Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
2.
Mol Pharm ; 13(9): 3247-55, 2016 09 06.
Article in English | MEDLINE | ID: mdl-27463245

ABSTRACT

Nitazoxanide (NTZ) has moderate mycobactericidal activity and is also an inducer of autophagy in mammalian cells. High-payload (40-50% w/w) inhalable particles containing NTZ alone or in combination with antituberculosis (TB) agents isoniazid (INH) and rifabutin (RFB) were prepared with high incorporation efficiency of 92%. In vitro drug release was corrected for drug degradation during the course of study and revealed first-order controlled release. Particles were efficiently taken up in vitro by macrophages and maintained intracellular drug concentrations at one order of magnitude higher than NTZ in solution for 6 h. Dose-dependent killing of Mtb and restoration of lung and spleen architecture were observed in experimentally infected mice treated with inhalations containing NTZ. Adjunct NTZ with INH and RFB cleared culturable bacteria from the lung and spleen and markedly healed tissue architecture. NTZ can be used in combination with INH-RFB to kill the pathogen and heal the host.


Subject(s)
Antitubercular Agents/therapeutic use , Macrophages/drug effects , Thiazoles/therapeutic use , Tuberculosis/drug therapy , Administration, Inhalation , Animals , Antitubercular Agents/administration & dosage , Autophagy/drug effects , Cell Line , Humans , Isoniazid/administration & dosage , Isoniazid/therapeutic use , Male , Mice , Nitro Compounds , Radiotherapy Planning, Computer-Assisted , Rifabutin/administration & dosage , Rifabutin/therapeutic use , Thiazoles/administration & dosage , Tuberculosis/metabolism
3.
Pharm Res ; 33(8): 1899-912, 2016 08.
Article in English | MEDLINE | ID: mdl-27095353

ABSTRACT

PURPOSE: Mycobacterium tuberculosis (Mtb) inhibits host defense mechanisms, including autophagy. We investigated particles containing rapamycin (RAP) alone or in combination with isoniazid (INH) and rifabutin (RFB) for: targeting lung macrophages on inhalation; inducing autophagy; and killing macrophage-resident Mtb and/or augmenting anti-tuberculosis (TB) drugs. METHODS: PLGA and drugs were spray-dried. Pharmacokinetics, partial biodistribution (LC-MS/MS) and efficacy (colony forming units, qPCR, acid fast staining, histopathology) in mice following dry powder inhalation were evaluated. RESULTS: Aerodynamic diameters of formulations were 0.7-4.7 µm. Inhaled particles reached deep lungs and were phagocytosed by alveolar macrophages, yielding AUC0-48 of 102 compared to 0.1 µg/ml × h obtained with equivalent intravenous dose. RAP particles induced more autophagy in Mtb-infected macrophages than solutions. Inhaled particles containing RAP alone in daily, alternate-day and weekly dosing regimens reduced bacterial burden in lungs and spleens, inducing autophagy and phagosome-lysosome fusion. Inhalation of particles containing RAP with INH and RFB cleared the lungs and spleens of culturable bacteria. CONCLUSIONS: Targeting a potent autophagy-inducing agent to airway and lung macrophages alone is feasible, but not sufficient to eliminate Mtb. Combination of macrophage-targeted inhaled RAP with classical anti-TB drugs contributes to restoring tissue architecture and killing Mtb.


Subject(s)
Antitubercular Agents/administration & dosage , Autophagy/drug effects , Mycobacterium tuberculosis/drug effects , Sirolimus/administration & dosage , Administration, Inhalation , Animals , Antitubercular Agents/chemical synthesis , Antitubercular Agents/metabolism , Autophagy/physiology , Drug Evaluation, Preclinical/methods , Drug Therapy, Combination , Humans , Lactic Acid/administration & dosage , Lactic Acid/chemical synthesis , Lactic Acid/metabolism , Macrophages/drug effects , Macrophages/metabolism , Male , Mice , Monocytes/drug effects , Monocytes/metabolism , Mycobacterium tuberculosis/metabolism , Polyglycolic Acid/administration & dosage , Polyglycolic Acid/chemical synthesis , Polyglycolic Acid/metabolism , Polylactic Acid-Polyglycolic Acid Copolymer , Sirolimus/chemical synthesis , Sirolimus/metabolism
4.
Pharm Dev Technol ; 21(1): 43-53, 2016.
Article in English | MEDLINE | ID: mdl-25403112

