Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Main subject
Language
Affiliation country
Publication year range
1.
iScience ; 27(4): 109509, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38591003

ABSTRACT

Many diseases emerge from dysregulated cellular signaling, and drugs are often designed to target specific signaling proteins. Off-target effects are, however, common and may ultimately result in failed clinical trials. Here we develop a computer model of the cell's transcriptional response to drugs for improved understanding of their mechanisms of action. The model is based on ensembles of artificial neural networks and simultaneously infers drug-target interactions and their downstream effects on intracellular signaling. With this, it predicts transcription factors' activities, while recovering known drug-target interactions and inferring many new ones, which we validate with an independent dataset. As a case study, we analyze the effects of the drug Lestaurtinib on downstream signaling. Alongside its intended target, FLT3, the model predicts an inhibition of CDK2 that enhances the downregulation of the cell cycle-critical transcription factor FOXM1. Our approach can therefore enhance our understanding of drug signaling for therapeutic design.

2.
NPJ Syst Biol Appl ; 10(1): 13, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38287079

ABSTRACT

The development of therapeutics and vaccines for human diseases requires a systematic understanding of human biology. Although animal and in vitro culture models can elucidate some disease mechanisms, they typically fail to adequately recapitulate human biology as evidenced by the predominant likelihood of clinical trial failure. To address this problem, we developed AutoTransOP, a neural network autoencoder framework, to map omics profiles from designated species or cellular contexts into a global latent space, from which germane information for different contexts can be identified without the typically imposed requirement of matched orthologues. This approach was found in general to perform at least as well as current alternative methods in identifying animal/culture-specific molecular features predictive of other contexts-most importantly without requiring homology matching. For an especially challenging test case, we successfully applied our framework to a set of inter-species vaccine serology studies, where 1-to-1 mapping between human and non-human primate features does not exist.


Subject(s)
Deep Learning , Animals , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL