Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
Add more filters

Publication year range
1.
Nature ; 617(7961): 555-563, 2023 May.
Article in English | MEDLINE | ID: mdl-36996873

ABSTRACT

An outbreak of acute hepatitis of unknown aetiology in children was reported in Scotland1 in April 2022 and has now been identified in 35 countries2. Several recent studies have suggested an association with human adenovirus with this outbreak, a virus not commonly associated with hepatitis. Here we report a detailed case-control investigation and find an association between adeno-associated virus 2 (AAV2) infection and host genetics in disease susceptibility. Using next-generation sequencing, PCR with reverse transcription, serology and in situ hybridization, we detected recent infection with AAV2 in plasma and liver samples in 26 out of 32 (81%) cases of hepatitis compared with 5 out of 74 (7%) of samples from unaffected individuals. Furthermore, AAV2 was detected within ballooned hepatocytes alongside a prominent T cell infiltrate in liver biopsy samples. In keeping with a CD4+ T-cell-mediated immune pathology, the human leukocyte antigen (HLA) class II HLA-DRB1*04:01 allele was identified in 25 out of 27 cases (93%) compared with a background frequency of 10 out of 64 (16%; P = 5.49 × 10-12). In summary, we report an outbreak of acute paediatric hepatitis associated with AAV2 infection (most likely acquired as a co-infection with human adenovirus that is usually required as a 'helper virus' to support AAV2 replication) and disease susceptibility related to HLA class II status.


Subject(s)
Adenovirus Infections, Human , Dependovirus , Hepatitis , Child , Humans , Acute Disease/epidemiology , Adenovirus Infections, Human/epidemiology , Adenovirus Infections, Human/genetics , Adenovirus Infections, Human/virology , Alleles , Case-Control Studies , CD4-Positive T-Lymphocytes/immunology , Coinfection/epidemiology , Coinfection/virology , Dependovirus/isolation & purification , Genetic Predisposition to Disease , Helper Viruses/isolation & purification , Hepatitis/epidemiology , Hepatitis/genetics , Hepatitis/virology , Hepatocytes/virology , HLA-DRB1 Chains/genetics , HLA-DRB1 Chains/immunology , Liver/virology
2.
Lancet ; 399(10319): 25-35, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34942103

ABSTRACT

BACKGROUND: Reports suggest that COVID-19 vaccine effectiveness is decreasing, but whether this reflects waning or new SARS-CoV-2 variants-especially delta (B.1.617.2)-is unclear. We investigated the association between time since two doses of ChAdOx1 nCoV-19 vaccine and risk of severe COVID-19 outcomes in Scotland (where delta was dominant), with comparative analyses in Brazil (where delta was uncommon). METHODS: In this retrospective, population-based cohort study in Brazil and Scotland, we linked national databases from the EAVE II study in Scotland; and the COVID-19 Vaccination Campaign, Acute Respiratory Infection Suspected Cases, and Severe Acute Respiratory Infection/Illness datasets in Brazil) for vaccination, laboratory testing, clinical, and mortality data. We defined cohorts of adults (aged ≥18 years) who received two doses of ChAdOx1 nCoV-19 and compared rates of severe COVID-19 outcomes (ie, COVID-19 hospital admission or death) across fortnightly periods, relative to 2-3 weeks after the second dose. Entry to the Scotland cohort started from May 19, 2021, and entry to the Brazil cohort started from Jan 18, 2021. Follow-up in both cohorts was until Oct 25, 2021. Poisson regression was used to estimate rate ratios (RRs) and vaccine effectiveness, with 95% CIs. FINDINGS: 1 972 454 adults received two doses of ChAdOx1 nCoV-19 in Scotland and 42 558 839 in Brazil, with longer follow-up in Scotland because two-dose vaccination began earlier in Scotland than in Brazil. In Scotland, RRs for severe COVID-19 increased to 2·01 (95% CI 1·54-2·62) at 10-11 weeks, 3·01 (2·26-3·99) at 14-15 weeks, and 5·43 (4·00-7·38) at 18-19 weeks after the second dose. The pattern of results was similar in Brazil, with RRs of 2·29 (2·01-2·61) at 10-11 weeks, 3·10 (2·63-3·64) at 14-15 weeks, and 4·71 (3·83-5·78) at 18-19 weeks after the second dose. In Scotland, vaccine effectiveness decreased from 83·7% (95% CI 79·7-87·0) at 2-3 weeks, to 75·9% (72·9-78·6) at 14-15 weeks, and 63·7% (59·6-67·4) at 18-19 weeks after the second dose. In Brazil, vaccine effectiveness decreased from 86·4% (85·4-87·3) at 2-3 weeks, to 59·7% (54·6-64·2) at 14-15 weeks, and 42·2% (32·4-50·6) at 18-19 weeks. INTERPRETATION: We found waning vaccine protection of ChAdOx1 nCoV-19 against COVID-19 hospital admissions and deaths in both Scotland and Brazil, this becoming evident within three months of the second vaccine dose. Consideration needs to be given to providing booster vaccine doses for people who have received ChAdOx1 nCoV-19. FUNDING: UK Research and Innovation (Medical Research Council), Scottish Government, Research and Innovation Industrial Strategy Challenge Fund, Health Data Research UK, Fiocruz, Fazer o Bem Faz Bem Programme; Conselho Nacional de Desenvolvimento Científico e Tecnológico, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro. TRANSLATION: For the Portuguese translation of the abstract see Supplementary Materials section.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/mortality , COVID-19/prevention & control , ChAdOx1 nCoV-19/administration & dosage , Vaccine Efficacy , Adolescent , Adult , Aged , Aged, 80 and over , Brazil , Female , Hospitalization , Humans , Immunization, Secondary , Male , Middle Aged , Retrospective Studies , SARS-CoV-2/immunology , Scotland/epidemiology , Time Factors , Vaccination
3.
Euro Surveill ; 28(21)2023 05.
Article in English | MEDLINE | ID: mdl-37227299

