Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Nature ; 617(7960): 299-305, 2023 May.
Article in English | MEDLINE | ID: mdl-37100908

ABSTRACT

The enhancement of separation processes and electrochemical technologies such as water electrolysers1,2, fuel cells3,4, redox flow batteries5,6 and ion-capture electrodialysis7 depends on the development of low-resistance and high-selectivity ion-transport membranes. The transport of ions through these membranes depends on the overall energy barriers imposed by the collective interplay of pore architecture and pore-analyte interaction8,9. However, it remains challenging to design efficient, scaleable and low-cost selective ion-transport membranes that provide ion channels for low-energy-barrier transport. Here we pursue a strategy that allows the diffusion limit of ions in water to be approached for large-area, free-standing, synthetic membranes using covalently bonded polymer frameworks with rigidity-confined ion channels. The near-frictionless ion flow is synergistically fulfilled by robust micropore confinement and multi-interaction between ion and membrane, which afford, for instance, a Na+ diffusion coefficient of 1.18 × 10-9 m2 s-1, close to the value in pure water at infinite dilution, and an area-specific membrane resistance as low as 0.17 Ω cm2. We demonstrate highly efficient membranes in rapidly charging aqueous organic redox flow batteries that deliver both high energy efficiency and high-capacity utilization at extremely high current densities (up to 500 mA cm-2), and also that avoid crossover-induced capacity decay. This membrane design concept may be broadly applicable to membranes for a wide range of electrochemical devices and for precise molecular separation.

2.
Soft Matter ; 20(26): 5153-5163, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38895763

ABSTRACT

Polymers of intrinsic microporosity exhibit a combination of high gas permeability and reasonable permselectivity, which makes them attractive candidates for gas separation membrane materials. The diffusional selective gas transport properties are connected to the molecular mobility of these polymers in the condensed state. Incoherent quasielastic neutron scattering was carried out on two polymers of intrinsic microporosity, PIM-EA-TB(CH3) and its demethylated counterpart PIM-EA-TB(H2), which have high Brunauer-Emmett-Teller surface area values of 1030 m2 g-1 and 836 m2 g-1, respectively. As these two polymers only differ in the presence of two methyl groups at the ethanoanthracene unit, the effect of methyl group rotation can be investigated solely. To cover a broad dynamic range, neutron time-of-flight was combined with neutron backscattering. The demethylated PIM-EA-TB(H2) exhibits a relaxation process with a weak intensity at short times. As the backbone is rigid and stiff this process was assigned to bend-and-flex fluctuations. This process was also observed for the PIM-EA-TB(CH3). A further relaxation process is found for PIM-EA-TB(CH3), which is the methyl group rotation. It was analyzed by a jump-diffusion in a three-fold potential considering also the fact that only a fraction of the present hydrogens in PIM-EA-TB(CH3) participate in the methyl group rotation. This analysis can quantitatively describe the q dependence of the elastic incoherent structure factor. Furthermore, a relaxation time for the methyl group rotation can be extracted. A high activation energy of 35 kJ mol-1 was deduced. This high activation energy evidences a strong hindrance of the methyl group rotation in the bridged PIM-EA-TB(CH3) structure.

3.
Anal Bioanal Chem ; 415(14): 2727-2736, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37042993

ABSTRACT

Urine citrate analysis is relevant in the screening and monitoring of patients with prostate cancer and calcium nephrolithiasis. A sensitive, fast, easy, and low-maintenance electrochemiluminescence (ECL) method with conductivity detection for the analysis of citrate in urine is developed and validated by employing polymer of intrinsic microporosity-1 nanoparticles/nitrogen-doped carbon quantum dots (nano-PIM-1/N-CQDs). Using optimum conditions, the sensor was applied in ECL experiments in the presence of different concentrations of citrate ions. The ECL signals were quenched gradually by the increasing citrate concentration. The linear range of the relationship between the logarithm of the citrate concentration and ΔECL (ECL of blank - ECL of sample) was obtained between 1.0 × 10-7 M and 5.0 × 10-4 M. The limit of detection (LOD) was calculated to be 2.2 × 10-8 M (S/N = 3). The sensor was successfully applied in real samples such as human serum and patient urine.


