Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
FASEB J ; 38(1): e23354, 2024 01.
Article in English | MEDLINE | ID: mdl-38085162

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy worldwide, and the development of novel therapeutic strategies for HNSCC requires a profound understanding of tumor cells and the tumor microenvironment (TME). Additionally, HNSCC has a poor prognosis, necessitating the use of genetic markers for predicting clinical outcomes in HNSCC. In this study, we performed single-cell sequencing analysis on tumor tissues from seven HNSCC patients, along with one adjacent normal tissue. Firstly, the analysis of epithelial cell clusters revealed two clusters of malignant epithelial cells, characterized by unique gene expression patterns and dysregulated signaling pathways compared to normal epithelial cells. Secondly, the examination of the TME unveiled extensive crosstalk between fibroblasts and malignant epithelial cells, potentially mediated through ligand-receptor interactions such as COL1A1-SDC1, COL1A1-CD44, and COL1A2-SDC1. Furthermore, transcriptional heterogeneity was observed in immune cells present in the TME, including macrophages and dendritic cells. Finally, leveraging the gene expression profiles of malignant epithelial cells, we developed a prognostic model comprising six genes, which we validated using two independent datasets. These findings shed light on the heterogeneity within HNSCC tumors and the intricate interplay between malignant cells and the TME. Importantly, the developed prognostic model demonstrates high efficacy in predicting the survival outcomes of HNSCC patients.


Subject(s)
Carcinoma , Head and Neck Neoplasms , Humans , Squamous Cell Carcinoma of Head and Neck/genetics , Prognosis , Head and Neck Neoplasms/genetics , Epithelial Cells , Tumor Microenvironment/genetics
2.
Small ; : e2312204, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38804909

ABSTRACT

LiNi0.8Mn0.1Co0.1O2 with high nickel content plays a critical role in enabling lithium metal batteries (LMBs) to achieve high specific energy density, making them a prominent choice for electric vehicles (EVs). However, ensuring the long-term cycling stability of the cathode electrolyte interfaces (CEIs), particularly at fast-charge conditions, remains an unsolved challenge. The decay mechanism associated with CEIs and electrolytes in LMB at high current densities is still not fully understood. To address this issue, in situ Fourier transform infrared (FTIR) is employed to observe the dynamic process of formation/disappearance/regeneration of CEIs during charge and discharge cycles. These dynamic processes further exacerbate the instability of CEIs as current density increases, leading to rupture and dissolution of CEIs and subsequent deterioration in battery performance because of continuous electrolyte reactions. Additionally, the dynamic changes occurring within individual components of CEIs at different cycling stages and various current densities are also discussed. The results demonstrate that excellent capacity retention at small current density is attributed to enrichment of inorganic compounds (Li2CO3, LiF, etc.) and rendering better stability and smaller expansion of CEIs. The key to achieving excellent electrochemical performance at high current densities lies on protecting CEIs, mainly inorganic components.

3.
Inorg Chem ; 63(20): 9026-9030, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38723292

ABSTRACT

Two metal borate-carbonates, M6[Cd2(CO3)2(B12O18)(OH)6] [M = K (1), Rb (2)], were obtained under surfactant-thermal conditions. In 1 and 2, each cyclic [(B12O18)(OH)6]6- anion captures two CdCO3 in two sides of the rings and finally forms the unusual (CdCO3)2@[(B12O18)(OH)6] cluster. Both 1 and 2 show moderate birefringence. Density functional theory calculations indicate that carbonate groups have a major contribution to electron-related optical transition.

4.
J Appl Microbiol ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39076016

ABSTRACT

AIMS: The survival of inoculated Escherichia coli on Fuji apples in Washington State orchards was studied, considering evaporative cooling, canopy location, year, and region, with the examination of sunlight exposure and inoculation levels in year 2. METHODS AND RESULTS: Rifampicin-resistant E. coli was applied to Fuji apples. Initial concentrations for the high-inoculation study were 7.4 ± 0.3 log10 CFU per apple and 3.4 ± 0.3 log10 CFU per apple for the low-inoculation study. Enumeration of E. coli was conducted at 0, 2, 10, 18, 34, 42, 58, 82, 106, and 154 h after inoculation. Results were analyzed using Tukey's honest significance difference test and a log-linear model. Log-linear, Weibull, and Biphasic models characterized E. coli die-off patterns for high and low inoculations. The application of evaporative overhead cooling water did not significantly influence E. coli survival on Fuji apples; inoculation level and sunlight exposure were significant factors in a log-linear model. E. coli decreased by 5.5 ± 1.3 and 3.3 ± 0.4 log10 CFU per apple for high and low inoculated apples, respectively, by 154 h. The Biphasic model best explained the die-off pattern for high and low-inoculated Fuji apples. CONCLUSIONS: Overhead evaporative cooling, a useful fruit quality practice, did not impact the survival of generic E. coli on Fuji apple surfaces. The significant impact of sunlight exposure and inoculation levels on die-off highlights the importance of ultraviolet radiation in risk reduction and the need for various inoculum concentrations in preharvest field studies.

5.
Arch Insect Biochem Physiol ; 116(3): e22136, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39016052

ABSTRACT

H2A.Z, the most evolutionarily conserved variant of histone H2A, plays a pivotal role in chromatin remodeling and contributes significantly to gene transcription and genome stability. However, the role of H2A.Z in the silkworm (Bombyx mori) remains unclear. In this study, we cloned the BmH2A.Z from B. mori. The open reading frame of BmH2A.Z is 390 bp, encoding 129 amino acids, with a confirmed molecular weight of 13.4 kDa through prokaryotic expression analysis. Sequence analysis revealed that BmH2A.Z has a conserved H2A.Z domain and is closely related to the systemic evolution of other known H2A.Zs. The expression profile of BmH2A.Z at various developmental stages of the B. mori exhibited the highest expression level in the 1st instar, followed by the grain stage and the 2nd instar, and the lowest expression level in the moth. The highest transcript level of BmH2A.Z was observed in the head, with relatively lower levels detected in the blood than in the other tissues under consideration. In addition, the upregulation of BmH2A.Z resulted in the amplified expression of B. mori nucleopolyhedrovirus (BmNPV) genes, thus facilitating the proliferation of BmNPV. This study establishes a foundation for investigating the role of BmH2A.Z in B. mori and its participation in virus-host interactions.


Subject(s)
Amino Acid Sequence , Bombyx , Cloning, Molecular , Histones , Insect Proteins , Animals , Bombyx/genetics , Bombyx/metabolism , Bombyx/virology , Histones/metabolism , Histones/genetics , Insect Proteins/genetics , Insect Proteins/metabolism , Larva/genetics , Larva/metabolism , Larva/growth & development , Phylogeny , Nucleopolyhedroviruses/genetics , Sequence Alignment
6.
Compr Rev Food Sci Food Saf ; 23(3): e13348, 2024 05.
Article in English | MEDLINE | ID: mdl-38720587

ABSTRACT

Listeria monocytogenes biofilms formed on food-contact surfaces within food-processing facilities pose a significant challenge, serving as persistent sources of cross-contamination. In this review, we examined documented cases of foodborne outbreaks and recalls linked to L. monocytogenes contamination on equipment surfaces and in the food production environment, provided an overview of the prevalence and persistence of L. monocytogenes in different food-processing facilities, and discussed environmental factors influencing its biofilm formation. We further delved into antimicrobial interventions, such as chemical sanitizers, thermal treatments, biological control, physical treatment, and other approaches for controlling L. monocytogenes biofilms on food-contact surfaces. This review provides valuable insights into the persistent challenge of L. monocytogenes biofilms in food processing, offering a foundation for future research and practical strategies to enhance food safety.