ABSTRACT

BackgroundBetween October 2022 and January 2023, influenza A(H1N1)pdm09, A(H3N2) and B/Victoria viruses circulated in Europe with different influenza (sub)types dominating in different areas.AimTo provide interim 2022/23 influenza vaccine effectiveness (VE) estimates from six European studies, covering 16 countries in primary care, emergency care and hospital inpatient settings.MethodsAll studies used the test-negative design, but with differences in other study characteristics, such as data sources, patient selection, case definitions and included age groups. Overall and influenza (sub)type-specific VE was estimated for each study using logistic regression adjusted for potential confounders.ResultsThere were 20,477 influenza cases recruited across the six studies, of which 16,589 (81%) were influenza A. Among all ages and settings, VE against influenza A ranged from 27 to 44%. Against A(H1N1)pdm09 (all ages and settings), VE point estimates ranged from 28% to 46%, higher among children (< 18 years) at 49-77%. Against A(H3N2), overall VE ranged from 2% to 44%, also higher among children (62-70%). Against influenza B/Victoria, overall and age-specific VE were ≥ 50% (87-95% among children < 18 years).ConclusionsInterim results from six European studies during the 2022/23 influenza season indicate a ≥ 27% and ≥ 50% reduction in disease occurrence among all-age influenza vaccine recipients for influenza A and B, respectively, with higher reductions among children. Genetic virus characterisation results and end-of-season VE estimates will contribute to greater understanding of differences in influenza (sub)type-specific results across studies.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Vaccine Efficacy , Adolescent , Child , Humans , Case-Control Studies , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , Influenza B virus/genetics , Influenza Vaccines/administration & dosage , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Seasons , Vaccination , Denmark/epidemiology , Male , Adult , Middle Aged
4.
Euro Surveill ; 28(36)2023 09.
Article in English | MEDLINE | ID: mdl-37676146

ABSTRACT

Several SARS-CoV-2 variants that evolved during the COVID-19 pandemic have appeared to differ in severity, based on analyses of single-country datasets. With decreased testing and sequencing, international collaborative studies will become increasingly important for timely assessment of the severity of new variants. Therefore, a joint WHO Regional Office for Europe and ECDC working group was formed to produce and pilot a standardised study protocol to estimate relative case-severity of SARS-CoV-2 variants during periods when two variants were co-circulating. The study protocol and its associated statistical analysis code was applied by investigators in Denmark, England, Luxembourg, Norway, Portugal and Scotland to assess the severity of cases with the Omicron BA.1 virus variant relative to Delta. After pooling estimates using meta-analysis methods (random effects estimates), the risk of hospital admission (adjusted hazard ratio (aHR) = 0.41; 95% confidence interval (CI): 0.31-0.54), admission to intensive care unit (aHR = 0.12; 95% CI: 0.05-0.27) and death (aHR = 0.31; 95% CI: 0.28-0.35) was lower for Omicron BA.1 compared with Delta cases. The aHRs varied by age group and vaccination status. In conclusion, this study demonstrates the feasibility of conducting variant severity analyses in a multinational collaborative framework and adds evidence for the reduced severity of the Omicron BA.1 variant.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Pandemics , Europe/epidemiology , Meta-Analysis as Topic
5.
PLoS Med ; 19(2): e1003927, 2022 02.
Article in English | MEDLINE | ID: mdl-35192598

ABSTRACT

BACKGROUND: Several countries restricted the administration of ChAdOx1 to older age groups in 2021 over safety concerns following case reports and observed versus expected analyses suggesting a possible association with cerebral venous sinus thrombosis (CVST). Large datasets are required to precisely estimate the association between Coronavirus Disease 2019 (COVID-19) vaccination and CVST due to the extreme rarity of this event. We aimed to accomplish this by combining national data from England, Scotland, and Wales. METHODS AND FINDINGS: We created data platforms consisting of linked primary care, secondary care, mortality, and virological testing data in each of England, Scotland, and Wales, with a combined cohort of 11,637,157 people and 6,808,293 person years of follow-up. The cohort start date was December 8, 2020, and the end date was June 30, 2021. The outcome measure we examined was incident CVST events recorded in either primary or secondary care records. We carried out a self-controlled case series (SCCS) analysis of this outcome following first dose vaccination with ChAdOx1 and BNT162b2. The observation period consisted of an initial 90-day reference period, followed by a 2-week prerisk period directly prior to vaccination, and a 4-week risk period following vaccination. Counts of CVST cases from each country were tallied, then expanded into a full dataset with 1 row for each individual and observation time period. There was a combined total of 201 incident CVST events in the cohorts (29.5 per million person years). There were 81 CVST events in the observation period among those who a received first dose of ChAdOx1 (approximately 16.34 per million doses) and 40 for those who received a first dose of BNT162b2 (approximately 12.60 per million doses). We fitted conditional Poisson models to estimate incidence rate ratios (IRRs). Vaccination with ChAdOx1 was associated with an elevated risk of incident CVST events in the 28 days following vaccination, IRR = 1.93 (95% confidence interval (CI) 1.20 to 3.11). We did not find an association between BNT162b2 and CVST in the 28 days following vaccination, IRR = 0.78 (95% CI 0.34 to 1.77). Our study had some limitations. The SCCS study design implicitly controls for variables that are constant over the observation period, but also assumes that outcome events are independent of exposure. This assumption may not be satisfied in the case of CVST, firstly because it is a serious adverse event, and secondly because the vaccination programme in the United Kingdom prioritised the clinically extremely vulnerable and those with underlying health conditions, which may have caused a selection effect for individuals more prone to CVST. Although we pooled data from several large datasets, there was still a low number of events, which may have caused imprecision in our estimates. CONCLUSIONS: In this study, we observed a small elevated risk of CVST events following vaccination with ChAdOx1, but not BNT162b2. Our analysis pooled information from large datasets from England, Scotland, and Wales. This evidence may be useful in risk-benefit analyses of vaccine policies and in providing quantification of risks associated with vaccination to the general public.


Subject(s)
BNT162 Vaccine , COVID-19/prevention & control , ChAdOx1 nCoV-19 , SARS-CoV-2/pathogenicity , Sinus Thrombosis, Intracranial/etiology , Adult , Aged , BNT162 Vaccine/adverse effects , COVID-19 Vaccines/adverse effects , Case-Control Studies , ChAdOx1 nCoV-19/adverse effects , Cohort Studies , Humans , Male , Middle Aged , United Kingdom , Vaccination/statistics & numerical data , Wales
6.
Lancet ; 397(10285): 1646-1657, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33901420

ABSTRACT

BACKGROUND: The BNT162b2 mRNA (Pfizer-BioNTech) and ChAdOx1 nCoV-19 (Oxford-AstraZeneca) COVID-19 vaccines have shown high efficacy against disease in phase 3 clinical trials and are now being used in national vaccination programmes in the UK and several other countries. Studying the real-world effects of these vaccines is an urgent requirement. The aim of our study was to investigate the association between the mass roll-out of the first doses of these COVID-19 vaccines and hospital admissions for COVID-19. METHODS: We did a prospective cohort study using the Early Pandemic Evaluation and Enhanced Surveillance of COVID-19-EAVE II-database comprising linked vaccination, primary care, real-time reverse transcription-PCR testing, and hospital admission patient records for 5·4 million people in Scotland (about 99% of the population) registered at 940 general practices. Individuals who had previously tested positive were excluded from the analysis. A time-dependent Cox model and Poisson regression models with inverse propensity weights were fitted to estimate effectiveness against COVID-19 hospital admission (defined as 1-adjusted rate ratio) following the first dose of vaccine. FINDINGS: Between Dec 8, 2020, and Feb 22, 2021, a total of 1 331 993 people were vaccinated over the study period. The mean age of those vaccinated was 65·0 years (SD 16·2). The first dose of the BNT162b2 mRNA vaccine was associated with a vaccine effect of 91% (95% CI 85-94) for reduced COVID-19 hospital admission at 28-34 days post-vaccination. Vaccine effect at the same time interval for the ChAdOx1 vaccine was 88% (95% CI 75-94). Results of combined vaccine effects against hospital admission due to COVID-19 were similar when restricting the analysis to those aged 80 years and older (83%, 95% CI 72-89 at 28-34 days post-vaccination). INTERPRETATION: Mass roll-out of the first doses of the BNT162b2 mRNA and ChAdOx1 vaccines was associated with substantial reductions in the risk of hospital admission due to COVID-19 in Scotland. There remains the possibility that some of the observed effects might have been due to residual confounding. FUNDING: UK Research and Innovation (Medical Research Council), Research and Innovation Industrial Strategy Challenge Fund, Health Data Research UK.


Subject(s)
COVID-19 Vaccines , COVID-19/prevention & control , Hospitalization/statistics & numerical data , Mass Vaccination , Pandemics/prevention & control , Adolescent , Adult , Aged , Aged, 80 and over , BNT162 Vaccine , COVID-19/epidemiology , ChAdOx1 nCoV-19 , Female , Humans , Male , Middle Aged , Prospective Studies , Risk Factors , Scotland/epidemiology , Social Class , Young Adult
7.
Thorax ; 77(5): 497-504, 2022 05.
Article in English | MEDLINE | ID: mdl-34782484