Subject(s)
Nanoparticles , Prostatic Neoplasms , Quantum Dots , Humans , Male , Carbon , Biomarkers, Tumor , Prostate , Citric Acid , Nitrogen , Prostatic Neoplasms/diagnosis , Luminescent Measurements/methods , Electrochemical Techniques/methods
4.
Angew Chem Int Ed Engl ; 62(8): e202215250, 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36511357

ABSTRACT

Dibenzomethanopentacene (DBMP) is shown to be a useful structural component for making Polymers of Intrinsic Microporosity (PIMs) with promise for making efficient membranes for gas separations. DBMP-based monomers for PIMs are readily prepared using a Diels-Alder reaction between 2,3-dimethoxyanthracene and norbornadiene as the key synthetic step. Compared to date for the archetypal PIM-1, the incorporation of DBMP simultaneously enhances both gas permeability and the ideal selectivity for one gas over another. Hence, both ideal and mixed gas permeability data for DBMP-rich co-polymers and an amidoxime modified PIM are close to the current Robeson upper bounds, which define the state-of-the-art for the trade-off between permeability and selectivity, for several important gas pairs. Furthermore, long-term studies (over ≈3 years) reveal that the reduction in gas permeabilities on ageing is less for DBMP-containing PIMs relative to that for other high performing PIMs, which is an attractive property for the fabrication of membranes for efficient gas separations.

5.
J Am Chem Soc ; 144(37): 17198-17208, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36074146

ABSTRACT

Redox-active organic materials have emerged as promising alternatives to conventional inorganic electrode materials in electrochemical devices for energy storage. However, the deployment of redox-active organic materials in practical lithium-ion battery devices is hindered by their undesired solubility in electrolyte solvents, sluggish charge transfer and mass transport, as well as processing complexity. Here, we report a new molecular engineering approach to prepare redox-active polymers of intrinsic microporosity (PIMs) that possess an open network of subnanometer pores and abundant accessible carbonyl-based redox sites for fast lithium-ion transport and storage. Redox-active PIMs can be solution-processed into thin films and polymer-carbon composites with a homogeneously dispersed microstructure while remaining insoluble in electrolyte solvents. Solution-processed redox-active PIM electrodes demonstrate improved cycling performance in lithium-ion batteries with no apparent capacity decay. Redox-active PIMs with combined properties of intrinsic microporosity, reversible redox activity, and solution processability may have broad utility in a variety of electrochemical devices for energy storage, sensors, and electronic applications.

6.
Angew Chem Int Ed Engl ; 61(46): e202212816, 2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36148532

ABSTRACT

Organic solvent nanofiltration (OSN) is an emerging membrane separation technology, which urgently requires robust, easily processed, OSN membranes possessing high permeance and small solutes-selectivity to facilitate enhanced industrial uptake. Herein, we describe the use of two 2,2'-biphenol (BIPOL) derivatives to fabricate hyper-crosslinked, microporous polymer nanofilms through IP. Ultra-thin, defect-free polyesteramide/polyester nanofilms (≈5 nm) could be obtained readily due to the relatively large molecular size and ionized nature of the BIPOL monomers retarding the rate of the IP. The enhanced microporosity arises from the hyper-crosslinked network structure and monomer rigidity. Specifically, the amino-BIPOL/PAN membrane exhibits extraordinary permselectivity performances with molecular weight cut-off as low as 233 Da and MeOH permeance of ≈13 LMH/bar. Precise separation of small dye mixtures with similar M.W. based on both their charge and molecular size are achieved.

7.
Angew Chem Int Ed Engl ; 61(38): e202207580, 2022 Sep 19.
Article in English | MEDLINE | ID: mdl-35876472

ABSTRACT

Redox flow batteries (RFBs) based on aqueous organic electrolytes are a promising technology for safe and cost-effective large-scale electrical energy storage. Membrane separators are a key component in RFBs, allowing fast conduction of charge-carrier ions but minimizing the cross-over of redox-active species. Here, we report the molecular engineering of amidoxime-functionalized Polymers of Intrinsic Microporosity (AO-PIMs) by tuning their polymer chain topology and pore architecture to optimize membrane ion transport functions. AO-PIM membranes are integrated with three emerging aqueous organic flow battery chemistries, and the synergetic integration of ion-selective membranes with molecular engineered organic molecules in neutral-pH electrolytes leads to significantly enhanced cycling stability.

