Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Int J Mol Sci ; 25(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38674013

ABSTRACT

The universality of DNA methylation as an epigenetic regulatory mechanism belongs to all biological kingdoms. However, while eukaryotic systems have been the primary focus of DNA methylation studies, the molecular mechanisms in prokaryotes are less known. Nevertheless, DNA methylation in prokaryotes plays a pivotal role in many cellular processes such as defense systems against exogenous DNA, cell cycle dynamics, and gene expression, including virulence. Thanks to single-molecule DNA sequencing technologies, genome-wide identification of methylated DNA is becoming feasible on a large scale, providing the possibility to investigate more deeply the presence, variability, and roles of DNA methylation. Here, we present an overview of the multifaceted roles of DNA methylation in prokaryotes and suggest research directions and tools which can enable us to better understand the contribution of DNA methylation to prokaryotic genome evolution and adaptation. In particular, we emphasize the need to understand the presence and role of transgenerational inheritance, as well as the impact of epigenomic signatures on adaptation and genome evolution. Research directions and the importance of novel computational tools are underlined.


Subject(s)
Bacteria , Epigenomics , Evolution, Molecular , Genome, Bacterial , Bacteria/genetics , DNA Methylation , Epigenesis, Genetic , Epigenomics/methods
2.
FEMS Microbiol Ecol ; 100(5)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38544316

ABSTRACT

Microbial communities associated with plants growing in harsh conditions, including salinity and water deficiency, have developed adaptive features which permit them to grow and survive under extreme environmental conditions. In the present study, an ex-situ plant trapping method has been applied to collect the culturable microbial diversity associated with the soil from harsh and remote areas. Oryza sativa cv. Baldo and Triticum durum Primadur plants were used as recruiters, while the soil surrounding the roots of Oryza glaberrima plants from remote regions of Mali (West Africa) was used as substrate for their growth. The endophytic communities recruited by the two plant species belonged to Proteobacteria and Firmicutes, and the dominant genera were Bacillus, Kosakonia, and Enterobacter. These endophytes were characterized by analyzing some of the most common plant growth promoting traits. Halotolerant, inorganic phosphate-solubilizing and N-fixing strains were found, and some of them simultaneously showing these three traits. We verified that 'Baldo' recruited mostly halotolerant and P-solubilizers endophytes, while the endophytes selected by 'Primadur' were mainly N-fixers. The applied ex-situ plant trapping method allowed to isolate endophytes with potential beneficial traits that could be applied for the improvement of rice and wheat growth under adverse environmental conditions.


Subject(s)
Edible Grain , Oryza , Soil , Bacteria , Proteobacteria , Endophytes , Plant Roots/microbiology , Oryza/microbiology
3.
Sci Rep ; 14(1): 18802, 2024 08 13.
Article in English | MEDLINE | ID: mdl-39138329

ABSTRACT

The presence of bacteria from the Dickeya spp. and Pectobacterium spp. in farmlands leads to global crop losses of over $420 million annually. Since 1982, the scientists have started to suspect that the development of disease symptoms in crops might be inhibited by bacteria present in the soil. Here, we characterized in terms of physicochemical properties and the composition of bacterial soil microbiota two fields differing, on the basis of long-term studies, in the occurrence of Dickeya spp.- and Pectobacterium spp.-triggered infections. Majority, i.e. 17 of the investigated physicochemical features of the soils collected from two fields of either low or high potato blackleg and soft rot diseases incidences turned out to be similar, in contrast to the observed 4 deviations in relation to Mg, Mn, organic C and organic substance contents. By performing microbial cultures and molecular diagnostics-based identification, 20 Pectobacterium spp. strains were acquired from the field showing high blackleg and soft rot incidences. In addition, 16S rRNA gene amplicon sequencing followed by bioinformatic analysis revealed differences at various taxonomic levels in the soil bacterial microbiota of the studied fields. We observed that bacteria from the genera Bacillus, Rumeliibacillus, Acidobacterium and Gaiella turned out to be more abundant in the soil samples originating from the field of low comparing to high frequency of pectinolytic bacterial infections. In the herein presented case study, it is shown for the first time that the composition of bacterial soil microbiota varies between two fields differing in the incidences of soft rot and blackleg infections.


