Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Angew Chem Int Ed Engl ; 62(21): e202301958, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36930826

ABSTRACT

A facile strategy was developed here to improve the film quality of nickel-based hole transporting layer (HTL) for efficient organic solar cell (OSC) applications. To prevent the agglomeration of Ni(NO3 )2 during film deposition, acetylacetonate was added into the precursor solution, which led to the formation of an amorphous and glass-like state. After thermal annealing (TA) treatment, the film-forming ability could be further improved. The additional UV-ozone (UVO) treatment continuously improved the film quality and increased the work function and conductivity of such HTL. The resulting TA & UVO modified Ni(NO3 )2 & Hacac HTL produced highly efficient organic solar cells with exciting power conversion efficiencies of 18.42 % and 19.02 % for PM6 : BTP-eC9 and D18 : BTP-Th devices, respectively, much higher than the control PEDOT : PSS devices.

2.
Angew Chem Int Ed Engl ; 60(41): 22554-22561, 2021 Oct 04.
Article in English | MEDLINE | ID: mdl-34418267

ABSTRACT

A robust hole transporting layer (HTL), using the cost-effective Cobalt(II) acetate tetrahydrate (Co(OAc)2 ⋅4 H2 O) as the precursor, was simply processed from its aqueous solution followed by thermal annealing (TA) and UV-ozone (UVO) treatments. The TA treatment induced the loss of crystal water followed by oxidization of Co(OAc)2 ⋅4 H2 O precursor, which increased the work function. However, TA treatment differently realize a high work function and ideal morphology for charge extraction. The resulting problems could be circumvented easily by additional UVO treatment, which also enhanced the conductivity and lowered the resistance for charge transport. The optimal condition was found to be a low temperature TA (150 °C) followed by simple UVO, where the crystal water in Co(OAc)2 ⋅4 H2 O was removed fully and the HTL surface was anchored by substantial hydroxy groups. Using PM6 as the polymer donor and L8-BO as the electron acceptor, a record high PCE of 18.77 % of the binary blend OSCs was achieved, higher than the common PEDOT:PSS-based solar cell devices (18.02 %).

3.
Adv Mater ; 35(12): e2208997, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36650665

ABSTRACT

Constructing tandem and multi-blend organic solar cells (OSCs) is an effective way to overcome the absorption limitations of conventional single-junction devices. However, these methods inevitably require tedious multilayer deposition or complicated morphology-optimization procedures. Herein, sequential deposition is utilized as an effective and simple method to fabricate multicomponent OSCs with a double-bulk heterojunction (BHJ) structure of the active layer to further improve photovoltaic performance. Two efficient donor-acceptor pairs, D18-Cl:BTP-eC9 and PM6:L8-BO, are sequentially deposited to form the D18-Cl:BTP-eC9/PM6:L8-BO double-BHJ active layer. In these double-BHJ OSCs, light absorption is significantly improved, and optimal morphology is also retained without requiring a more complicated morphology optimization involved in quaternary blends. Compared to the quaternary blend devices, energy loss (Eloss ) is also reduced by rationally matching each donor with an appropriate acceptor. Consequently, the power conversion efficiency (PCE) is improved from 18.25% for D18-Cl:BTP-eC9 and 18.69% for PM6:L8-BO based binary blend OSCs to 19.61% for the double-BHJ OSCs. In contrast, a D18-Cl:PM6:L8-BO:BTP-eC9 quaternary blend of OSCs exhibited a dramatically reduced PCE of 15.83%. These results demonstrate that a double-BHJ strategy, with a relatively simple processing procedure, can potentially enhance the device performance of OSCs and lead to more widespread use.

4.
Adv Mater ; 34(13): e2109516, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35080061

ABSTRACT

Improving charge extraction and suppressing charge recombination are critically important to minimize the loss of absorbed photons and improve the device performance of polymer solar cells (PSCs). In this work, highly efficient PSCs are demonstrated by progressively improving the charge extraction and suppressing the charge recombination through the combination of side-chain engineering of new nonfullerene acceptors (NFAs), adopting ternary blends, and introducing volatilizable solid additives. The 2D side chains on BTP-Th induce a certain steric hindrance for molecular packing and phase separation, which is mitigated by fluorination of side chains on BTP-FTh. Moreover, by introducing two highly crystalline molecules as the second acceptor and volatilizable solid additive, respectively, into the BTP-FTh-based host blend, the molecular crystallinity is significantly improved and the blend morphology is finely optimized. As expected, enhanced charge extraction and suppressed charge recombination are progressively realized, contributing to the largely improved fill factor (FF) of the resultant devices. Accompanied by the enhanced open-circuit voltage (Voc ) and short-circuit current density (Jsc ), a record high power conversion efficiency (PCE) of 19.05% is realized finally.