8.
Anal Chem ; 93(3): 1213-1220, 2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33369401

ABSTRACT

Polymers of intrinsic microporosity (or PIMs) provide porous materials due to their highly contorted and rigid macromolecular structures, which prevent space-efficient packing. PIMs are readily dissolved in solvents and can be cast into robust microporous coatings and membranes. With a typical micropore size range of around 1 nm and a typical surface area of 700-1000 m2 g-1, PIMs offer channels for ion/molecular transport and pores for gaseous species, solids, and liquids to coexist. Electrode surfaces are readily modified with coatings or composite films to provide interfaces for solid|solid|liquid or solid|liquid|liquid or solid|liquid|gas multiphase electrode processes.

9.
Nat Mater ; 19(2): 195-202, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31792424

ABSTRACT

Membranes with fast and selective ion transport are widely used for water purification and devices for energy conversion and storage including fuel cells, redox flow batteries and electrochemical reactors. However, it remains challenging to design cost-effective, easily processed ion-conductive membranes with well-defined pore architectures. Here, we report a new approach to designing membranes with narrow molecular-sized channels and hydrophilic functionality that enable fast transport of salt ions and high size-exclusion selectivity towards small organic molecules. These membranes, based on polymers of intrinsic microporosity containing Tröger's base or amidoxime groups, demonstrate that exquisite control over subnanometre pore structure, the introduction of hydrophilic functional groups and thickness control all play important roles in achieving fast ion transport combined with high molecular selectivity. These membranes enable aqueous organic flow batteries with high energy efficiency and high capacity retention, suggesting their utility for a variety of energy-related devices and water purification processes.

11.
Anal Bioanal Chem ; 413(26): 6523-6533, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34462789

ABSTRACT

Advances in materials science have accelerated the development of diagnostic tools with the last decade witnessing the development of enzyme-free sensors, owing to the improved stability, low cost and simple fabrication of component materials. However, the specificity of non-enzymatic sensors for certain analytes still represents a challenging task, for example the determination of cholesterol level in blood is vital due to its medical relevance. In this work, a reagent displacement assay for cholesterol sensing in serum samples was developed. It is based on coating of a glassy carbon electrode with a polymer of intrinsic microporosity (PIM) that forms a host-guest complex with methylene blue (MB). In the presence of cholesterol, the MB electroactive probe was displaced due to the stronger association of cholesterol guest to the PIM host. The decrease in the oxidative current was proportional to the cholesterol concentration achieving a detection limit of approximately 0.1 nM. Moreover, to further assist the experimental studies, comprehensive theoretical calculations are also performed by using density functional theory (DFT) calculations.


Subject(s)
Cholesterol/blood , Electrochemical Techniques/methods , Polymers/chemistry , Biosensing Techniques/methods , Carbon/chemistry , Cholesterol/analysis , Density Functional Theory , Electrodes , Humans , Limit of Detection , Methylene Blue/chemistry , Models, Molecular , Porosity
12.
Nat Mater ; 18(7): 740-745, 2019 07.
Article in English | MEDLINE | ID: mdl-31086318

ABSTRACT

The synthesis of conventional porous crystals involves building a framework using reversible chemical bond formation, which can result in hydrolytic instability. In contrast, porous molecular crystals assemble using only weak intermolecular interactions, which generally do not provide the same environmental stability. Here, we report that the simple co-crystallization of a phthalocyanine derivative and a fullerene (C60 or C70) forms porous molecular crystals with environmental stability towards high temperature and hot aqueous base or acid. Moreover, by using diamond anvil cells and synchrotron single-crystal measurements, stability towards extreme pressure (>4 GPa) is demonstrated, with the stabilizing fullerene held between two phthalocyanines and the hold tightening at high pressure. Access to open metal centres within the porous molecular co-crystal is demonstrated by in situ crystallographic analysis of the chemisorption of pyridine, oxygen and carbon monoxide. This suggests strategies for the formation of highly stable and potentially functional porous materials using only weak van der Waals intermolecular interactions.

