Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Plant Cell Environ ; 47(6): 2310-2321, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38494960

ABSTRACT

Grain protein content (GPC) is a crucial quality trait in bread wheat, which is influenced by the key transcription factor TaNAM. However, the regulatory mechanisms of TaNAM have remained largely elusive. In this study, a new role of TaNAM was unveiled in regulating nitrogen remobilisation which impacts GPC. The TaNAM knockout mutants generated by clustered regularly interspaced short palindromic repeats/Cas9 exhibited significantly delayed senescence and lower GPC, while overexpression of TaNAM-6A resulted in premature senility and much higher GPC. Further analysis revealed that TaNAM directly activates the genes TaNRT1.1 and TaNPF5.5s, which are involved in nitrogen remobilisation. This activity aids in the transfer of nitrogen from leaves to grains for protein synthesis. In addition, an elite allele of TaNAM-6A, associated with high GPC, was identified as a candidate gene for breeding high-quality wheat. Overall, our work not only elucidates the potential mechanism of TaNAM-6A affecting bread wheat GPC, but also highlights the significance of nitrogen remobilisation from senescent leaves to grains for protein accumulation. Moreover, our research provides a new target and approach for improving the quality traits of wheat, particularly the GPC.


Subject(s)
Nitrogen , Triticum , Triticum/genetics , Triticum/metabolism , Nitrogen/metabolism , Grain Proteins/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Gene Expression Regulation, Plant , Transcription Factors/metabolism , Transcription Factors/genetics , Edible Grain/metabolism , Edible Grain/genetics , Plant Leaves/metabolism , Plant Leaves/genetics
2.
Front Plant Sci ; 15: 1449826, 2024.
Article in English | MEDLINE | ID: mdl-39109063

ABSTRACT

Grain albumin is highly nutritious and closely related to the processing quality of wheat. However, few studies have explored the grain albumin content (GAC) in wheat. This study aims to uncover quantitative trait loci (QTLs) linked to wheat GAC by analyzing a doubled haploid (DH) population derived from common wheat cultivars ShanNong23 and ZhouMai17. We detected six QTLs controlling GAC on chromosomes 1B, 5A, and 6D, with individual QTL explaining 5.78% to 22.29% of the GAC variation. The effect of QGac.cau-1B.1 on GAC is attributed to the presence of the 1BL/1RS translocation, indicating that the 1BL/1RS translocation increase of GAC compared with the non-1BL/1RS translocation lines. The higher GAC observed in 1BL/1RS lines could be primarily attributed to the increased accumulation of omega-secalin, omega-gliadin, low molecular weight glutenin subunit and ribosomal protein content. Additionally, we also found that the SDS-sedimentation value of whole wheat flour was decreased by adding albumin solution. These results advance our understanding of the genetic basis of GAC and offer novel perspectives for enhancing wheat quality through genetic enhancements.

3.
Genes (Basel) ; 14(9)2023 09 13.
Article in English | MEDLINE | ID: mdl-37761932

ABSTRACT

The cultivated peanut (Arachis hypogaea L.) is a significant oil and cash crop globally. Hundred-pod and -seed weight are important components for peanut yield. To unravel the genetic basis of hundred-pod weight (HPW) and hundred-seed weight (HSW), in the current study, a recombinant inbred line (RIL) population with 188 individuals was developed from a cross between JH5 (JH5, large pod and seed weight) and M130 (small pod and seed weight), and was utilized to identify QTLs for HPW and HSW. An integrated genetic linkage map was constructed by using SSR, AhTE, SRAP, TRAP and SNP markers. This map consisted of 3130 genetic markers, which were assigned to 20 chromosomes, and covered 1998.95 cM with an average distance 0.64 cM. On this basis, 31 QTLs for HPW and HSW were located on seven chromosomes, with each QTL accounting for 3.7-10.8% of phenotypic variance explained (PVE). Among these, seven QTLs were detected under multiple environments, and two major QTLs were found on B04 and B08. Notably, a QTL hotspot on chromosome A08 contained seven QTLs over a 2.74 cM genetic interval with an 0.36 Mb physical map, including 18 candidate genes. Of these, Arahy.D52S1Z, Arahy.IBM9RL, Arahy.W18Y25, Arahy.CPLC2W and Arahy.14EF4H might play a role in modulating peanut pod and seed weight. These findings could facilitate further research into the genetic mechanisms influencing pod and seed weight in cultivated peanut.


Subject(s)
Arachis , Quantitative Trait Loci , Humans , Arachis/genetics , Chromosome Mapping , Genetic Markers , Seeds/genetics
4.
Front Plant Sci ; 10: 745, 2019.
Article in English | MEDLINE | ID: mdl-31263472

ABSTRACT

Plant growth habit is an important and complex agronomic trait and is associated with yield, disease resistance, and mechanized harvesting in peanuts. There are at least two distinct growth habits (erect and prostrate) and several intermediate forms existing in the peanut germplasm. A recombinant inbred line population containing 188 individuals was developed from a cross of "Jihua 5" and "M130" for genetically dissecting the architecture of the growth habit. A new high-density genetic linkage map was constructed by using specific locus amplified fragment sequencing technology. The map contains 2,808 single-nucleotide polymorphism markers distributed on 20 linkage groups with a total length of 1,308.20 cM and an average inter-marker distance of 0.47 cM. The quantitative trait locus (QTL) analysis of the growth habit-related traits was conducted based on phenotyping data from seven environments. A total of 39 QTLs for growth habit-related traits was detected on 10 chromosomes explaining 4.55-27.74% of the phenotypic variance, in which 6 QTLs were for lateral branch angle, 8 QTLs were for extent radius, 7 QTLs were for the index of plant type, 11 QTLs were for main stem height, and 7 QTLs were for lateral branch length. Among these QTLs, 12 were co-localized on chromosome B05 spanning an approximately 0.17 Mb physical interval in comparison with the allotetraploid reference genome of "Tifrunner." Analysis of the co-localized genome region has shown that the putative genes are involved in light and hormones and will facilitate peanut growth habit molecular breeding and study of peanut domestication.

SELECTION OF CITATIONS
SEARCH DETAIL