Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
J Chem Phys ; 160(8)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38415830

ABSTRACT

Two-level quantum systems are fundamental physical models that continue to attract growing interest due to their crucial role as a building block of quantum technologies. The exact analytical solution of the dynamics of these systems is central to control theory and its applications, such as that to quantum computing. In this study, we reconsider the two-state charge transfer problem by extending and using a methodology developed to study (pseudo)spin systems in quantum electrodynamics contexts. This approach allows us to build a time evolution operator for the charge transfer system and to show new opportunities for the coherent control of the system dynamics, with a particular emphasis on the critical dynamic region around the transition state coordinate, where the avoided crossing of the energy levels occurs. We identify and propose possible experimental implementations of a class of rotations of the charge donor (or acceptor) that endow the electronic coupling matrix element with a time-dependent phase that can be employed to realize controllable coherent dynamics of the system across the avoided level crossing. The analogy of these rotations to reference frame rotations in generalized semiclassical Rabi models is discussed. We also show that the physical rotations in the charge-transfer systems can be performed so as to implement quantum gates relevant to quantum computing. From an exquisitely physical-mathematical viewpoint, our approach brings to light situations in which the time-dependent state of the system can be obtained without resorting to the special functions appearing in the Landau-Zener approach.

2.
Ann Gen Psychiatry ; 22(1): 39, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37821904

ABSTRACT

BACKGROUND: In Kalhbaum's first characterization of catatonia, the emotional symptoms, such as decreased or restricted expression of feelings and emotions, which is described as blunted affect, are related to the motor symptoms. In later years, the affective domain was excluded from the concept of catatonia and was not included among the diagnostic criteria in the various Diagnostic Statistical Manual (DSM) versions. In recent times, some authors have proposed the proposition of reevaluating the notion of catatonia through the reintroduction of the affective domain. The objective of this study was to examine the correlation between catatonic-like behavior (CLB), such as emotional withdrawal, blunted affect, and psychomotor slowing, and inflammatory markers, namely the neutrophil/lymphocytes ratio (NLR) and lymphocytes/monocytes ratio (LMR), in individuals diagnosed with schizophrenia. METHOD: A sample of 25 patients with schizophrenia (10 females, 15 males) was recruited, and the Brief Psychiatric Rating Scale (BPRS) was used to assess the severity of emotional withdrawal, blunted affect, and psychomotor slowing. FINDINGS: The correlation analysis (Spearman ρ) revealed a robust direct association between blunted affect and psychomotor slowing (ρ = 0.79, P = 0.001), and a significant direct correlation between CLB (emotional withdrawal, ρ = 0.51, P = 0.05; blunted affect ρ = 0.58, P = 0.05; motor retardation, ρ = 0.56, P = 0.05) and LMR (ρ = 0.53, P = 0.05). In addition, patients with a duration of illness (DOI) older than five years had a higher presence of CLB and a higher LMR than patients with a more recent diagnosis of the disease. Likely, patients with positive symptoms and in the prodromal and active stages of the disease have a different immune profile than patients in the residual stage and with a predominance of negative symptoms. CONCLUSIONS: Psychomotor slowing and blunted affect are two significantly related features, representing the two-faced Janus of immobility. Furthermore, aggregating them in CLB is more predominant the longer the duration of schizophrenia and is associated with different a specific pattern of immune activation.

3.
Entropy (Basel) ; 25(2)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36832554

ABSTRACT

A spin-boson-like model with two interacting qubits is analysed. The model turns out to be exactly solvable since it is characterized by the exchange symmetry between the two spins. The explicit expressions of eigenstates and eigenenergies make it possible to analytically unveil the occurrence of first-order quantum phase transitions. The latter are physically relevant since they are characterized by abrupt changes in the two-spin subsystem concurrence, in the net spin magnetization and in the mean photon number.