13.
Chem Rev ; 118(12): 5871-5911, 2018 06 27.
Article in English | MEDLINE | ID: mdl-29738239

ABSTRACT

Hundreds of polymers have been evaluated as membrane materials for gas separations, but fewer than 10 have made it into current commercial applications, mainly due to the effects of physical aging and plasticization. Efforts to overcome these two problems are a significant focus in gas separation membrane research, in conjunction with improving membrane separation performance to surpass the Robeson upper bounds of selectivity versus permeability for commercially important gas pairs. While there has been extensive research, ranging from manipulating the chemistry of existing polymers (e.g., thermally rearranged or cross-linked polyimides) to synthesizing new polymers such as polymers of intrinsic microporosity (PIMs), there have been three major oversights that this review addresses: (1) the need to compare the approaches to achieving the best performance in order to identify their effectiveness in improving gas transport properties and in mitigating aging, (2) a common standardized aging protocol that allows rapid determination of the success (or not) of these approaches, and (3) standard techniques that can be used to characterize aging and plasticization across all studies to enable them to be robustly and equally compared. In this review, we also provide our perspectives on a few key aspects of research related to high free volume polymer membranes: (1) the importance of Robeson plots for membrane aging studies, (2) eliminating thermal history, (3) measurement and reporting of gas permeability and aging rate, (4) aging and storing conditions, and (5) promising approaches to mitigate aging.

14.
Macromol Rapid Commun ; 41(2): e1900572, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31846137

ABSTRACT

Microporous polymer nanosheets with thicknesses in the range 3-5 nm and with high apparent surface area (Brunauer-Emmett-Teller surface area 940 m2 g-1 ) are formed when the effectively bifunctional (tetrafluoro) monomer used in the preparation of the prototypical polymer of intrinsic microporosity PIM-1 is replaced with an effectively tetrafunctional (octafluoro) monomer to give a tightly crosslinked network structure. When employed as a filler in mixed-matrix membranes based on PIM-1, a low loading of 0.5 wt% network-PIM-1 nanosheets gives rise to enhanced CO2 permeability and CO2 /CH4 selectivity, compared to pure PIM-1.


Subject(s)
Membranes, Artificial , Nanostructures/chemistry , Polymers/chemistry , Carbon Dioxide/chemistry , Gases/chemistry , Methane/chemistry , Nanostructures/ultrastructure , Permeability , Porosity
15.
Angew Chem Int Ed Engl ; 59(27): 10918-10923, 2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32212372

ABSTRACT

Hybrid electrodes with improved O2 tolerance and capability of CO2 conversion into liquid products in the presence of O2 are presented. Aniline molecules are introduced into the pore structure of a polymer of intrinsic microporosity to expand its gas separation functionality beyond pure physical sieving. The chemical interaction between the acidic CO2 molecule and the basic amino group of aniline renders enhanced CO2 separation from O2 . Loaded with a cobalt phthalocyanine-based cathode catalyst, the hybrid electrode achieves a CO Faradaic efficiency of 71 % with 10 % O2 in the CO2 feed gas. The electrode can still produce CO at an O2 /CO2 ratio as high as 9:1. Switching to a Sn-based catalyst, for the first time O2 -tolerant CO2 electroreduction to liquid products is realized, generating formate with nearly 100 % selectivity and a current density of 56.7 mA cm-2 in the presence of 5 % O2 .

16.
Angew Chem Int Ed Engl ; 59(24): 9564-9573, 2020 Jun 08.
Article in English | MEDLINE | ID: mdl-32133738

ABSTRACT

Membranes which allow fast and selective transport of protons and cations are required for a wide range of electrochemical energy conversion and storage devices, such as proton-exchange membrane (PEM) fuel cells (PEMFCs) and redox flow batteries (RFBs). Herein we report a new approach to designing solution-processable ion-selective polymer membranes with both intrinsic microporosity and ion-conductive functionality. Polymers are synthesized with rigid and contorted backbones, which incorporate hydrophobic fluorinated and hydrophilic sulfonic acid functional groups, to produce membranes with negatively charged subnanometer-sized confined ionic channels. The ready transport of protons and cations through these membranes, and the high selectivity towards nanometer-sized redox-active molecules, enable efficient and stable operation of an aqueous alkaline quinone redox flow battery and a hydrogen PEM fuel cell.