Subject(s)
Biofilms , Food Microbiology , Listeria monocytogenes , Listeria monocytogenes/physiology , Biofilms/growth & development , Food Handling/methods , Food Contamination/prevention & control , Equipment Contamination/prevention & control
7.
J Aquat Anim Health ; 36(2): 151-163, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38467576

ABSTRACT

OBJECTIVE: The waterless transport of live fish has changed the present situation of live-fish transport. However, the waterless transport environment may cause stress in fish. This research evaluated the effect of tea polyphenol-trehalose (TPT) coating solutions on Turbot Scophthalmus maximus during waterless transport. METHODS: After cold acclimation, Turbot were coated and subsequently transported in a waterless environment for 18 h. Physiological and biochemical parameters were measured, including lysozyme (LZM) and immunoglobulin M (IgM) activities, serum creatinine (Cr) and uric acid (UA) concentrations, and nutritional flavor. RESULT: The results showed that the nonspecific immunity of Turbot was inhibited during the waterless transport; the LZM activity first increased and then decreased, and the serum Cr and UA concentrations significantly increased. In addition, the waterless transport promoted the breakdown of Turbot flesh proteins, leading to changes in nucleotides and free amino acids (FAAs). After waterless transport, the LZM and IgM activities in the TPT-treated Turbot were higher than those in the control group (CK), and the changes in FAA content and nucleotides were smaller than those observed in the CK group. CONCLUSION: This study shows that the use of TPT coating solution can reduce the impact of waterless transportation stress on the immune and metabolic functions of Turbot and can maintain the meat quality and flavor of Turbot.


Subject(s)
Flatfishes , Polyphenols , Stress, Physiological , Animals , Polyphenols/pharmacology , Polyphenols/chemistry , Stress, Physiological/drug effects , Transportation , Aquaculture/methods
8.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1882-1887, 2024 Apr.
Article in Zh | MEDLINE | ID: mdl-38812200

ABSTRACT

Chemical constituents from the ethanol extract of Picrorhiza scrophulariiflora were isolated and purified by column chromatography. Their structures were identified by HR-MS, 1D and 2D-NMR, and their cytotoxicity was assessed by CCK-8 assay. Four compounds were isolated and identified as follows: 2ß-D-glucosyloxy-3ß,16α,20ß-trihydroxy-9-methyl-19-norlanosterol-5,25-diene-22-one(1), 2ß-D-glucosyloxy-3ß,16α,20ß-trihydroxy-9-methyl-19-norlanosta-5,24-diene-22-one(2), 25-acetoxy-2ß-glucosyloxy-3ß,16α,20ß-trihydroxy-9-methyl-19-norlanosta-5-ene-22-one(3) and 25-acetoxy-2ß-glucosyloxy-3ß,16α,20ß-trihydroxy-9-methyl-19-norlanosta-5,23-(E)-diene-22-one(4). Compound 1 represents a new cucurbitane glycoside. The half inhibitory concentrations of the 4 compounds exceeded 100 µmol·L~(-1) against four tumor cell lines, indicating no significant cytotoxicity.


Subject(s)
Glycosides , Picrorhiza , Glycosides/chemistry , Glycosides/isolation & purification , Humans , Cell Line, Tumor , Picrorhiza/chemistry , Molecular Structure , Magnetic Resonance Spectroscopy , Drugs, Chinese Herbal/chemistry , Triterpenes
9.
Vet Res Commun ; 48(3): 1521-1531, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38374273

ABSTRACT

This study evaluated the influence of hypoxia and ammonia-N co-exposure on oxygen consumption, glucose metabolism and amino acid metabolism in hybrid grouper. The results showed that elevated expression of GLUT1, MCT1, PFK, HK and LDH were induced by co-exposure to hypoxia and ammonia. In addition, co-exposure to hypoxia and ammonia reduced the tolerance of hybrid grouper to ammonia-N. Furthermore, ammonia-N exposure caused an increase in oxygen consumption in hybrid grouper. After ammonia-N exposure for 96 h, 10 amino acids contents and activities of AST and ALT elevated in hybrid grouper muscle. The study revealed that combined exposure to hypoxia and ammonia-N significantly increased glucose metabolism, oxygen consumption and amino acid metabolism in hybrid grouper, and presented significant synergistic effects.


