compared with dolphins may result from the length of time each species has been using tools. Tool-use in dolphins appears to be a relatively recent innovation (less than 200 years) but sea otters have probably been using tools for many thousands or even millions of years.


Subject(s)
Otters/physiology , Tool Use Behavior , Animals , California , Diet/veterinary , Genome, Mitochondrial , Haplotypes , Microsatellite Repeats , Otters/genetics
3.
Mitochondrial DNA B Resour ; 6(2): 624-626, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33659708

ABSTRACT

The Egyptian mongoose, Herpestes ichneumon, is the only extant mongoose in Europe, with populations still distributed in Africa and the Middle East. In this study, we present the first mitochondrial genome sequence of Herpestes ichneumon and we investigate its phylogenetic position within Feliformia suborder. The resultant mitogenome sequence is 16,775 bps, composed of a conserved set of 37 genes containing 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and a control region. Our results represent a valuable resource for further phylogeographical studies.

4.
Mitochondrial DNA B Resour ; 6(3): 883-885, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33796667

ABSTRACT

The Caucasian Squirrel, Sciurus anomalus, is the only representative of the Sciuridae family in the Eastern Mediterranean region. In this study, the mitochondrial genome of the Sciurus anomalus species was generated, and we investigate its phylogenetic position within the Sciuridae family. The generated mitogenome sequence is 16,234 bp. It is composed of a control region and a conserved set of 37 genes containing 13 protein-coding genes, 22 tRNA genes and 2 rRNA genes.

5.
Mitochondrial DNA B Resour ; 6(3): 1009-1011, 2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33796719

ABSTRACT

The marbled polecat, Vormela peregusna, is one of the least studied species in the Mustelidae family, especially with regard to phylogeography and genetic diversity. In this study, we determined the mitochondrial genome sequence of V. peregusna and investigated its position within the Mustelidae phylogeny. The generated mitogenome is 15,982 bp in length; it consists of 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes, and a control region.

6.
PLoS One ; 14(4): e0215586, 2019.
Article in English | MEDLINE | ID: mdl-31017960

ABSTRACT

Environmental DNA (eDNA) has been used to record the presence of many different organisms in several different aquatic and terrestrial environments. Although eDNA has been demonstrated as a useful tool for the detection of invasive and/or cryptic and declining species, this approach is subject to the same considerations that limit the interpretation of results from traditional survey techniques (e.g. imperfect detection). The wood turtle is a cryptic semi-aquatic species that is declining across its range and, like so many chelonian species, is in-need of a rapid and effective method for monitoring distribution and abundance. To meet this need, we used an eDNA approach to sample for wood turtle presence in northern Virginia streams. At the same time, we used repeat visual encounter surveys in an occupancy-modelling framework to validate our eDNA results and reveal the relationship of detection and occupancy for both methods. We sampled 37 stream reaches of varying size within and beyond the known distribution of the wood turtle across northern Virginia. Wood turtle occupancy probability was 0.54 (0.31, 0.76) and while detection probability for wood turtle occupancy was high (0.88; 0.58, 0.98), our detection of turtle abundance was markedly lower (0.28; 0.21, 0.37). We detected eDNA at 76% of sites confirmed occupied by VES and at an additional three sites where turtles were not detected but were known to occur. Environmental DNA occupancy probability was 0.55 (0.29, 0.78); directly comparable to the VES occupancy estimate. Higher probabilities of detecting wood turtle eDNA were associated with higher turtle densities, an increasing number of days since the last rainfall, lower water temperatures, and lower relative discharges. Our results suggest that eDNA technology holds promise for sampling aquatic chelonians in some systems, even when discharge is high and biomass is relatively low, when the approach is validated and sampling error is quantified.


Subject(s)
DNA, Environmental/analysis , DNA, Environmental/genetics , Endangered Species , Turtles/genetics , Animals , Aquatic Organisms/genetics , Biomass , Costs and Cost Analysis , Environmental Monitoring/economics , Environmental Monitoring/methods , Population Dynamics , Probability , Rivers , Virginia
SELECTION OF CITATIONS
SEARCH DETAIL