Subject(s)
Microbiota , Plant Diseases , RNA, Ribosomal, 16S , Soil Microbiology , Solanum tuberosum , Solanum tuberosum/microbiology , Plant Diseases/microbiology , RNA, Ribosomal, 16S/genetics , Pectobacterium/genetics , Pectobacterium/isolation & purification , Soil/chemistry , Phylogeny , Dickeya/genetics , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification
4.
Microbiol Res ; 285: 127768, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38820702

ABSTRACT

In the understanding of the molecular interaction between plants and their microbiome, a key point is to identify simplified models of the microbiome including relevant bacterial and fungal partners which could also be effective in plant growth promotion. Here, as proof-of-concept, we aim to identify the possible molecular interactions between symbiotic nitrogen-fixing rhizobia and soil fungi (Trichoderma spp.), hence shed light on synergistic roles rhizospheric fungi could have in the biology of symbiotic nitrogen fixation bacteria. We selected 4 strains of the model rhizobium Sinorhizobium meliloti and 4 Trichoderma species (T. velutinum, T. tomentosum, T. gamsii and T. harzianum). In an experimental scheme of 4 ×4 strains x species combinations, we investigated the rhizobia physiological and transcriptomic responses elicited by fungal spent media, as well as spent media effects on rhizobia-host legume plant (alfalfa, Medicago sativa L.) symbiosis. Fungal spent media had large effects on rhizobia, specific for each fungal species and rhizobial strains combination, indicating a generalized rhizobia genotype x fungal genotype interaction, including synergistic, neutral and antagonistic effects on alfalfa symbiotic phenotypes. Differential expression of a high number of genes was shown in rhizobia strains with up to 25% of total genes differentially expressed upon treatment of cultures with fungal spent media. Percentages over total genes and type of genes differentially expressed changed according to both fungal species and rhizobial strain. To support the hypothesis of a relevant rhizobia genotype x fungal genotype interaction, a nested Likelihood Ratio Test indicated that the model considering the fungus-rhizobium interaction explained 23.4% of differentially expressed genes. Our results provide insights into molecular interactions involving nitrogen-fixing rhizobia and rhizospheric fungi, highlighting the panoply of genes and genotypic interactions (fungus, rhizobium, host plant) which may concur to plant symbiosis.


Subject(s)
Genotype , Medicago sativa , Nitrogen Fixation , Sinorhizobium meliloti , Symbiosis , Trichoderma , Sinorhizobium meliloti/genetics , Sinorhizobium meliloti/physiology , Medicago sativa/microbiology , Nitrogen Fixation/genetics , Trichoderma/genetics , Trichoderma/physiology , Trichoderma/classification , Rhizosphere , Soil Microbiology , Microbial Interactions , Transcriptome
5.
Int. microbiol ; 17(3): 165-174, sept. 2014.
Article in English | IBECS (Spain) | ID: ibc-132091

ABSTRACT

In this work we analyzed the composition and structure of cultivable bacterial communities isolated from the stem/leaf and root compartments of two medicinal plants, Echinacea purpurea (L.) Moench and Echinacea angustifolia (DC.) Hell, grown in the same soil, as well as the bacterial community from their rhizospheric soils. Molecular PCR-based techniques were applied to cultivable bacteria isolated from the three compartments of the two plants. The results showed that the two plants and their respective compartments were characterized by different communities, indicating a low degree of strain sharing and a strong selective pressure within plant tissues. Pseudomonas was the most highly represented genus, together with Actinobacteria and Bacillus spp. The presence of distinct bacterial communities in different plant species and among compartments of the same plant species could account for the differences in the medicinal properties of the two plants (AU)


No disponible


Subject(s)
Humans , Endophytes/isolation & purification , Rhizosphere , Plants, Medicinal/microbiology , Bacterial Physiological Phenomena , Echinacea/microbiology , Bacterial Growth/analysis
SELECTION OF CITATIONS
SEARCH DETAIL