ABSTRACT

BACKGROUND: The QCovid algorithm is a risk prediction tool that can be used to stratify individuals by risk of COVID-19 hospitalisation and mortality. Version 1 of the algorithm was trained using data covering 10.5 million patients in England in the period 24 January 2020 to 30 April 2020. We carried out an external validation of version 1 of the QCovid algorithm in Scotland. METHODS: We established a national COVID-19 data platform using individual level data for the population of Scotland (5.4 million residents). Primary care data were linked to reverse-transcription PCR (RT-PCR) virology testing, hospitalisation and mortality data. We assessed the performance of the QCovid algorithm in predicting COVID-19 hospitalisations and deaths in our dataset for two time periods matching the original study: 1 March 2020 to 30 April 2020, and 1 May 2020 to 30 June 2020. RESULTS: Our dataset comprised 5 384 819 individuals, representing 99% of the estimated population (5 463 300) resident in Scotland in 2020. The algorithm showed good calibration in the first period, but systematic overestimation of risk in the second period, prior to temporal recalibration. Harrell's C for deaths in females and males in the first period was 0.95 (95% CI 0.94 to 0.95) and 0.93 (95% CI 0.92 to 0.93), respectively. Harrell's C for hospitalisations in females and males in the first period was 0.81 (95% CI 0.80 to 0.82) and 0.82 (95% CI 0.81 to 0.82), respectively. CONCLUSIONS: Version 1 of the QCovid algorithm showed high levels of discrimination in predicting the risk of COVID-19 hospitalisations and deaths in adults resident in Scotland for the original two time periods studied, but is likely to need ongoing recalibration prospectively.


Subject(s)
COVID-19 , Adult , Algorithms , Calibration , Cohort Studies , Female , Hospitalization , Humans , Male , Scotland/epidemiology
8.
Euro Surveill ; 27(26)2022 06.
Article in English | MEDLINE | ID: mdl-35775429

ABSTRACT

As the COVID-19 pandemic began in early 2020, primary care influenza sentinel surveillance networks within the Influenza - Monitoring Vaccine Effectiveness in Europe (I-MOVE) consortium rapidly adapted to COVID-19 surveillance. This study maps system adaptations and lessons learned about aligning influenza and COVID-19 surveillance following ECDC / WHO/Europe recommendations and preparing for other diseases possibly emerging in the future. Using a qualitative approach, we describe the adaptations of seven sentinel sites in five European Union countries and the United Kingdom during the first pandemic phase (March-September 2020). Adaptations to sentinel systems were substantial (2/7 sites), moderate (2/7) or minor (3/7 sites). Most adaptations encompassed patient referral and sample collection pathways, laboratory testing and data collection. Strengths included established networks of primary care providers, highly qualified testing laboratories and stakeholder commitments. One challenge was the decreasing number of samples due to altered patient pathways. Lessons learned included flexibility establishing new routines and new laboratory testing. To enable simultaneous sentinel surveillance of influenza and COVID-19, experiences of the sentinel sites and testing infrastructure should be considered. The contradicting aims of rapid case finding and contact tracing, which are needed for control during a pandemic and regular surveillance, should be carefully balanced.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , COVID-19/epidemiology , Europe/epidemiology , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Pandemics/prevention & control , Primary Health Care , Sentinel Surveillance
9.
Euro Surveill ; 27(15)2022 04.
Article in English | MEDLINE | ID: mdl-35426357

ABSTRACT

BackgroundHouseholds appear to be the highest risk setting for COVID-19 transmission. Large household transmission studies in the early stages of the pandemic in Asia reported secondary attack rates ranging from 5 to 30%.AimWe aimed to investigate the transmission dynamics of COVID-19 in household and community settings in the UK.MethodsA prospective case-ascertained study design based on the World Health Organization FFX protocol was undertaken in the UK following the detection of the first case in late January 2020. Household contacts of cases were followed using enhanced surveillance forms to establish whether they developed symptoms of COVID-19, became confirmed cases and their outcomes. We estimated household secondary attack rates (SAR), serial intervals and individual and household basic reproduction numbers. The incubation period was estimated using known point source exposures that resulted in secondary cases.ResultsWe included 233 households with two or more people with 472 contacts. The overall household SAR was 37% (95% CI: 31-43%) with a mean serial interval of 4.67 days, an R0 of 1.85 and a household reproduction number of 2.33. SAR were lower in larger households and highest when the primary case was younger than 18 years. We estimated a mean incubation period of around 4.5 days.ConclusionsRates of COVID-19 household transmission were high in the UK for ages above and under 18 years, emphasising the need for preventative measures in this setting. This study highlights the importance of the FFX protocol in providing early insights on transmission dynamics.


Subject(s)
COVID-19 , Adolescent , Family Characteristics , Humans , Pandemics , SARS-CoV-2 , United Kingdom/epidemiology
10.
Clin Infect Dis ; 72(12): 2144-2153, 2021 06 15.
Article in English | MEDLINE | ID: mdl-32270199