4.
Entropy (Basel) ; 25(2)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36832675

ABSTRACT

We introduce the concept of the almost-companion matrix (ACM) by relaxing the non-derogatory property of the standard companion matrix (CM). That is, we define an ACM as a matrix whose characteristic polynomial coincides with a given monic and generally complex polynomial. The greater flexibility inherent in the ACM concept, compared to CM, allows the construction of ACMs that have convenient matrix structures satisfying desired additional conditions, compatibly with specific properties of the polynomial coefficients. We demonstrate the construction of Hermitian and unitary ACMs starting from appropriate third-degree polynomials, with implications for their use in physical-mathematical problems, such as the parameterization of the Hamiltonian, density, or evolution matrix of a qutrit. We show that the ACM provides a means of identifying the properties of a given polynomial and finding its roots. For example, we describe the ACM-based solution of cubic complex algebraic equations without resorting to the use of the Cardano-Dal Ferro formulas. We also show the necessary and sufficient conditions on the coefficients of a polynomial for it to represent the characteristic polynomial of a unitary ACM. The presented approach can be generalized to complex polynomials of higher degrees.

5.
Entropy (Basel) ; 25(4)2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37190388

ABSTRACT

The conceptual analysis of quantum mechanics brings to light that a theory inherently consistent with observations should be able to describe both quantum and classical systems, i.e., quantum-classical hybrids. For example, the orthodox interpretation of measurements requires the transient creation of quantum-classical hybrids. Despite its limitations in defining the classical limit, Ehrenfest's theorem makes the simplest contact between quantum and classical mechanics. Here, we generalized the Ehrenfest theorem to bipartite quantum systems. To study quantum-classical hybrids, we employed a formalism based on operator-valued Wigner functions and quantum-classical brackets. We used this approach to derive the form of the Ehrenfest theorem for quantum-classical hybrids. We found that the time variation of the average energy of each component of the bipartite system is equal to the average of the symmetrized quantum dissipated power in both the quantum and the quantum-classical case. We expect that these theoretical results will be useful both to analyze quantum-classical hybrids and to develop self-consistent numerical algorithms for Ehrenfest-type simulations.

6.
Entropy (Basel) ; 25(1)2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36673237

ABSTRACT

We report the step-by-step construction of the exact, closed and explicit expression for the evolution operator U(t) of a localized and isolated qubit in an arbitrary time-dependent field, which for concreteness we assume to be a magnetic field. Our approach is based on the existence of two independent dynamical invariants that enter the expression of SU(2) by means of two strictly related time-dependent, real or complex, parameters. The usefulness of our approach is demonstrated by exactly solving the quantum dynamics of a qubit subject to a controllable time-dependent field that can be realized in the laboratory. We further discuss possible applications to any SU(2) model, as well as the applicability of our method to realistic physical scenarios with different symmetry properties.

7.
Entropy (Basel) ; 25(4)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37190380

ABSTRACT

The study of the human psyche has elucidated a bipartite structure of logic reflecting the quantum-classical nature of the world. Accordingly, we posited an approach toward studying the brain by means of the quantum-classical dynamics of a mixed Weyl symbol. The mixed Weyl symbol can be used to describe brain processes at the microscopic level and, when averaged over an appropriate ensemble, can provide a link to the results of measurements made at the meso and macro scale. Within this approach, quantum variables (such as, for example, nuclear and electron spins, dipole momenta of particles or molecules, tunneling degrees of freedom, and so on) can be represented by spinors, whereas the electromagnetic fields and phonon modes can be treated either classically or semi-classically in phase space by also considering quantum zero-point fluctuations. Quantum zero-point effects can be incorporated into numerical simulations by controlling the temperature of each field mode via coupling to a dedicated Nosé-Hoover chain thermostat. The temperature of each thermostat was chosen in order to reproduce quantum statistics in the canonical ensemble. In this first paper, we introduce a general quantum-classical Hamiltonian model that can be tailored to study physical processes at the interface between the quantum and the classical world in the brain. While the approach is discussed in detail, numerical calculations are not reported in the present paper, but they are planned for future work. Our theory of brain dynamics subsumes some compatible aspects of three well-known quantum approaches to brain dynamics, namely the electromagnetic field theory approach, the orchestrated objective reduction theory, and the dissipative quantum model of the brain. All three models are reviewed.

8.
Entropy (Basel) ; 24(2)2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35205517

ABSTRACT

We investigate a system of two identical and distinguishable spins 1/2, with a direct magnetic dipole-dipole interaction, in an external magnetic field. Constraining the hyperfine tensor to exhibit axial symmetry generates the notable symmetry properties of the corresponding Hamiltonian model. In fact, we show that the reduction of the anisotropy induces the invariance of the Hamiltonian in the 3×3 subspace of the Hilbert space of the two spins in which S^2 invariably assumes its highest eigenvalue of 2. By means of appropriate mapping, it is then possible to choose initial density matrices of the two-spin system that evolve in such a way as to exactly simulate the time evolution of a pseudo-qutrit, in the sense that the the actual two-spin system nests the subdynamics of a qutrit regardless of the strength of the magnetic field. The occurrence of this dynamic similitude is investigated using two types of representation for the initial density matrix of the two spins. We show that the qutrit state emerges when the initial polarizations and probability vectors of the two spins are equal to each other. Further restrictions on the components of the probability vectors are reported and discussed.

9.
Entropy (Basel) ; 23(2)2021 Jan 25.
Article in English | MEDLINE | ID: mdl-33504072

ABSTRACT

This work concerns the theoretical description of the quantum dynamics of molecular junctions with thermal fluctuations and probability losses. To this end, we propose a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments. Along the lines discussed in [A. Sergi et al., Symmetry 10 518 (2018)], we adopt the operator-valued Wigner formulation of quantum mechanics (wherein the density matrix depends on the points of the Wigner phase space associated to the system) and derive a non-linear equation of motion. Moreover, we introduce a model for a non-Hermitian quantum single-molecule junction (nHQSMJ). In this model the leads are mapped to a tunneling two-level system, which is in turn coupled to a harmonic mode (i.e., the molecule). A decay operator acting on the two-level system describes phenomenologically probability losses. Finally, the temperature of the molecule is controlled by means of a Nosé-Hoover chain thermostat. A numerical study of the quantum dynamics of this toy model at different temperatures is reported. We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction. The possibility that the formalism here presented can be extended to treat both more quantum states (∼10) and many more classical modes or atomic particles (∼103-105) is highlighted.

10.
Entropy (Basel) ; 22(1)2020 Jan 01.
Article in English | MEDLINE | ID: mdl-33285837

ABSTRACT

In the general framework of d 1 × d 2 mixed states, we derive an explicit bound for bipartite negative partial transpose (NPT) entanglement based on the mixedness characterization of the physical system. The derived result is very general, being based only on the assumption of finite dimensionality. In addition, it turns out to be of experimental interest since some purity-measuring protocols are known. Exploiting the bound in the particular case of thermal entanglement, a way to connect thermodynamic features to the monogamy of quantum correlations is suggested, and some recent results on the subject are given a physically clear explanation.

11.
Entropy (Basel) ; 22(7)2020 Jul 18.
Article in English | MEDLINE | ID: mdl-33286556

ABSTRACT

We study and compare the time evolutions of concurrence and quantum discord in a driven system of two interacting qubits prepared in a generic Werner state. The corresponding quantum dynamics is exactly treated and manifests the appearance and disappearance of entanglement. Our analytical treatment transparently unveils the physical reasons for the occurrence of such a phenomenon, relating it to the dynamical invariance of the X structure of the initial state. The quantum correlations which asymptotically emerge in the system are investigated in detail in terms of the time evolution of the fidelity of the initial Werner state.

12.
Entropy (Basel) ; 22(10)2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33286952

ABSTRACT

In contrast to classical systems, actual implementation of non-Hermitian Hamiltonian dynamics for quantum systems is a challenge because the processes of energy gain and dissipation are based on the underlying Hermitian system-environment dynamics, which are trace preserving. Recently, a scheme for engineering non-Hermitian Hamiltonians as a result of repetitive measurements on an ancillary qubit has been proposed. The induced conditional dynamics of the main system is described by the effective non-Hermitian Hamiltonian arising from the procedure. In this paper, we demonstrate the effectiveness of such a protocol by applying it to physically relevant multi-spin models, showing that the effective non-Hermitian Hamiltonian drives the system to a maximally entangled stationary state. In addition, we report a new recipe to construct a physical scenario where the quantum dynamics of a physical system represented by a given non-Hermitian Hamiltonian model may be simulated. The physical implications and the broad scope potential applications of such a scheme are highlighted.

13.
Brain Sci ; 14(6)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38928602

ABSTRACT

BACKGROUND: Schizophrenia is a mental disorder affecting approximately 0.32% of the global population, according to the World Health Organization. Antipsychotic medications are used to treat this condition by inhibiting D2 dopamine and 5HT2 serotonin receptors. The selection of the appropriate mode of delivery for these drugs is based on factors such as patient adherence, clinical presentation, and patient preferences. However, additional drivers of treatment selection are required in clinical practice. Mounting evidence suggests that neuroinflammation plays a crucial role in the pathogenesis of schizophrenia. NLR, a cost-effective biomarker of inflammation, has increased in several psychiatric conditions and may represent a valid method for studying the inflammatory stage in schizophrenia, relapse, and the first episode of psychosis. The aim of this study is to evaluate whether there are any variations in NLR values between patients given oral antipsychotics and those given long-acting antipsychotics. METHODS: The study included 50 individuals with schizophrenia, either acute or in the follow-up phase. NLR was obtained by calculating the ratio of absolute neutrophil count (cells/µL) and absolute lymphocyte count (cells/µL). RESULTS: Patients on long-acting antipsychotics exhibited significantly lower mean NLR scores (1.5 ± 0.7) compared to those on oral antipsychotics (2.2 ± 1.3) (p < 0.05). CONCLUSIONS: NLR appears promising as a neuroinflammatory biomarker. This study reveals significantly lower NLR values in patients on long-acting antipsychotics, which may signify reduced systemic inflammation and improved adherence.

14.
Ind Psychiatry J ; 32(2): 215-221, 2023.
Article in English | MEDLINE | ID: mdl-38161482

ABSTRACT

Since the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic was declared, cases of psychosis, delusions, hallucinations, and disorganized behavior have been reported worldwide, both during the acute phase of COVID-19 and after recovery. Given the recent emergence of COVID-19, data are still accumulating, and it is premature to correlate COVID-19 with psychotic disorders causally. However, SARS-CoV-2 has been shown to have the ability to cross the blood-brain barrier and penetrate neurons. This finding and the amount of published work on COVID-19 and psychotic disorders compel special attention to elucidate the link between SARS-CoV-2 and the occurrence of psychotic symptoms. In this article, several reviews and case reports that have analyzed the link between COVID-19 and psychotic disorders are reviewed. In light of the data that have emerged at the present time, study criteria were proposed to identify COVID-19-related psychosis.

15.
Anat Sci Int ; 98(4): 473-481, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37340095

ABSTRACT

Recent evidence has shown that the precuneus plays a role in the pathogenesis of schizophrenia. The precuneus is a structure of the parietal lobe's medial and posterior cortex, representing a central hub involved in multimodal integration processes. Although neglected for several years, the precuneus is highly complex and crucial for multimodal integration. It has extensive connections with different cerebral areas and is an interface between external stimuli and internal representations. In human evolution, the precuneus has increased in size and complexity, allowing the development of higher cognitive functions, such as visual-spatial ability, mental imagery, episodic memory, and other tasks involved in emotional processing and mentalization. This paper reviews the functions of the precuneus and discusses them concerning the psychopathological aspects of schizophrenia. The different neuronal circuits, such as the default mode network (DMN), in which the precuneus is involved and its alterations in the structure (grey matter) and the disconnection of pathways (white matter) are described.