5.
Adv Sci (Weinh) ; 9(23): e2202022, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35748169

ABSTRACT

Despite remarkable breakthrough made by virtue of "polymerized small-molecule acceptor (PSMA)" strategy recently, the limited selection pool of high-performance polymer acceptors and long-standing challenge in morphology control impede their further developments. Herein, three PSMAs of PYDT-2F, PYDT-3F, and PYDT-4F are developed by introducing different fluorine atoms on the end groups and/or bithiophene spacers to fine-tune their optoelectronic properties for high-performance PSMAs. The PSMAs exhibit narrow bandgap and energy levels that match well with PM6 donor. The fluorination promotes the crystallization of the polymer chain for enhanced electron mobility, which is further improved by following n-doping with benzyl viologen additive. Moreover, the miscibility is also improved by introducing more fluorine atoms, which promotes the intermixing with PM6 donor. Among them, PYDT-3F exhibits well-balanced high crystallinity and miscibility with PM6 donor; thus, the layer-by-layer processed PM6/PYDT-3F film obtains an optimal nanofibril morphology with submicron length and ≈23 nm width of fibrils, facilitating the charge separation and transport. The resulting PM6/PYDT-3F devices realizes a record high power conversion efficiency (PCE) of 17.41% and fill factor of 77.01%, higher than the PM6/PYDT-2F (PCE = 16.25%) and PM6/PYDT-4F (PCE = 16.77%) devices.

6.
ACS Appl Mater Interfaces ; 12(45): 50541-50549, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33136385

ABSTRACT

Effects of chlorination on photovoltaic performance of organic solar cells are yet largely unclear though it is emerging as a special yet effective strategy to design highly efficient non-fullerene acceptors (NFAs). Herein, a bi-chlorine-substituted NFA with regioregularity, namely, bichlorinated dithienothiophen[3.2-b]- pyrrolobenzothiadiazole (BTP-2Cl-δ), is synthesized and compared to the non-chlorinated BTP and tetra-chlorine-substituted BTP-4Cl to study the effects of Cl number on the photovoltaic performance. From BTP to BTP-2Cl-δ and BTP-4Cl, the three molecules show gradually red-shifted absorption peaks, narrowed band gaps, and lowered highest occupied molecular orbitals (HOMOs) and lowest unoccupied molecular orbitals (LUMOs). Polymer solar cells are fabricated using PM6 as the donor and the three small molecules as the acceptors. From BTP to BTP-2Cl-δ, efficiencies (8.8 vs 15.4%) are significantly enhanced due to the better film morphology and strong crystallization of the BTP-2Cl-δ-based device, giving rise to boosted fill factors (FFs) and short-circuit current densities (JSC's). From BTP-2Cl-δ to BTP-4Cl, although JSC's (24.3 vs 25.0 mA cm-2) are slightly elevated due to the higher crystallinity of BTP-4Cl, leading to improved exciton dissociation and collection efficiencies, FFs (71.1 vs 68.0%) are obviously decreased owing to the unfavorable film morphology, unbalanced hole-electron mobilities, and higher charge recombination in BTP-4Cl-based devices. As such, the efficiency of the BTP-2Cl-δ-based device (15.4%) is superior to that of the BTP-4Cl-based device (14.5%). This work elucidates a design strategy by cutting the numbers of substituent chlorine to obtain desired energy levels and crystallization with optimal performance.

7.
ACS Appl Mater Interfaces ; 12(2): 2733-2742, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31856566

ABSTRACT

Halogenation, for example, fluorination and chlorination, is an effective strategy to regulate the performance of organic photovoltaic materials. Although fluorination has been widely applied to polymer acceptors, systematic studies on the comparison of nonhalogenated, fluorinated, and chlorinated polymer acceptors have been a blank to now. Herein, a B ← N embedded electron-deficient unit (A), namely, BNIDT was copolymerized with three electron-rich units (D), that is, benzodithiophene (BDT), fluorinated BDT, and chlorinated BDT to obtain three D-A polymers of BN-BDT, BN-BDT-F, and BN-BDT-Cl, respectively. The three polymers exhibit similar LUMOs of ca. -3.77 eV, whereas the HOMOs are remarkably decreased from BN-BDT (-5.46 eV) to BN-BDT-F (-5.71 eV) and further slightly lowered to BN-BDT-Cl (-5.74 eV). All-polymer solar cells (all-PSCs) were fabricated using PBDB-T as the donor and the three B ← N-based polymers as the acceptors. The efficiencies of all-PSCs were significantly promoted from nonhalogenated BN-BDT (1.60%) to fluorinated BN-BDT-F (3.71%) and further elevated to chlorinated BN-BDT-Cl (4.23%). Device characterizations revealed that halogenation on the polymer acceptors leads to enhanced hole-transfer driving forces and better donor/acceptor miscibility, for example, smaller domain sizes and root-mean-square roughness (rms) values, which further gives rise to higher and more balanced hole/electron mobilities and efficient physical processes, for example, efficient exciton dissociation and collection and weaker recombination losses in halogenated devices. This work demonstrates that the photovoltaic performance of nonhalogenated polymer acceptors can be remarkably boosted by fluorination and further enhanced by chlorination. This is the first systematic study on the halogenated polymer acceptors by comprehensively comparing nonhalogenated, fluorinated, and chlorinated ones.

8.
Polymers (Basel) ; 11(10)2019 Oct 09.
Article in English | MEDLINE | ID: mdl-31600910

ABSTRACT

The B←N is isoelectronic to the C-C, with the former having stronger dipole moment and higher electron affinity. Replacing the C-C bonds in conjugated polymers with B←N bonds is an effective pathway toward novel polymers with strong electron affinity and adjustable optoelectronic properties. In this work, we synthesize a conjugated copolymer, namely, BNIDT-DPP, based on a B←N embedded unit, BNIDT, and a typical electron-deficient unit, diketopyrrolopyrrole (DPP). For comparison, the C-C counterpart, i.e., IDT-DPP, is also synthesized. In contrast to IDT-DPP, the B←N embedded polymer BNIDT-DPP shows an extended absorption edge (836 versus 978 nm), narrowed optical bandgap (1.48 versus 1.27 eV), and higher electron affinity (3.54 versus 3.74 eV). The Gaussian simulations reveal that the B←N embedded polymer BNIDT-DPP is more electron-deficient in contrast to IDT-DPP, supporting the decreased bandgap and energy levels of BNIDT-DPP. Organic thin-film transistor (OTFT) tests indicate a well-defined p-type characteristic for both IDT-DPP and BNIDT-DPP. The hole mobilities of IDT-DPP and BNIDT-DPP tested by OTFTs are 0.059 and 0.035 cm2/V·s, respectively. The preliminary fabrication of all-polymer solar cells based on BNIDT-DPP and PBDB-T affords a PCE of 0.12%. This work develops a novel B←N embedded polymer with strong electron affinity and extended absorption, which is potentially useful for electronic device application.

9.
Adv Mater ; 31(44): e1904585, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31532877

ABSTRACT

In the field of all-polymer solar cells (all-PSCs), all efficient polymer acceptors that exhibit efficiencies beyond 8% are based on either imide or dicyanoethylene. To boost the development of this promising solar cell type, creating novel electron-deficient units to build high-performance polymer acceptors is critical. A novel electron-deficient unit containing B←N bonds, namely, BNIDT, is synthesized. Systematic investigation of BNIDT reveals desirable properties including good coplanarity, favorable single-crystal structure, narrowed bandgap and downshifted energy levels, and extended absorption profiles. By copolymerizing BNIDT with thiophene and 3,4-difluorothiophene, two novel conjugated polymers named BN-T and BN-2fT are developed, respectively. It is shown that these polymers possess wide absorption spectra covering 350-800 nm, low-lying energy levels, and ambipolar film-transistor characteristics. Using PBDB-T as the donor and BN-2fT as the acceptor, all-PSCs afford an encouraging efficiency of 8.78%, which is the highest for all-PSCs excluding the devices based on imide and dicyanoethylene-type acceptors. Considering that the structure of BNIDT is totally different from these classical units, this work opens up a new class of electron-deficient unit for constructing efficient polymer acceptors that can realize efficiencies beyond 8% for the first time.

SELECTION OF CITATIONS
SEARCH DETAIL