ABSTRACT

BACKGROUND: Inappropriate antibiotic prescribing, such as for viral illness, remains common in primary care. The objective of this study was to estimate the proportion of community-prescribed antibiotics to children aged less than 5 years attributable to common respiratory viruses. METHODS: We fitted time-series negative binomial models to predict weekly antibiotic prescribing rates from positive viral pathogen tests for the period 1 April 2009 through 27 December 2017 using comprehensive, population-based administrative data for all children (<5 years) living in Scotland. Multiple respiratory viral pathogens were considered, including respiratory syncytial virus (RSV), influenza, human metapneumovirus (HMPV), rhinovirus, and human parainfluenza (HPIV) types 1-4. We estimated the proportion of antibiotic prescriptions explained by virus circulation according to type of virus, by age group, presence of high-risk chronic conditions, and antibiotic class. RESULTS: We included data on 6 066 492 antibiotic prescriptions among 452 877 children. The antibiotic-prescribing rate among all Scottish children (<5 years) was 609.7 per 1000 child-years. Our final model included RSV, influenza, HMPV, HPIV-1, and HPIV-3. An estimated 6.9% (95% confidence interval, 5.6-8.3%), 2.4% (1.7-3.1%), and 2.3% (.8-3.9%) of antibiotics were attributable to RSV, influenza, and HMPV, respectively. RSV was consistently associated with the highest proportion of prescribed antibiotics, particularly among children without chronic conditions and for amoxicillin and macrolide prescriptions. CONCLUSIONS: Nearly 14% of antibiotics prescribed to children in this study were estimated to be attributable to common viruses for which antibiotics are not recommended. A future RSV vaccine could substantially reduce unnecessary antibiotic prescribing among children.


Subject(s)
Metapneumovirus , Paramyxoviridae Infections , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Anti-Bacterial Agents/therapeutic use , Child , Child, Preschool , Humans , Infant , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/epidemiology , Scotland/epidemiology
11.
BMC Med ; 19(1): 149, 2021 06 23.
Article in English | MEDLINE | ID: mdl-34158021

ABSTRACT

BACKGROUND: Clinically vulnerable individuals have been advised to shield themselves during the COVID-19 epidemic. The objectives of this study were to investigate (1) the rate ratio of severe COVID-19 associated with eligibility for the shielding programme in Scotland across the first and second waves of the epidemic and (2) the relation of severe COVID-19 to transmission-related factors in those in shielding and the general population. METHODS: In a matched case-control design, all 178,578 diagnosed cases of COVID-19 in Scotland from 1 March 2020 to 18 February 2021 were matched for age, sex and primary care practice to 1,744,283 controls from the general population. This dataset (REACT-SCOT) was linked to the list of 212,702 individuals identified as eligible for shielding. Severe COVID-19 was defined as cases that entered critical care or were fatal. Rate ratios were estimated by conditional logistic regression. RESULTS: With those without risk conditions as reference category, the univariate rate ratio for severe COVID-19 was 3.21 (95% CI 3.01 to 3.41) in those with moderate risk conditions and 6.3 (95% CI 5.8 to 6.8) in those eligible for shielding. The highest rate was in solid organ transplant recipients: rate ratio 13.4 (95% CI 9.6 to 18.8). Risk of severe COVID-19 increased with the number of adults but decreased with the number of school-age children in the household. Severe COVID-19 was strongly associated with recent exposure to hospital (defined as 5 to 14 days before presentation date): rate ratio 12.3 (95% CI 11.5 to 13.2) overall. The population attributable risk fraction for recent exposure to hospital peaked at 50% in May 2020 and again at 65% in December 2020. CONCLUSIONS: The effectiveness of shielding vulnerable individuals was limited by the inability to control transmission in hospital and from other adults in the household. Mitigating the impact of the epidemic requires control of nosocomial transmission.


Subject(s)
COVID-19/transmission , Adult , COVID-19/complications , COVID-19/prevention & control , Case-Control Studies , Child , Child, Preschool , Critical Care , Female , Humans , Logistic Models , Male , Pregnancy , Primary Health Care , Risk Factors , SARS-CoV-2 , Scotland/epidemiology
12.
BMC Med ; 19(1): 51, 2021 02 22.
Article in English | MEDLINE | ID: mdl-33612113

ABSTRACT

BACKGROUND: The objective of this study was to investigate the relation of severe COVID-19 to prior drug prescribing. METHODS: Severe cases were defined by entry to critical care or fatal outcome. For this matched case-control study (REACT-SCOT), all 4251 cases of severe COVID-19 in Scotland since the start of the epidemic were matched for age, sex and primary care practice to 36,738 controls from the population register. Records were linked to hospital discharges since June 2015 and dispensed prescriptions issued in primary care during the last 240 days. RESULTS: Severe COVID-19 was strongly associated with the number of non-cardiovascular drug classes dispensed. This association was strongest in those not resident in a care home, in whom the rate ratio (95% CI) associated with dispensing of 12 or more drug classes versus none was 10.8 (8.8, 13.3), and in those without any of the conditions designated as conferring increased risk of COVID-19. Of 17 drug classes postulated at the start of the epidemic to be "medications compromising COVID", all were associated with increased risk of severe COVID-19 and these associations were present in those without any of the designated risk conditions. The fraction of cases in the population attributable to exposure to these drug classes was 38%. The largest effect was for antipsychotic agents: rate ratio 4.18 (3.42, 5.11). Other drug classes with large effects included proton pump inhibitors (rate ratio 2.20 (1.72, 2.83) for = 2 defined daily doses/day), opioids (3.66 (2.68, 5.01) for = 50 mg morphine equivalent/day) and gabapentinoids. These associations persisted after adjusting for covariates and were stronger with recent than with non-recent exposure. CONCLUSIONS: Severe COVID-19 is associated with polypharmacy and with drugs that cause sedation, respiratory depression, or dyskinesia; have anticholinergic effects; or affect the gastrointestinal system. These associations are not easily explained by co-morbidity. Measures to reduce the burden of mortality and morbidity from COVID-19 should include reinforcing existing guidance on reducing overprescribing of these drug classes and limiting inappropriate polypharmacy. REGISTRATION: ENCEPP number EUPAS35558.


Subject(s)
COVID-19/diagnosis , COVID-19/epidemiology , Critical Care/trends , Polypharmacy , Psychotropic Drugs/adverse effects , Severity of Illness Index , Aged , Aged, 80 and over , COVID-19/chemically induced , Case-Control Studies , Comorbidity , Dose-Response Relationship, Drug , Drug Prescriptions , Female , Humans , Male , Middle Aged , Psychotropic Drugs/therapeutic use , Scotland/epidemiology
13.
Bull World Health Organ ; 99(3): 178-189, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33716340

ABSTRACT

OBJECTIVE: To describe the clinical presentation, course of disease and health-care seeking behaviour of the first few hundred cases of coronavirus disease 2019 (COVID-19) in the United Kingdom of Great Britain and Northern Ireland. METHODS: We implemented the World Health Organization's First Few X cases and contacts investigation protocol for COVID-19. Trained public health professionals collected information on 381 virologically confirmed COVID-19 cases from 31 January 2020 to 9 April 2020. We actively followed up cases to identify exposure to infection, symptoms and outcomes. We also collected limited data on 752 symptomatic people testing negative for COVID-19, as a control group for analyses of the sensitivity, specificity and predictive value of symptoms. FINDINGS: Approximately half of the COVID-19 cases were imported (196 cases; 51.4%), of whom the majority had recent travel to Italy (140 cases; 71.4%). Of the 94 (24.7%) secondary cases, almost all reported close contact with a confirmed case (93 cases; 98.9%), many through household contact (37 cases; 39.8%). By age, a lower proportion of children had COVID-19. Most cases presented with cough, fever and fatigue. The sensitivity and specificity of symptoms varied by age, with nonlinear relationships with age. Although the proportion of COVID-19 cases with fever increased with age, for those with other respiratory infections the occurrence of fever decreased with age. The occurrence of shortness of breath also increased with age in a greater proportion of COVID-19 cases. CONCLUSION: The study has provided useful evidence for generating case definitions and has informed modelling studies of the likely burden of COVID-19.


Subject(s)
COVID-19/epidemiology , COVID-19/physiopathology , Adolescent , Adult , Age Distribution , Aged , Child , Child, Preschool , Dyspnea/epidemiology , Female , Humans , Infant , Male , Middle Aged , Respiratory Tract Infections/epidemiology , SARS-CoV-2 , Travel , United Kingdom/epidemiology , Young Adult
14.
BMC Infect Dis ; 21(1): 1275, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34930153

ABSTRACT

BACKGROUND: To investigate the association of primary acute cerebral venous thrombosis (CVT) with COVID-19 vaccination through complete ascertainment of all diagnosed CVT in the population of Scotland. METHODS: Case-crossover study comparing cases of CVT recently exposed to vaccination (1-14 days after vaccination) with cases less recently exposed. Cases in Scotland from 1 December 2020 were ascertained through neuroimaging studies up to 17 May 2021 and diagnostic coding of hospital discharges up to 28 April 2021, linked to national vaccination records. The main outcome measure was primary acute CVT. RESULTS: Of 50 primary acute CVT cases, 29 were ascertained only from neuroimaging studies, 2 were ascertained only from hospital discharges, and 19 were ascertained from both sources. Of these 50 cases, 14 had received the Astra-Zeneca ChAdOx1 vaccine and 3 the Pfizer BNT162b2 vaccine. The incidence of CVT per million doses in the first 14 days after vaccination was 2.2 (95% credible interval 0.9 to 4.1) for ChAdOx1 and 1 (95% credible interval 0.1 to 2.9) for BNT162b2. The rate ratio for CVT associated with exposure to ChAdOx1 in the first 14 days compared with exposure 15-84 days after vaccination was 3.2 (95% credible interval 1.1 to 9.5). CONCLUSIONS: These findings support a causal association between CVT and the AstraZeneca vaccine. The absolute risk of post-vaccination CVT in this population-wide study in Scotland was lower than has been reported for populations in Scandinavia and Germany; the explanation for this is not clear.


Subject(s)
COVID-19 , Venous Thrombosis , BNT162 Vaccine , COVID-19 Vaccines , Cross-Over Studies , Humans , Neuroimaging , SARS-CoV-2 , Scotland/epidemiology , Vaccination , Venous Thrombosis/diagnostic imaging , Venous Thrombosis/epidemiology
15.
Euro Surveill ; 26(31)2021 08.
Article in English | MEDLINE | ID: mdl-34355691

ABSTRACT

Public Health Scotland used Scottish national contact tracing data to estimate the European football championship (EURO 2020) contributions to a third wave of SARS-CoV-2 infections. From 11 June to 7 July 2021, 2,632 (4%) of 63,874 SARS-CoV-2 cases self-reported attending a EURO 2020 event; 90% were male, of whom 73% were 20-39-year-olds. Most cases attended unofficial gatherings and averaged more contacts than the general population. Targeted guidance on celebrating safely in closed spaces is key.


Subject(s)
COVID-19 , Soccer , Humans , Male , Contact Tracing , SARS-CoV-2 , Scotland/epidemiology
16.
Euro Surveill ; 26(47)2021 11.
Article in English | MEDLINE | ID: mdl-34823641

ABSTRACT

Since December 2019, over 1.5 million SARS-CoV-2-related fatalities have been recorded in the World Health Organization European Region - 90.2% in people ≥ 60 years. We calculated lives saved in this age group by COVID-19 vaccination in 33 countries from December 2020 to November 2021, using weekly reported deaths and vaccination coverage. We estimated that vaccination averted 469,186 deaths (51% of 911,302 expected deaths; sensitivity range: 129,851-733,744; 23-62%). Impact by country ranged 6-93%, largest when implementation was early.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , SARS-CoV-2 , Vaccination , World Health Organization
17.
J Infect Dis ; 222(1): 17-25, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32296837

ABSTRACT

Public health preparedness for coronavirus (CoV) disease 2019 (COVID-19) is challenging in the absence of setting-specific epidemiological data. Here we describe the epidemiology of seasonal CoVs (sCoVs) and other cocirculating viruses in the West of Scotland, United Kingdom. We analyzed routine diagnostic data for >70 000 episodes of respiratory illness tested molecularly for multiple respiratory viruses between 2005 and 2017. Statistical associations with patient age and sex differed between CoV-229E, CoV-OC43, and CoV-NL63. Furthermore, the timing and magnitude of sCoV outbreaks did not occur concurrently, and coinfections were not reported. With respect to other cocirculating respiratory viruses, we found evidence of positive, rather than negative, interactions with sCoVs. These findings highlight the importance of considering cocirculating viruses in the differential diagnosis of COVID-19. Further work is needed to establish the occurrence/degree of cross-protective immunity conferred across sCoVs and with COVID-19, as well as the role of viral coinfection in COVID-19 disease severity.


Subject(s)
Betacoronavirus , Coronavirus 229E, Human/genetics , Coronavirus Infections/epidemiology , Coronavirus NL63, Human/genetics , Coronavirus OC43, Human/genetics , Pandemics , Pneumonia, Viral/epidemiology , Seasons , Adolescent , Adult , Aged , COVID-19 , Child , Child, Preschool , Coinfection , Coronavirus Infections/virology , Female , Humans , Infant , Male , Middle Aged , Pneumonia, Viral/virology , Real-Time Polymerase Chain Reaction , SARS-CoV-2 , Scotland/epidemiology , Young Adult
18.
Clin Infect Dis ; 71(7): e94-e104, 2020 10 23.
Article in English | MEDLINE | ID: mdl-31688921

ABSTRACT

BACKGROUND: Influenza infection is a trigger of asthma attacks. Influenza vaccination can potentially reduce the incidence of influenza in people with asthma, but uptake remains persistently low, partially reflecting concerns about vaccine effectiveness (VE). METHODS: We conducted a test-negative designed case-control study to estimate the effectiveness of influenza vaccine in people with asthma in Scotland over 6 seasons (2010/2011 to 2015/2016). We used individual patient-level data from 223 practices, which yielded 1 830 772 patient-years of data that were linked with virological (n = 5910 swabs) data. RESULTS: Vaccination was associated with an overall 55.0% (95% confidence interval [CI], 45.8-62.7) risk reduction of laboratory-confirmed influenza infections in people with asthma over 6 seasons. There were substantial variations in VE between seasons, influenza strains, and age groups. The highest VE (76.1%; 95% CI, 55.6-87.1) was found in the 2010/2011 season, when the A(H1N1) strain dominated and there was a good antigenic vaccine match. High protection was observed against the A(H1N1) (eg, 2010/2011; 70.7%; 95% CI, 32.5-87.3) and B strains (eg, 2010/2011; 83.2%; 95% CI, 44.3-94.9), but there was lower protection for the A(H3N2) strain (eg, 2014/2015; 26.4%; 95% CI, -12.0 to 51.6). The highest VE against all viral strains was observed in adults aged 18-54 years (57.0%; 95% CI, 42.3-68.0). CONCLUSIONS: Influenza vaccination gave meaningful protection against laboratory-confirmed influenza in people with asthma across all seasons. Strategies to boost influenza vaccine uptake have the potential to substantially reduce influenza-triggered asthma attacks.


Subject(s)
Asthma , Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Adolescent , Adult , Asthma/complications , Asthma/epidemiology , Case-Control Studies , Humans , Influenza A Virus, H3N2 Subtype , Influenza B virus , Influenza, Human/complications , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Middle Aged , Seasons , Sentinel Surveillance , Vaccination , Young Adult
19.
Clin Infect Dis ; 71(11): 2872-2879, 2020 12 31.
Article in English | MEDLINE | ID: mdl-31784751