Subject(s)
Magnetic Resonance Imaging , Schizophrenia , Humans , Brain Mapping , Schizophrenia/pathology , Parietal Lobe/pathology , Parietal Lobe/physiology , Cerebral Cortex , Neural Pathways/physiology
16.
Folia Med (Plovdiv) ; 65(5): 707-712, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-38351751

ABSTRACT

The causes of schizophrenia remain obscure and complex to identify. Alterations in dopaminergic and serotonergic neurotransmission are, to date, the primary pharmacological targets in treatment. Underlying abnormalities in neural networks have been identified as cell adhesion molecules (CAMs) involved in synaptic remodeling and interplay between neurons-neurons and neurons-glial cells. Among the CAMs, several families have been identified, such as integrins, selectins, cadherins, immunoglobulins, nectins, and the neuroligin-neurexin complex. In this paper, cell adhesion molecules involved in the pathogenesis of schizophrenia will be described.


Subject(s)
Schizophrenia , Humans , Schizophrenia/etiology , Cell Adhesion Molecules , Cadherins/metabolism , Nectins/metabolism , Neurons , Cell Adhesion/physiology
17.
Brain Sci ; 13(6)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37371435

ABSTRACT

Comprehending the pathogenesis of schizophrenia represents a challenge for global mental health. To date, although it is evident that alterations in dopaminergic, serotonergic, and glutamatergic neurotransmission underlie the clinical expressiveness of the disease, neuronal disconnections represent only an epiphenomenon. In recent years, several clinical studies have converged on the hypothesis of microglia hyperactivation and a consequent neuroinflammatory state as a pathogenic substrate of schizophrenia. Prenatal, perinatal, and postnatal factors can cause microglia to switch from M2 anti-inflammatory to M1 pro-inflammatory states. A continuous mild neuroinflammatory state progressively leads to neuronal loss, a reduction in dendritic spines, and myelin degeneration. The augmentation of drugs that reduce neuroinflammation to antipsychotics could be an effective therapeutic modality in managing schizophrenia. This review will consider studies in which drugs with anti-inflammatory and neuroprotective properties have been used in addition to antipsychotic treatment in patients with schizophrenia.

18.
Ann Clin Psychiatry ; 23(2): 125-30, 2011 May.
Article in English | MEDLINE | ID: mdl-21547273

ABSTRACT

BACKGROUND: The literature suggests that alexithymia is the result of individual differences and/or biological mechanisms. Both individual differences and disease mechanisms may play a role among individuals with medical or surgical conditions. The relative weight of clinical and individual differences factors related to alexithymia has not been studied in patients with cancer. The purpose of this study was to examine the extent to which individual differences in perceived stress and biological markers of illness severity are associated with alexithymia among patients with cancer. METHODS: Treated oncologic outpatients (N = 37) were assessed using the 20-item Toronto Alexithymia Scale and Perceived Stress Scale. Alexithymia was examined in relation to perceived stress, tumor staging, and hemoglobin levels. RESULTS: Among the patients studied, 34.2% endorsed the established cutoff score (≥61) for alexithymia. Higher alexithymia scores were found in patients with more advanced stages of cancer invasion. Alexithymia correlated directly with perceived stress and indirectly with hemoglobin levels. Hemoglobin levels and cancer invasion significantly correlated with alexithymia when controlling for perceived stress. CONCLUSIONS: A significant component of alexithymia in cancer patients may be construed as acquired. But awareness of health status influencing perceived stress might partially mediate the role of cancer invasion and hemoglobin on alexithymia.


Subject(s)
Affective Symptoms/epidemiology , Affective Symptoms/psychology , Hemoglobinometry , Individuality , Neoplasms/epidemiology , Neoplasms/psychology , Severity of Illness Index , Adult , Aged , Anemia/epidemiology , Anemia/psychology , Comorbidity , Female , Humans , Lymphatic Metastasis/pathology , Male , Middle Aged , Neoplasm Invasiveness , Neoplasm Staging , Neoplasms/pathology , Personality Inventory/statistics & numerical data , Psychometrics , Risk Factors , Stress, Psychological/complications
19.
Vet Ital ; 57(1): 83-87, 2021 May 11.
Article in English | MEDLINE | ID: mdl-34313103

ABSTRACT

Common pathogens of intensive poultry farms, either parasitic or bacterial, such as Coccidiaor Salmonella, are well known and strictly controlled by veterinary management. This case study reports an unusual case of runting stunting syndrome (RSS) observed on a Sicilian poultry farm of broiler chickens during 2019. The investigation was carried out on five chickens which present delayed in body weight and growth performance. Animals showed also difficulty in deambulation and diarrhea. At necropsy, intestinal lesions were detected in three of the five clinical cases. Gut samples were collected and analyzed to identify potential pathogens responsible for the RSS. Presence of viruses was detected by using quantitative reverse transcription PCR (RT­qPCR), while selected tissues were fixed and embedded in paraffin wax according to routine procedures. All histological sections were stained with hematoxylin­eosin. RT­qPCR successfully detected both Chicken astrovirus (CAstV) and Avian orthoreovirus (ARV). Histology evidenced severe specific lesions on the intestinal mucosa in liver and kidneys. Chicken astrovirus and Avian orthoreovirus RNA was also detected in cecal tonsils, kidney and liver, thus implying their possible primary role in inducing the disease. Further studies are needed to evaluate the role of other possible factors (low biosecurity measures, e.g.) and, most of all, the consequences in terms of economic losses and animal health impairment.


Subject(s)
Astroviridae Infections/veterinary , Avastrovirus/isolation & purification , Chickens , Orthoreovirus, Avian/isolation & purification , Poultry Diseases/diagnosis , Reoviridae Infections/veterinary , Animals , Astroviridae Infections/complications , Astroviridae Infections/diagnosis , Avastrovirus/genetics , Coinfection , Diagnosis, Differential , Orthoreovirus, Avian/genetics , Polymerase Chain Reaction/veterinary , Poultry Diseases/virology , RNA, Viral/analysis , Reoviridae Infections/complications , Reoviridae Infections/diagnosis , Sicily
20.
Biology (Basel) ; 10(9)2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34571819

ABSTRACT

Gut microbiota contributes to animal health. However, identifying which microorganisms or associated functions are involved remains, still, difficult to assess. In the present study, the microbiota of healthy broiler chickens, under controlled diet and farm conditions, was investigated by 16S rRNA gene sequencing in four intestine segments and at four ages. In detail, 210 Ross-308 male chickens were raised according to the EU guidelines and fed on a commercial diet. The duodenum, jejunum, ileum, and caecum microbiota were analyzed at 11, 24, 35, and 46 days of life. Although the microbial composition was revealed as homogeneous 11 days after chicks hatched, it was found to be similar in the proximal intestine segments and different in ileum and caecum, where almost the same genera and species were detected with different relative abundances. Although changes during the later growth stage were revealed, each genus remained relatively unchanged. Lactobacillus mostly colonized the upper tract of the intestine, whereas the Escherichia/Shigella genus the ileum. Clostridium and Bacteroides genera were predominant in the caecum, where the highest richness of bacterial taxa was observed. We also analyze and discuss the predicted role of the microbiota for each intestine segment and its potential involvement in nutrient digestion and absorption.

SELECTION OF CITATIONS
SEARCH DETAIL