Subject(s)
Amino Acids , Ammonia , Bass , Glucose , Hypoxia , Oxygen Consumption , Animals , Ammonia/metabolism , Amino Acids/metabolism , Glucose/metabolism , Bass/metabolism , Oxygen Consumption/drug effects , Hypoxia/veterinary , Hypoxia/metabolism , Male , Female
10.
Food Chem ; 460(Pt 1): 140555, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39047490

ABSTRACT

To further reveal the inhibition mechanism of carbon dioxide (CO2) on Shewanella putrefaciens (S. putrefaciens), influence on metabolic function was studied by biochemical and metabolomics analysis. Accordingly, reduction of intracellular pH (pHi), depolarization of cell membrane and accumulation of reactive oxygen species (ROS) indicated that CO2 changed the membrane permeability of S. putrefaciens. Besides, adenosine triphosphate (ATP), ATPase, nicotinamide adenine dinucleotide (NAD+/NADH) and ratios of NADH/NAD+ were detected, indicating a role of CO2 in repressing respiratory pathway and electron transport. According to metabolomics results, CO2 induced differential expressions of metabolites, disordered respiratory chain and weakened energy metabolism of S. putrefaciens. Inhibition of respiratory rate-limiting enzymes also revealed that electron transfer of respiratory chain was blocked, cell respiration was weakened, and thus energy supply was insufficient under CO2 stress. These results revealed that CO2 caused disruption of metabolic function, which might be the main cause of growth inhibition for S. putrefaciens.

11.
ISA Trans ; 147: 163-175, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38368145

ABSTRACT

Intermittent control stands as a valuable strategy for resource conservation and cost reduction across diverse systems. Nonetheless, prevailing research is intractable to address the challenges posed by robust optimal intermittent control of nonlinear input-affine systems with unmatched uncertainties. This paper aims to fill this gap. Initially, we introduce an enhanced finite-time intermittent control approach to ensure stability within nonlinear dynamic systems harboring bounded errors. A neural networks (NNs) state observer is constructed to estimate system information. Subsequently, an optimal intermittent controller that operates within a finite time span, guaranteeing system stability by employing the Hamilton-Jacobi-Bellman (HJB) methodology. Furthermore, we devise an output information-based event-triggered intermittent (ETI) approach rooted in the robust adaptive dynamic programming (ADP) algorithm, furnishing an optimal intermittent control law. In this process, a critic NNs is introduced to estimate the cost function and optimal intermittent controller. Simulation results show that our proposed method is superior to existing intermittent control strategies.

12.
J Food Prot ; 87(2): 100213, 2024 02.
Article in English | MEDLINE | ID: mdl-38176613

ABSTRACT

Food-contact surfaces showing signs of wear pose a substantial risk of Listeria monocytogenes contamination and may serve as persistent sources of cross-contamination in fresh produce packinghouses. This study offers a comprehensive exploration into the influence of surface defects on the efficacies of commonly used sanitizers against L. monocytogenes biofilms on major food-contact surfaces. The 7-day-old L. monocytogenes biofilms were cultivated on food-contact surfaces, including stainless steel, polyvinyl chloride, polyester, low-density polyethylene, and rubber, with and without defects and organic matter. Biofilms on those surfaces were subjected to treatments of 200 ppm chlorine, 400 ppm quaternary ammonium compound (QAC), or 160 ppm peroxyacetic acid (PAA). Results showed that surface defects significantly (P < 0.05) increased the population of L. monocytogenes in biofilms on non-stainless steel surfaces and compromised the efficacies of sanitizers against L. monocytogenes biofilms across various surface types. A 5-min treatment of 200 ppm chlorine caused 1.84-3.39 log10 CFU/coupon reductions of L. monocytogenes on worn surfaces, compared to 2.79-3.93 log10 CFU/coupon reduction observed on new surfaces. Similarly, a 5-min treatment with 400 ppm QAC caused 2.05-2.88 log10 CFU/coupon reductions on worn surfaces, compared to 2.51-3.66 log10 CFU/coupon reductions on new surfaces. Interestingly, PAA sanitization (160 ppm, 1 min) exhibited less susceptibility to surface defects, leading to 3.41-4.35 log10 CFU/coupon reductions on worn surfaces, in contrast to 3.68-4.64 log10 CFU/coupon reductions on new surfaces. Furthermore, apple juice soiling diminished the efficacy of sanitizers against L. monocytogenes biofilms on worn surfaces (P < 0.05). These findings underscore the critical importance of diligent equipment maintenance and thorough cleaning processes to effectively eliminate L. monocytogenes contamination on food-contact surfaces.


Subject(s)
Listeria monocytogenes , Trees , Food Contamination/prevention & control , Food Contamination/analysis , Fruit/chemistry , Chlorine , Colony Count, Microbial , Biofilms , Peracetic Acid/pharmacology , Food Microbiology , Stainless Steel/analysis
13.
Food Chem ; 445: 138701, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38350203

ABSTRACT

Multi-frequency ultrasound-assisted thawing (MUAT) has been proven to be an effective method of maintaining the quality of frozen food. The effects of magnetic nano-particles (MNPs) combined with MUAT and multi-frequency ultrasound-assisted sequential thawing (MUST) on water retention, myofibrillar protein (MP) structural characteristics, function characteristics, and MP aggregation and degradation of salmon (Salmo salar) were studied. The results showed that MNPs combined with multi-frequency ultrasound-assisted sequential thawing (MNPs-MUST) significantly improved the thawing rate and the retention of water and had better emulsifying and foaming properties. MNPs-MUST treatment reduced the oxidation and degradation of MP, increased sulfhydryl content, and protected the structure of MP. Confocal laser scanning microscopy (CLSM) indicated that the MP transformed into a filamentous polymer into more evenly distributed units, resulting in higher protein solubility, lower surface hydrophobicity, and lower protein turbidity. Therefore, MNPs combined with MUST has a potential application value in the thawing research of frozen salmon.


Subject(s)
Salmo salar , Animals , Proteins , Seafood , Water/chemistry , Magnetic Phenomena
14.
Ultrason Sonochem ; 107: 106945, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38857567

ABSTRACT

In this study, large yellow croaker (Larimichthys crocea) was frozen using multi-frequency ultrasound-assisted freezing (MUIF) with different powers (160 W, 175 W, and 190 W, respectively) and stored at -18 °C for ten months. The effect of different ultrasound powers on the myofibrillar protein (MP) structures and lipid oxidation of large yellow croaker was investigated. The results showed that MUIF significantly slowed down the oxidation of MP by inhibiting carbonyl formation and maintaining high sulfhydryl contents. These treatments also held a high activity of Ca2+-ATPase in the MP. MUIF maintained a higher ratio of α-helix to ß-sheet during frozen storage, thereby protecting the secondary structure of the tissue and stabilizing the tertiary structure. In addition, MUIF inhibited the production of thiobarbituric acid reactive substances value and the loss of unsaturated fatty acid content, indicating that MUIF could better inhibit lipid oxidation of large yellow croaker during long-time frozen storage.


Subject(s)
Freezing , Oxidation-Reduction , Perciformes , Animals , Time Factors , Food Storage , Muscle Proteins/chemistry , Muscle Proteins/metabolism , Ultrasonic Waves , Calcium-Transporting ATPases/metabolism
15.
Food Chem X ; 23: 101559, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39036484

ABSTRACT

This study investigated the impact of multi-frequency ultrasound-assisted (20/28/40 kHz) thawing (MUAT) at different power levels (195, 220, 245, and 270 W, respectively) on the flesh quality and protein stability of large yellow croakers. Compared with flowing water thawing (FWT) and the other MUAT sample, flesh quality results indicated that the MUAT-220 W significantly reduced (p < 0.05) thawing loss, total volatile base nitrogen (TVB-N), total free amino acids (FAAs) and thiobarbituric acid reactive substances (TBARS). Low-field nuclear magnetic resonance (LF-NMR) spectroscopy indicated that MUAT-220 W samples had higher immobilized water content and lower free water content. In addition, the MUAT-220 W sample contained higher sulfhydryl and lower carbonyl contents compared to the FWT sample. Secondary and tertiary structural results of myofibrillar proteins (MPs) showed that MUAT-220 W significantly reduced thawing damage to MPs. Therefore, MUAT-220 W improved the quality and protein stability of the large yellow croaker during the defrosting process.

16.
Clin Exp Optom ; : 1-10, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811366

ABSTRACT

CLINICAL RELEVANCE: The pathogenesis of chronic dacryocystitis (CDC) is associated with a variety of bacteria. Investigating microflora has the potential to provide a theoretical basis for preventing and treating CDC. BACKGROUND: 16S rRNA sequencing is a sequence-based bacterial analysis. The application of 16S rRNA sequencing in CDC is rarely reported. METHODS: A case-control study of infected and healthy eyes diagnosed as CDC patients was conducted. Seventy-eight patients were divided into A (conjunctival sac secretions from healthy eyes), B (conjunctival sac secretions from affected eyes), and C (lacrimal sac secretions from affected eyes) groups. The flora of samples was analysed with 16S rRNA sequencing, and the data was analysed using QIIME, R, LefSE and other software. The potential functions were analysed by PICRUSt. RESULTS: A total of 1440 operational taxonomic units (OTUs) were obtained, 139 specific to group A, 220 specific to group B, and 239 specific to group C. There was no significant difference in α index between the three groups. The beta diversity and grouping analysis data indicated that the three groups of flora were similar in species richness and diversity, but there were some differences in composition. In group A, the abundance of Pseudomonadaceae, Chlorobacteria, Moraceae, Staphylococcaceae, Bacillariophyceae, Immunobacterium spp. and Bacillus spp. was higher; in group B, the abundance of Burkholderiaceae, Sphingomonas, Rhizobia, Stalked Bacteria, Sphingomonadaceae, Enterobacteriaceae, Shortwaveomonas spp. was higher; in group C, the abundance of Streptococcus digestiveis, Propionibacterium, Enterobacteriaceae, Anaerobacteriaceae, Propionibacteriaceae, Bacillus spp. Neisseria spp. and Shortactomonas spp. was higher. Six pathways were identified to assess the potential microbial functions. CONCLUSION: Alterations in the microbiota of the conjunctiva and lacrimal sac are associated with the pathogenesis of CDC, which may provide certain guidance for antibiotic treatment of CDC.

17.
Int J Food Microbiol ; 414: 110613, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38341905

ABSTRACT

Sanitizers are widely incorporated in commercial apple dump tank systems to mitigate the cross-contamination of foodborne pathogens. This study validated the suitability of Enterococcus faecium NRRL B-2354 as a surrogate for Listeria monocytogenes during sanitizer interventions in dump tank water systems. E. faecium NRRL B-2354 inoculated on apples exhibited statistically equivalent susceptibility to L. monocytogenes when exposed to chlorine-based sanitizers (25-100 ppm free chlorine (FC)) and peroxyacetic acid (PAA, 20-80 ppm) in simulated dump tank water (SDTW) with 1000 ppm chemical oxygen demand (COD), resulting in 0.2-0.9 and 1.1-1.7 log CFU/apple reduction, respectively. Increasing the contact time did not affect sanitizer efficacies against E. faecium NRRL B-2354 and L. monocytogenes on apples. Chlorine and PAA interventions demonstrated statistically similar efficacies against both bacteria inoculated in SDTW. Chlorine at 25 and 100 ppm FC for 0.5-5 min contact yielded ~37.68-78.25 % and > 99.85 % inactivation, respectively, in water with 1000-4000 ppm COD, while ~51.55-99.86 % and > 99.97 % inactivation was observed for PAA at 20 and 80 ppm, respectively. No statistically significant difference was observed between the transference of E. faecium NRRL B-2354 and L. monocytogenes from inoculated apples to uninoculated apples and water, and from water to uninoculated apples during chlorine- or PAA-treated SDTW exposure. The data suggest E. faecium NRRL B-2354 is a viable surrogate for L. monocytogenes in dump tank washing systems, which could be used to predict the anti-Listeria efficacy of chlorine and PAA interventions during commercial apple processing. Further investigations are recommended to assess the suitability of E. faecium NRRL B-2354 as a surrogate for L. monocytogenes, when using different sanitizers and different types of produce to ensure reliable and comprehensive results.


Subject(s)
Disinfectants , Enterococcus faecium , Listeria monocytogenes , Malus , Peracetic Acid/pharmacology , Malus/microbiology , Chlorine/pharmacology , Water , Food Microbiology , Colony Count, Microbial , Disinfectants/pharmacology
18.
Adv Nutr ; 15(4): 100200, 2024 04.
Article in English | MEDLINE | ID: mdl-38438107

ABSTRACT

The epithelium lining the intestinal tract serves a multifaceted role. It plays a crucial role in nutrient absorption and immune regulation and also acts as a protective barrier, separating underlying tissues from the gut lumen content. Disruptions in the delicate balance of the gut epithelium trigger inflammatory responses, aggravate conditions such as inflammatory bowel disease, and potentially lead to more severe complications such as colorectal cancer. Maintaining intestinal epithelial homeostasis is vital for overall health, and there is growing interest in identifying nutraceuticals that can strengthen the intestinal epithelium. α-Ketoglutarate, a metabolite of the tricarboxylic acid cycle, displays a variety of bioactive effects, including functioning as an antioxidant, a necessary cofactor for epigenetic modification, and exerting anti-inflammatory effects. This article presents a comprehensive overview of studies investigating the potential of α-ketoglutarate supplementation in preventing dysfunction of the intestinal epithelium.


Subject(s)
Inflammatory Bowel Diseases , Ketoglutaric Acids , Humans , Ketoglutaric Acids/pharmacology , Ketoglutaric Acids/therapeutic use , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/prevention & control , Intestinal Mucosa
19.
RSC Adv ; 14(19): 13592-13604, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38665492

ABSTRACT

With the ever-growing widespread use of lithium-ion batteries in heavy machinery and daily life, the demand for improved longevity and high-rate performance is escalating. While Li4Ti5O12 (LTO) batteries excel in safety and cycling performance, their full potential for long-term, high-rate cycling still yet remains unrealized. In this paper, we present an analysis of a pouch battery with an LTO anode system that was cycled for an extended period at high rates. We compared the performance changes and internal component properties between fresh and cycled batteries. Our results reveal that, after tens of thousands of high-rate cycles, microcracks emerged on the cathode electrode material (NCM622) particles of the battery, whereas the LTO remained largely unchanged. Additionally, we observed significant electrolyte reduction, characterized the separator surface, and measured its properties. Our findings indicate that the electrolyte reactions are the primary cause of battery failure, leading to capacity fading and impedance increase. This research provides valuable insights into the failure mechanisms of lithium-ion batteries at high rates, thus contributing to the improvement of high-rate lithium-ion batteries.

20.
Eur J Pharm Biopharm ; 201: 114367, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38876360

ABSTRACT

Despite the great potential of starving therapy caused by nanoreactor based on glucose oxidase (GOX) in tumor therapy, efficiency and uncontrolled reaction rates in vivo lead to inevitable toxicity to normal tissues, which seriously hindering their clinical conversion. Herein, a cascade nanoreactor (GOX/Mn/MPDA) was constructed by coating mesoporous polydopamine nanoparticles (MPDA) with MnO2 shell and then depositing GOX into honeycomb-shaped manganese oxide nanostructures to achieve a combination of ferroptosis, photothermal therapy and starving therapy. Upon uptake of nanodrugs to cancer cells, the MnO2 shell would deplete glutathione (GSH) and produce Mn2+, while a large amount of H2O2 generated from the catalytic oxidation of glucose by GOX would accelerate the Fenton-like reaction mediated by Mn2+, producing high toxic •OH. More importantly, the cascade reaction between GOX and MnO2 would be further strengthened by localized hyperthermia caused by irradiated by near-infrared laser (NIR), inducing significant anti-tumor effects in vitro and in vivo. Regarding the effectiveness of tumor treatment in vivo, the tumor inhibition rate achieved an impressive 64.33%. This study provided a new strategy for anti-tumor therapeutic by designing a photothermal-enhanced cascade catalytic nanoreactor.


Subject(s)
Ferroptosis , Glucose Oxidase , Indoles , Manganese Compounds , Nanoparticles , Oxides , Photothermal Therapy , Polymers , Photothermal Therapy/methods , Manganese Compounds/chemistry , Animals , Humans , Ferroptosis/drug effects , Ferroptosis/physiology , Indoles/chemistry , Polymers/chemistry , Glucose Oxidase/metabolism , Glucose Oxidase/administration & dosage , Nanoparticles/chemistry , Mice , Oxides/chemistry , Cell Line, Tumor , Hydrogen Peroxide/metabolism , Mice, Inbred BALB C , Combined Modality Therapy/methods , Female , Neoplasms/therapy , Neoplasms/drug therapy , Mice, Nude
SELECTION OF CITATIONS
SEARCH DETAIL