17.
Chemistry ; 25(52): 12052-12057, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31269307

ABSTRACT

The performance and safety of lithium (Li) metal batteries can be compromised owing to the formation of Li dendrites. Here, the use of a polymer of intrinsic microporosity (PIM) is reported as a feasible and robust interfacial layer that inhibits dendrite growth. The PIM demonstrates excellent film-forming ability, electrochemical stability, strong adhesion to a copper metal electrode, and outstanding mechanical flexibility so that it relieves the stress of structural changes produced by reversible lithiation. Importantly, the porous structure of the PIM, which guides Li flux to obtain uniform deposition, and its strong mechanical strength combine to suppress dendrite growth. Hence, the electrochemical performance of the anode is significantly enhanced, promising excellent performance and extended cycle lifetime for Li metal batteries.

18.
Nat Mater ; 16(9): 932-937, 2017 09.
Article in English | MEDLINE | ID: mdl-28759030

ABSTRACT

The promise of ultrapermeable polymers, such as poly(trimethylsilylpropyne) (PTMSP), for reducing the size and increasing the efficiency of membranes for gas separations remains unfulfilled due to their poor selectivity. We report an ultrapermeable polymer of intrinsic microporosity (PIM-TMN-Trip) that is substantially more selective than PTMSP. From molecular simulations and experimental measurement we find that the inefficient packing of the two-dimensional (2D) chains of PIM-TMN-Trip generates a high concentration of both small (<0.7 nm) and large (0.7-1.0 nm) micropores, the former enhancing selectivity and the latter permeability. Gas permeability data for PIM-TMN-Trip surpass the 2008 Robeson upper bounds for O2/N2, H2/N2, CO2/N2, H2/CH4 and CO2/CH4, with the potential for biogas purification and carbon capture demonstrated for relevant gas mixtures. Comparisons between PIM-TMN-Trip and structurally similar polymers with three-dimensional (3D) contorted chains confirm that its additional intrinsic microporosity is generated from the awkward packing of its 2D polymer chains in a 3D amorphous solid. This strategy of shape-directed packing of chains of microporous polymers may be applied to other rigid polymers for gas separations.

19.
Chemistry ; 24(49): 12796-12800, 2018 Sep 03.
Article in English | MEDLINE | ID: mdl-29944779

ABSTRACT

Membrane separation for gas purification is an energy-efficient and environment-friendly technology. However, the development of high performance membranes is still a great challenge. In principle, mixed matrix membranes (MMMs) have the potential to overcome current materials limitations, but in practice there is no straightforward method to match the properties of fillers and polymers (the main components of MMMs) in such a way that the final membrane performance reflects the high performance of the microporous filler and the processability of the continuous polymer phase. This issue is especially important when high flux polymers are utilized. In this work, we demonstrate that the use of small amounts of a glassy polymer in combination with high performance PIM-1 allow for the preparation of metal-organic framework (MOF)-based MMMs with superior separation properties and low aging rates under humid conditions, meeting the commercial target for post-combustion CO2 capture.

20.
Chemistry ; 22(7): 2466-72, 2016 Feb 12.
Article in English | MEDLINE | ID: mdl-26751824

ABSTRACT

Efficient reactions between fluorine-functionalised biphenyl and terphenyl derivatives with catechol-functionalised terminal groups provide a route to large, discrete organic molecules of intrinsic microporosity (OMIMs) that provide porous solids solely by their inefficient packing. By altering the size and substituent bulk of the terminal groups, a number of soluble compounds with apparent BET surface areas in excess of 600 m(2) g(-1) are produced. The efficiency of OMIM structural units for generating microporosity is in the order: propellane>triptycene>hexaphenylbenzene>spirobifluorene>naphthyl=phenyl. The introduction of bulky hydrocarbon substituents significantly enhances microporosity by further reducing packing efficiency. These results are consistent with findings from previously reported packing simulation studies. The introduction of methyl groups at the bridgehead position of triptycene units reduces intrinsic microporosity. This is presumably due to their internal position within the OMIM structure so that they occupy space, but unlike peripheral substituents they do not contribute to the generation of free volume by inefficient packing.

SELECTION OF CITATIONS
SEARCH DETAIL