ABSTRACT

In the current study, polylactide-co-glycolide (PLGA) nanoparticles entrapping both clozapine (CLZ) and risperidone (RIS) were formulated by spray-drying using Buchi Nano Spray Dryer B-90 (Flawil, Switzerland). Parameters such as inlet temperature, spray mesh diameter, sample flow rate, spray rate and applied pressure were optimized to produce nanoparticles having desired release profile using both low- and high-molecular weight PLGA polymer. Smallest size nanoparticle of size around 248 nm could be prepared using a 4.0 µm mesh diameter with low-molecular weight polymer. The load of CLZ and RIS was 126.3 and 58.2 µg/mg of polymer particles, respectively. Entrapment efficiency of drugs in PLGA nanoparticles was 94.74% for CLZ and 93.12% for RIS. Both the drugs released continuously from the nanoparticle formulations. PLGA nanoparticles formulated using low-molecular weight polymer released around 80% of the entrapped drug over 10 days of time. Nature of drug inside polymer particles was amorphous, and there was no chemical interaction of CLZ and RIS with polymer. Polymeric nanoparticles were found to be non-toxic in nature using PC12 cell line. This nanospray drying process proved to be suitable for developing polymeric nanoformulation delivering dual drugs for the treatment of Schizophrenia.


Subject(s)
Chemistry, Pharmaceutical/methods , Clozapine/chemical synthesis , Lactic Acid/chemical synthesis , Nanoparticles/chemistry , Polyglycolic Acid/chemical synthesis , Risperidone/chemical synthesis , Drug Carriers , Drug Combinations , Polylactic Acid-Polyglycolic Acid Copolymer , X-Ray Diffraction
5.
Vaccine ; 42(18): 3857-3873, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38616437

ABSTRACT

Dengue becomes the most common life-threatening infectious arbovirus disease globally, with prevalence in the tropical and subtropical areas. The major clinical features include dengue haemorrhagic fever (DHF) and dengue shock syndrome (DSS), a condition of hypovolemic shock. Four different serotypes of the dengue virus, known as dengue virus serotype (DENV)- 1, 2, 3 and 4 can infect humans. Only one vaccine is available in the market, named Dengvaxia by Sanofi Pasteur, but there is no desired outcome of this treatment due the antibody dependent enhancement (ADE) of the multiple dengue serotypes. As of now, there is no cure against dengue disease. Our goal in this work was to create a subunit vaccine based on several epitopes that would be effective against every serotype of the dengue virus. Here, computational methods like- immunoinformatics and bioinformatics were implemented to find out possible dominant epitopes. A total of 21 epitopes were chosen using various in-silico techniques from the expected 133 major histocompatibility complex (MHC)- I and major histocompatibility complex (MHC)- II epitopes, along with 95 B-cell epitopes which were greatly conserved. Immune stimulant, non-allergenic and non-toxic immunodominant epitopes (super epitopes) with a suitable adjuvant (Heparin-Binding Hemagglutinin Adhesin, HBHA) were used to construct the vaccine. Following the physicochemical analysis, vaccine construct was docked with Toll-like receptors (TLRs) to predict the immune stimulation. Consequently, the optimal docked complex that demonstrated the least amount of ligand-receptor complex deformability was used to conduct the molecular dynamics analysis. By following the codon optimization, the final vaccine molecule was administered into an expressing vector to perform in-silico cloning. The robust immune responses were generated in the in-silico immune simulation analysis. Hence, this study provides a hope to control the dengue infections. For validation of the immune outcomes, in-vitro as well as in-vivo investigations are essential.


Subject(s)
Dengue Vaccines , Dengue Virus , Dengue , Epitopes, B-Lymphocyte , Serogroup , Dengue Vaccines/immunology , Humans , Dengue Virus/immunology , Dengue/prevention & control , Dengue/immunology , Epitopes, B-Lymphocyte/immunology , Computer Simulation , Vaccines, Subunit/immunology , Computational Biology/methods , Immunodominant Epitopes/immunology , Antibody-Dependent Enhancement/immunology , Epitopes/immunology , Antibodies, Viral/immunology
6.
ACS Biomater Sci Eng ; 10(5): 2636-2658, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38606473

ABSTRACT

Nanosized mesoporous silica has emerged as a promising flexible platform delivering siRNA for cancer treatment. This ordered mesoporous nanosized silica provides attractive features of well-defined and tunable porosity, structure, high payload, and multiple functionalizations for targeted delivery and increasing biocompatibility over other polymeric nanocarriers. Moreover, it also overcomes the lacunae associated with traditional administration of drugs. Chemically modified porous silica matrix efficiently entraps siRNA molecules and prevents their enzymatic degradation and premature release. This Review discusses the synthesis of silica using the sol-gel approach and the advantages with different silica mesostructure. Herein, the factors affecting the synthesis of silica at nanometer scale, shape, porosity and nanoparticle surface modification are also highlighted to attain the desired nanostructured silica carriers. Additional emphasis is given to chemically modified silica delivering siRNA, where the silica nanoparticle surface was modified with different chemical moieties such as amine modified with (3-aminoropyl) triethoxysilane, polyethylenimine, chitosan, poly(ethylene glycol), and cyclodextrin polymer modification to attain high therapeutic loading, improved dispersibility and biocompatibility. Upon systemic administration, ordered mesoporous nanosized silica encounters blood cells, immune cells, and organs mainly of the reticuloendothelial system (RES). Thereby, biocompatibility and biodistribution of silica based nanocarriers are deliberated to design principles for smart and efficacious nanostructured silica-siRNA carriers and their clinical trial status. This Review further reports the future scopes and challenges for developing silica nanomaterial as a promising siRNA delivery vehicle demanding FDA approval.


Subject(s)
Neoplasms , RNA, Small Interfering , Silicon Dioxide , Silicon Dioxide/chemistry , RNA, Small Interfering/therapeutic use , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/chemistry , Humans , Neoplasms/therapy , Neoplasms/drug therapy , Neoplasms/genetics , Porosity , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Animals , Drug Carriers/chemistry
7.
Drug Deliv Transl Res ; 14(10): 2712-2726, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38347431

ABSTRACT

Chemotherapy and immunotherapy are two important modalities in cancer management. However, due to multiple reasons, a monotherapy is only partially effective. Hence, if used concurrently in targeted and stimuli-responsive manner, it could have been superior therapeutically. To facilitate co-delivery of chemotherapeutic and immunotherapeutic agent to the target cancer cells, engineered nanoparticles, i.e., a pH-responsive polymer PLGA-coated magnetic silica nanoparticles (Fe3O4-SiO2-PLGA-PDA-PTX-siRNA NPs) encapsulating paclitaxel (PTX) and siRNA against programmed cell death ligand-1 (PD-L1) are synthesized and characterized. Developed nanoparticles demonstrated pH-sensitive sustained drug release up to 10 days. In vitro 4T1 cell line studies showed efficient cellular uptake, PD-L1 gene downregulation, and apoptosis. Further, in vivo efficacy studies carried out in the mice model demonstrated a significant reduction of tumor growth following treatment with dual-Fe3O4-SiO2-PLGA-PDA-PTX-siRNA NPs as compared with monotherapy with Fe3O4-SiO2-PLGA-PDA-PTX NPs. The high therapeutic efficacy observed with dual-Fe3O4-SiO2-PLGA-PDA-PTX-siRNA NPs was mainly due to the cytotoxic effect of PTX combined with targeted silencing of the gene of interest, i.e., PD-L1, which in turn improve CD8+ T cell-mediated cancer cell death as evident with increased proliferation of CD8+ T cells in co-culture experiments. Thereby, dual-Fe3O4-SiO2-PLGA-PDA-PTX-siRNA NPs may have a promising anti-cancer treatment potential against breast cancer; however, the beneficial effects of dual loading of PTX + PD-L1 siRNA may be corroborated against other cancer models such as lung and colorectal cancer models as well as in clinical trials.


Subject(s)
B7-H1 Antigen , Immunotherapy , Mice, Inbred BALB C , Paclitaxel , Polylactic Acid-Polyglycolic Acid Copolymer , RNA, Small Interfering , Silicon Dioxide , Animals , Silicon Dioxide/chemistry , Silicon Dioxide/administration & dosage , Paclitaxel/administration & dosage , Paclitaxel/chemistry , Paclitaxel/pharmacology , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Cell Line, Tumor , Immunotherapy/methods , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/chemistry , Female , Mice , Drug Liberation , Magnetite Nanoparticles/chemistry , Apoptosis/drug effects , Nanoparticles/chemistry , Nanoparticles/administration & dosage , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/chemistry , Hydrogen-Ion Concentration , Humans , Drug Carriers/chemistry
8.
Vaccine ; 42(18): 3899-3915, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38719691

ABSTRACT

Scrub typhus, a potentially life-threatening infectious disease, is attributed to bacteria Orientia tsutsugamushi (O. tsutsugamushi). The transmission of this illness to humans occurs through the bite of infected chiggers, which are the larval forms of mites belonging to the genus Leptotrombidium. In this research, we developed a subunit vaccine specifically designed to target outer membrane proteins. Immunodominant cytotoxic T-lymphocytes (CTLs), B- lymphocytes (BCLs), and major histocompatibility complex (MHC)- II epitopes were identified using machine learning and bioinformatics approaches. These epitopes were arranged in different combinations with the help of suitable linkers like AAY, KK, GPGPG and adjuvant (cholera toxin B) that resulted in a vaccine construct. Physiochemical properties were assessed, where the predicted solubility (0.571) was higher than threshold value. Tertiary structure was predicted using I-TASSER web server and evaluated using Ramachandran plot (94 % residues in most favourable region) and z-score (-6.04), which had shown the structure to have good stability and residue arrangement. Molecular docking with immune receptors, Toll-like receptor (TLR)-2 and -4 showed good residue interaction with 13 and 5 hydrogen bonds respectively. Molecular dynamics simulations of receptor-ligand complex provided the idea about the strong interaction having 1.524751 × 10-5 eigenvalue. Amino acid sequence of vaccine was converted to nucleotide sequence and underwent codon optimization. The optimized codon sequence was used for in-silico cloning, which provided idea about the possibility of synthesis of vaccine using E. coli as host. Overall, this study provided a promising blueprint for a scrub typhus vaccine, although experimental validation is needed for confirmation. Furthermore, it is crucial to acknowledge that while bioinformatics provides valuable insights, in-vitro and in-vivo studies are imperative for a comprehensive evaluation of vaccine candidate. Thus, the integration of computational predictions with empirical research is essential to validate the efficacy, safety, and real-world applicability of the designed vaccine against Scrub Typhus. Nevertheless, the findings are good to carry forward for in-vitro and in-vivo investigations.


Subject(s)
Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte , Orientia tsutsugamushi , Scrub Typhus , Vaccines, Subunit , Scrub Typhus/immunology , Scrub Typhus/prevention & control , Orientia tsutsugamushi/immunology , Humans , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/immunology , Vaccines, Subunit/immunology , Molecular Docking Simulation , Bacterial Vaccines/immunology , Computer Simulation , Computational Biology/methods , T-Lymphocytes, Cytotoxic/immunology , Machine Learning , B-Lymphocytes/immunology , Toll-Like Receptor 2/immunology
9.
ACS Biomater Sci Eng ; 10(10): 6377-6396, 2024 Oct 14.
Article in English | MEDLINE | ID: mdl-39259706

ABSTRACT

Clinical oncology is currently experiencing a technology bottleneck due to the expeditious evolution of therapy defiance in tumors. Although drugs used in chemotherapy work for a sort of cell death with potential clinical application, the effectiveness of chemotherapy-inducing drugs is subject to several endogenous conditions when used alone, necessitating the urgent need for controlled mechanisms. A tumor-targeted drug delivery therapy using Li-Al (M+/M3+)-based layered double hydroxide (LDHs) family has been proposed with the general chemical formula [M+1-x M3+x (OH)]2x+[(Am-)2x/m. n(H2O)]2x-, which is fully biodegradable and works in connection with the therapeutic interaction between LDH nanocarriers and anticancerous doxorubicin (DOX). Compositional variation of Li and Al in LDHs has been used as a nanoplatform, which provides a functional balance between circulation lifetime, drug loading capacity, encapsulation efficiency, and tumor-specific uptake to act as self-regulatory therapeutic cargo to be released intracellularly. First-principle analyses based on DFT have been employed to investigate the interaction of bonding and electronic structure of LDH with DOX and assess its capability and potential for a superior drug carrier. Following the internalization into cancer cells, nanoformulations are carried to the nucleus via lysosomes, and the mechanistic pathways have been revealed. Additionally, in vitro along with in vivo therapeutic assessments on melanoma-bearing mice show a dimensional effect of nanoformulation for better biocompatibility and excellent synergetic anticancer activity. Further, the severe toxic consequences associated with traditional chemotherapy have been eradicated by using injectable hydrogel placed just beneath the tumor site, and regulated release of the drug has been confirmed through protein expression applying various markers. However, Li-Al-based LDH nanocarriers open up new design options for multifunctional nanomedicine, which has intriguing potential for use in cancer treatment through sustained drug delivery.


Subject(s)
Doxorubicin , Hydroxides , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Doxorubicin/chemistry , Doxorubicin/administration & dosage , Animals , Hydrogen-Ion Concentration , Hydroxides/chemistry , Humans , Mice , Lithium/chemistry , Lithium/pharmacology , Lithium/therapeutic use , Drug Carriers/chemistry , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Drug Delivery Systems , Cell Line, Tumor , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/therapeutic use , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/administration & dosage , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/administration & dosage
10.
J Pharm Sci ; 112(6): 1664-1670, 2023 06.
Article in English | MEDLINE | ID: mdl-36736778

ABSTRACT

Receptor binding domain (RBD) of SARS-CoV-2 is a prime vaccine target against which neutralizing antibody responses are directed. Purified RBD as a vaccine candidate warrants administration of multiple doses along with adjuvants and use of delivery systems to improve its immunogenicity. The present investigation examines the immunogenicity of RBD delivered by biodegradable polymer particles from single dose administration. Mice upon single point immunization of RBD entrapped microparticles generated improved antibody response. The polymer microparticles showed better temperature stability and could be stored at 37 degrees for one month without any considerable loss of immunogenicity. Further, immunization with microparticles could elicit memory antibody response upon challenge after four months of single dose administration. Thus, using microparticles entrapping RBD as a vaccine candidate confer improved immunogenicity, temperature stability and recall response. These thermostable microparticles seem to be a potentially cost-effective approach which can help in dose reduction, provide a wider access of vaccines and accelerate the end of global pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Mice , COVID-19/prevention & control , Immunization , Vaccination , Antibodies, Neutralizing , Polymers , Antibodies, Viral
11.
Vaccine ; 41(50): 7515-7524, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-37980259

ABSTRACT

Streptococcus pneumoniae having almost 98 serotypes and being common cause of acute otitis media, pneumonia, bacteremia, meningitis etc., which results in high mortality and morbidity globally. Although vaccines like PCV-13 and PPV-23 are available, some problems like serotype replacement and poor immunogenicity in children, old age and immunocompromised people has been observed. To overcome these drawbacks protein/peptide-based vaccine can be a good strategy as these provides wide serotype coverage. However, immunogenicity of protein subunit vaccines is lower, that issue can be solved by using adjuvants. Recently nanoparticles as an adjuvant for vaccine delivery being used, which has provided not only good immunogenicity but also improved delivery and efficiency of protein-based vaccines. In this review we have discussed the latest advancement of nanoparticles-based protein/peptide vaccine delivery for Streptococcus pneumoniae.


Subject(s)
Otitis Media , Pneumococcal Infections , Child , Humans , Streptococcus pneumoniae , Peptides , Pneumococcal Vaccines , Serogroup , Otitis Media/prevention & control , Polysaccharides , Vaccines, Conjugate , Pneumococcal Infections/prevention & control
12.
Int J Biol Macromol ; 203: 661-670, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35120939

ABSTRACT

Protein based vaccines are the most safe and affordable strategy to combat pneumococcal disease circumventing the limitations of conventional polysaccharide-based vaccines like serotype dependence, high cost and inability to be administered to immunocompromised. SP0845 is a highly conserved vaccine candidate shown to provide protection against heterologous strains of Streptococcus pneumoniae, the primal cause of pneumonia. However, the associated poor immunogenicity warrants the need for adjuvants and multiple doses to mount desired responses. The present study relates to improve the immunogenicity of pneumococcal protein SP0845 by use of poly lactic acid biodegradable polymer microparticles. The immunization studies showed that microparticles elicited higher antibody response compared to alum adjuvanted protein and this immunopotentiation was achieved without the use of any additional adjuvant. They were also capable of eliciting secondary antibody response upon boosting after four months. Further, the particles upon storage at 25 and 37 °C for one month were still capable of mounting an immune response equivalent to those stored in cold chain. Thus, using microparticles entrapping SP0845 for immunization not only improve the immunogenicity but also offer better temperature stability. This can greatly reduce the cost and increase access of protein-based vaccine to resource limited settings.


Subject(s)
Pneumococcal Infections , Streptococcus pneumoniae , Antibodies, Bacterial , Humans , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines/metabolism , Serogroup , Streptococcus pneumoniae/metabolism , Temperature
13.
Eur J Pharm Biopharm ; 176: 43-53, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35589003

ABSTRACT

Nanoparticles-based multivalent antigen display has the capability of mimicking natural virus infection characteristics, making it useful for eliciting potent long-lasting immune response. Several vaccines are developed against global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However these subunit vaccines use mammalian expression system, hence mass production with rapid pace is a bigger challenge. In contrast E. coli based subunit vaccine production circumvents these limitations. The objective of the present investigation was to develop nanoparticle vaccine with multivalent display of receptor binding domain (RBD) of SARS-CoV-2 expressed in E. coli. Results showed that RBD entrapped PLA (Poly lactic acid) nanoparticle in combination with aluminum hydroxide elicited 9-fold higher immune responses as compared to RBD adsorbed aluminum hydroxide, a common adjuvant used for human immunization. It was interesting to note that RBD entrapped PLA nanoparticle with aluminum hydroxide not only generated robust and long-lasting antibody response but also provided Th1 and Th2 balanced immune response. Moreover, challenge with 1 µg of RBD alone was able to generate secondary antibody response, suggesting that immunization with RBD-PLA nanoparticles has the ability to elicit memory antibody against RBD. Plaque assay revealed that the antibody generated using the polymeric formulation was able to neutralize SARS-CoV-2. The RBD entrapped PLA nanoparticles blended with aluminum hydroxide thus has potential to develop asa subunit vaccine against COVID-19.


Subject(s)
COVID-19 , Nanoparticles , Aluminum Hydroxide , Animals , Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , COVID-19 Vaccines , Escherichia coli , Humans , Mammals , Nanoparticles/chemistry , Polyesters , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Vaccines, Subunit
14.
Biomater Sci ; 9(23): 7962-7976, 2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34704986

ABSTRACT

Phagocytosis of particulate vaccine delivery systems is a critical immune mechanism involved in antigen capture and processing by macrophages and dendritic cells. The internalization and degradation of the particles involve a complex sequence of events. This process coordinates lipids, signaling proteins, and the cytoskeleton. Dynamic changes in the actin cytoskeleton are essential for phagocytosis and antigen presentation. Knowledge regarding the correlation of surface properties, attached ligand density and geometric size of particles with the efficiency of phagocytosis may facilitate their design and application. To investigate this, polylactide biodegradable particles with different diameters (2-4 µm and 200-300 nm) were exposed to murine macrophages and dendritic cells and the effect of size on a series of cellular responses was evaluated. Cellular uptake studies using microscopy and flow cytometry showed size dependent internalization of particles, with nanoparticles accumulating in cells at a faster rate. The particles induced homoaggregation of cells and also showed cytoskeletal remodeling that could be inhibited by cytochalasin-D. Scanning electron microscopy images showed the time dependent formation of phagocytic cups and invaginations that promote particle uptake. The particles were observed to co-localized with the endo-lysosomal compartments after phagocyotosis. In our experiments, particle mediated immunoactivation, antigen processing and cytokine secretion have shown a good correlation with the uptake process. These findings would allow a better understanding of the process of particle uptake and may be instrumental in the rational design of optimal vaccine delivery systems.


Subject(s)
Cytoskeleton , Phagocytosis , Animals , Antigen-Presenting Cells , Mice , Particle Size , Polyesters
15.
Viruses ; 12(10)2020 10 10.
Article in English | MEDLINE | ID: mdl-33050511

ABSTRACT

Herd immunity is the most critical and essential prophylactic intervention that delivers protection against infectious diseases at both the individual and community level. This process of natural vaccination is immensely pertinent to the current context of a pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection around the globe. The conventional idea of herd immunity is based on efficient transmission of pathogens and developing natural immunity within a population. This is entirely encouraging while fighting against any disease in pandemic circumstances. A spatial community is occupied by people having variable resistance capacity against a pathogen. Protection efficacy against once very common diseases like smallpox, poliovirus or measles has been possible only because of either natural vaccination through contagious infections or expanded immunization programs among communities. This has led to achieving herd immunity in some cohorts. The microbiome plays an essential role in developing the body's immune cells for the emerging competent vaccination process, ensuring herd immunity. Frequency of interaction among microbiota, metabolic nutrients and individual immunity preserve the degree of vaccine effectiveness against several pathogens. Microbiome symbiosis regulates pathogen transmissibility and the success of vaccination among different age groups. Imbalance of nutrients perturbs microbiota and abrogates immunity. Thus, a particular population can become vulnerable to the infection. Intestinal dysbiosis leads to environmental enteropathy (EE). As a consequence, the generation of herd immunity can either be delayed or not start in a particular cohort. Moreover, disparities of the protective response of many vaccines in developing countries outside of developed countries are due to inconsistencies of healthy microbiota among the individuals. We suggested that pan-India poliovirus vaccination program, capable of inducing herd immunity among communities for the last 30 years, may also influence the inception of natural course of heterologous immunity against SARS-CoV-2 infection. Nonetheless, this anamnestic recall is somewhat counterintuitive, as antibody generation against original antigens of SARS-CoV-2 will be subdued due to original antigenic sin.


Subject(s)
Immunity, Herd , Microbiota , Virus Diseases/immunology , Virus Diseases/microbiology , Betacoronavirus/immunology , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Coronavirus Infections/microbiology , Coronavirus Infections/transmission , Dysbiosis/immunology , Humans , Immunity, Heterologous , Immunity, Innate , Microbiota/immunology , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Pneumonia, Viral/microbiology , Pneumonia, Viral/transmission , SARS-CoV-2 , Vaccination , Virus Diseases/epidemiology , Virus Diseases/transmission
16.
Eur J Pharm Biopharm ; 152: 270-281, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32470636

ABSTRACT

Polysaccharide antigens do not promote antibody class switching and memory antibody response, thus require conjugation with a T cell dependent carrier protein to generate protective immune response. The intensity of immune responses varies with the carrier proteins for the same carbohydrate antigen and most of the carrier proteins do not generate strong immune responses. Vi polysaccharide and r-flagellin of Salmonella typhi were conjugated and formulated in PLA particles as nanoglycoconjugate which not only generated strong immune response but also promoted antibody class switching and elicited memory antibody response from single point immunization. Nanoglycoconjugate immunization also modulate anti-inflammatory property of Vi polysaccharide with an enhance secretion of pro-inflammatory cytokine TNF-α and IL-6. This was with concomitant decrease of IFN-γ production, antibody class switching from IgG3 to IgG2 with memory antibody generation against Vi polysaccharide. Antibody elicited by nanoglycoconjugate showed better opsonization and clearance of Salmonella typhi in THP-1 macrophages as compared to Vi-flagellin glycoconjugate and Vi TT (Typhbar®). Delivery of glycoconjugate through nanoparticles provides a platform technology for improving the immunogenicity of polysaccharide based vaccines.


Subject(s)
Glycoconjugates/immunology , Immunity/immunology , Nanoparticles/chemistry , Polyesters/chemistry , Polysaccharides, Bacterial/immunology , Salmonella typhi/immunology , Animals , Antibodies, Bacterial/immunology , Antibody Formation/immunology , Antigens/immunology , Cell Line , Female , Immunization/methods , Immunoglobulin G/immunology , Interleukin-6/immunology , Mice , Mice, Inbred BALB C , RAW 264.7 Cells , Tumor Necrosis Factor-alpha/immunology , Typhoid-Paratyphoid Vaccines/immunology , Vaccination/methods , Vaccines, Conjugate/immunology
17.
Int J Biol Macromol ; 163: 1240-1248, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32668306

ABSTRACT

SP0845, a pneumococcal surface protein and a potential candidate vaccine for Streptococcus pneumoniae infection, was used to evaluate the role of histidine affinity tag on its biophysical properties and immunogenicity. The protein was expressed in E. coli with and without histidine affinity tag and purified to homogeneity. Size exclusion chromatographic studies revealed that tag free SP0845 was mainly monomeric in solution whereas, histidine tagged SP0845 stayed predominantly in an oligomeric form. Histidine-tagged SP0845 have higher ß sheet content than the tag free protein. Removal of histidine tag increased the α-helical content of SP0845 from 35% to 46%. Histidine tagged SP0845 elicited higher serum antibody titer in comparison to the tag free SP0845 in mice. Effect of alum in improving the immunogenicity of tagged SP0845 was low in comparison to that observed with tag free protein. Immunogenicity of tag free SP0845 was enhanced by delivering it using polylactide polymeric particles. The presence of histidine tag thus influences the secondary structure and immunogenicity of protein and need careful consideration before use.


Subject(s)
Antibodies/metabolism , Antibody Formation/physiology , Bacterial Proteins/metabolism , Histidine/metabolism , Membrane Proteins/metabolism , Streptococcus pneumoniae/metabolism , Animals , Escherichia coli/metabolism , Female , Mice , Mice, Inbred BALB C , Protein Structure, Secondary
18.
Int J Biol Macromol ; 133: 495-502, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31004634

ABSTRACT

In recent years, a great deal of attention has been given towards re-purposing and re-innovating the potential drugs. In this regard, dihydroartemisinin (DHA) has been reported to demonstrate anti-proliferative effects on various cancerous cells viz. breast, liver and lung. However, it is associated with some limitations, such as low bioavailability which is hampered by its poor aqueous solubility and its rapid metabolism in systemic circulation. Therefore, in order to overcome these limitations, we synthesized a novel hyaluronic acid-dihydroartemisinin conjugate in which the hydroxyl group of DHA was covalently linked to carboxylic group of hyaluronic acid (HA). The conjugate was successfully characterized using 1H NMR, Fourier transform infrared spectroscopy (FT-IR) and gel permeation chromatography (GPC). The synthesized conjugate self-assembled into nanoparticles in aqueous solution. The developed nanoparticles were characterized for their average size, zeta potential, Transmission Electron Microscopy (TEM), X-ray Powder Diffraction (XRD) and loading efficiency. The nanoparticles were cytotoxic to lung cancer (A549) cell line which was determined using CCK-8 cell viability assay. This was further supported by Annexin-V-FITC-Propidium iodide apoptosis assay, reactive oxygen species (ROS) production and mitochondrial membrane potential (MMP) loss. Conclusively, present findings demonstrate hyaluronic acid conjugates can be used to improve the therapeutic outcomes of anticancer drugs.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Artemisinins/chemistry , Artemisinins/pharmacology , Hyaluronic Acid/chemistry , Lung Neoplasms/pathology , A549 Cells , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , Artemisinins/chemical synthesis , Cell Proliferation/drug effects , Cell Survival/drug effects , Chemistry Techniques, Synthetic , Humans , Membrane Potential, Mitochondrial/drug effects , Nanoparticles/chemistry , Reactive Oxygen Species/metabolism
19.
J Basic Clin Physiol Pharmacol ; 29(1): 73-79, 2018 Jan 26.
Article in English | MEDLINE | ID: mdl-29016352

ABSTRACT

BACKGROUND: Curcumin and nisin have been widely reported for their antibacterial and anticancer potency. However, their therapeutic applications are hampered by several factors, which necessitate their development into nanosize ranges for improved delivery and activities. Their incorporation into a single nanosynthesized form may suggest desirable efficacy on parasites. The aim of the study was to assess the ovicidal activity of the curcumin-nisin polylactic acid (PLA) entrapped nanoparticle on the Fasciola eggs and its reproductive toxicity. METHODS: The nanoparticle was formulated by double emulsion method. The eggs of the adult Fasciola spp. were exposed to different concentrations (0.3125-5 mg/mL) of the nanoparticle to monitor hatchability. Mice were exposed to 0.5 mL of the formulated drug at varying concentrations (10-20 mg/kg) and then sacrificed for sperm morphology assay. RESULTS: The mean particle size, polydispersity index, and drug entrapment efficiency of the formulated drug were 288.4±24.3 nm, 0.232, and 51.7%, respectively. The highest nanoparticulate concentration (5 mg/mL) showed the least percentage egg hatching (41.7%) compared with the other treatment groups and positive control (albendazole) (45.1%). The aberrations observed in sperm cells were not concentration-dependent and no significant differences were observed in the mean aberrations between the nanoparticulate drug-exposed groups and the negative control (p>0.05). CONCLUSIONS: The results confirmed the ovicidal activity of the curcumin-nisin nanoparticulate drug against the Fasciola species. The formulation also showed no toxicity to sperm cells. More robust studies on anti-fascioliasis activity of the drug on adult Fasciola spp. and in vivo and in vitro toxicity studies are recommended.


Subject(s)
Anti-Bacterial Agents/pharmacology , Curcumin/pharmacology , Fasciola/drug effects , Nanoparticles/chemistry , Nisin/pharmacology , Polyesters/chemistry , Reproduction/drug effects , Albendazole/pharmacology , Animals , Fascioliasis/drug therapy , Male , Mice , Particle Size
20.
Front Pharmacol ; 9: 562, 2018.
Article in English | MEDLINE | ID: mdl-29899700

ABSTRACT

Mainstay chemotherapy for malaria is often faced with the problem of instability and poor bio-distribution thus resulting in impaired pharmacokinetics. Nanomedicine has been acclaimed for its success in drug delivery and improved efficacy. The aim of the study was to assess the antiplasmodial efficacy and safety of curcumin-artesunate co-entrapped nanoparticle in mice model. Curcumin (C) and artesunate (A) were loaded in poly (d,l-lactic-co-glycolic acid) (PLGA) using solvent evaporation from oil-in-water single emulsion method. The nanoparticle formed was characterized for size, polydispersity index (PDI), zeta potential, and entrapment efficiency. The in vitro release of the drug was also determined. The in vivo antiplasmodial activity of CA-PLGA nanoparticle was tested on Plasmodium berghei at 5 and 10 mg/kg doses. The drug efficacy was determined at day 5 and 8. Hematological and hepatic toxicity assays were performed. The mean particle size of drug entrapped PLGA-nanoformulation was 251.1 ± 12.6 nm. The drug entrapment efficiency was 22.3 ± 0.4%. There was a sustained drug release from PLGA for 7 days. The percentage suppression of P. berghei was consistently significantly higher in CA-PLGA 5 mg/kg at day 5 (79.0%) and day 8 (72.5%) than the corresponding values 65.3 and 64.2% in the positive control group (p < 0.05). Aspartate aminotransferase (AST) was significantly lower in mice exposed to 5 mg/kg (42.0 ± 0.0 U/L) and 10 mg/kg (39.5 ± 3.5 U/L) nanotized CA-PLGA compared with the negative control (45.0 ± 4.0 U/L) (p < 0.05). Although alanine aminotransferase (ALT) was lower in nanotized CA-PLGA, the variation was not significant compared with the negative control (p > 0.05). No significant difference in the mean values of the different blood parameters in all exposed groups with the exception of platelets which were significantly higher in the positive control group. A simple method of dual entrapment of curcumin and artesunate with better antiplasmodial efficacy and low toxicity has been synthesized.

SELECTION OF CITATIONS
SEARCH DETAIL