ABSTRACT

BACKGROUND: In October 2015, 65 people came into direct contact with a healthcare worker presenting with a late reactivation of Ebola virus disease (EVD) in the United Kingdom. Vaccination was offered to 45 individuals with an initial assessment of high exposure risk. METHODS: Approval for rapid expanded access to the recombinant vesicular stomatitis virus-Zaire Ebola virus (rVSV-ZEBOV) vaccine as an unlicensed emergency medicine was obtained from the relevant authorities. An observational follow-up study was carried out for 1 year following vaccination. RESULTS: Twenty-six of 45 individuals elected to receive vaccination between 10 and 11 October 2015 following written informed consent. By day 14, 39% had seroconverted, increasing to 87% by day 28 and 100% by 3 months, although these responses were not always sustained. Neutralizing antibody responses were detectable in 36% by day 14 and 73% at 12 months. Common side effects included fatigue, myalgia, headache, arthralgia, and fever. These were positively associated with glycoprotein-specific T-cell but not immunoglobulin (Ig) M or IgG antibody responses. No severe vaccine-related adverse events were reported. No one exposed to the virus became infected. CONCLUSIONS: This paper reports the use of the rVSV-ZEBOV vaccine given as an emergency intervention to individuals exposed to a patient presenting with a late reactivation of EVD. The vaccine was relatively well tolerated, but a high percentage developed a fever ≥37.5°C, necessitating urgent screening for Ebola virus, and a small number developed persistent arthralgia.


Subject(s)
Ebola Vaccines/therapeutic use , Hemorrhagic Fever, Ebola , Post-Exposure Prophylaxis , Antibodies, Viral , Ebolavirus , Follow-Up Studies , Hemorrhagic Fever, Ebola/prevention & control , Humans , Recurrence , United Kingdom
20.
PLoS Med ; 17(10): e1003374, 2020 10.
Article in English | MEDLINE | ID: mdl-33079969

ABSTRACT

BACKGROUND: The objectives of this study were to identify risk factors for severe coronavirus disease 2019 (COVID-19) and to lay the basis for risk stratification based on demographic data and health records. METHODS AND FINDINGS: The design was a matched case-control study. Severe COVID-19 was defined as either a positive nucleic acid test for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the national database followed by entry to a critical care unit or death within 28 days or a death certificate with COVID-19 as underlying cause. Up to 10 controls per case matched for sex, age, and primary care practice were selected from the national population register. For this analysis-based on ascertainment of positive test results up to 6 June 2020, entry to critical care up to 14 June 2020, and deaths registered up to 14 June 2020-there were 36,948 controls and 4,272 cases, of which 1,894 (44%) were care home residents. All diagnostic codes from the past 5 years of hospitalisation records and all drug codes from prescriptions dispensed during the past 240 days were extracted. Rate ratios for severe COVID-19 were estimated by conditional logistic regression. In a logistic regression using the age-sex distribution of the national population, the odds ratios for severe disease were 2.87 for a 10-year increase in age and 1.63 for male sex. In the case-control analysis, the strongest risk factor was residence in a care home, with rate ratio 21.4 (95% CI 19.1-23.9, p = 8 × 10-644). Univariate rate ratios for conditions listed by public health agencies as conferring high risk were 2.75 (95% CI 1.96-3.88, p = 6 × 10-9) for type 1 diabetes, 1.60 (95% CI 1.48-1.74, p = 8 × 10-30) for type 2 diabetes, 1.49 (95% CI 1.37-1.61, p = 3 × 10-21) for ischemic heart disease, 2.23 (95% CI 2.08-2.39, p = 4 × 10-109) for other heart disease, 1.96 (95% CI 1.83-2.10, p = 2 × 10-78) for chronic lower respiratory tract disease, 4.06 (95% CI 3.15-5.23, p = 3 × 10-27) for chronic kidney disease, 5.4 (95% CI 4.9-5.8, p = 1 × 10-354) for neurological disease, 3.61 (95% CI 2.60-5.00, p = 2 × 10-14) for chronic liver disease, and 2.66 (95% CI 1.86-3.79, p = 7 × 10-8) for immune deficiency or suppression. Seventy-eight percent of cases and 52% of controls had at least one listed condition (51% of cases and 11% of controls under age 40). Severe disease was associated with encashment of at least one prescription in the past 9 months and with at least one hospital admission in the past 5 years (rate ratios 3.10 [95% CI 2.59-3.71] and 2.75 [95% CI 2.53-2.99], respectively) even after adjusting for the listed conditions. In those without listed conditions, significant associations with severe disease were seen across many hospital diagnoses and drug categories. Age and sex provided 2.58 bits of information for discrimination. A model based on demographic variables, listed conditions, hospital diagnoses, and prescriptions provided an additional 1.07 bits (C-statistic 0.804). A limitation of this study is that records from primary care were not available. CONCLUSIONS: We have shown that, along with older age and male sex, severe COVID-19 is strongly associated with past medical history across all age groups. Many comorbidities beyond the risk conditions designated by public health agencies contribute to this. A risk classifier that uses all the information available in health records, rather than only a limited set of conditions, will more accurately discriminate between low-risk and high-risk individuals who may require shielding until the epidemic is over.


Subject(s)
Coronavirus Infections/epidemiology , Health Status , Hospitalization , Pneumonia, Viral/epidemiology , Severity of Illness Index , Adult , Aged , Aged, 80 and over , Betacoronavirus , COVID-19 , Case-Control Studies , Comorbidity , Coronavirus Infections/virology , Drug Therapy , Electronic Health Records , Female , Humans , Logistic Models , Male , Middle Aged , Odds Ratio , Pandemics , Pneumonia, Viral/virology , Risk Factors , SARS-CoV-2 , Scotland/epidemiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL