Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Curr Opin Microbiol ; 79: 102478, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38653035

ABSTRACT

Members of the order Mycobacteriales are distinguished by a characteristic diderm cell envelope, setting them apart from other Actinobacteria species. In addition to the conventional peptidoglycan cell wall, these organisms feature an extra polysaccharide polymer composed of arabinose and galactose, termed arabinogalactan. The nonreducing ends of arabinose are covalently linked to mycolic acids (MAs), forming the immobile inner leaflet of the highly hydrophobic MA membrane. The contiguous outer leaflet of the MA membrane comprises trehalose mycolates and various lipid species. Similar to all actinobacteria, Mycobacteriales exhibit apical growth, facilitated by a polar localized elongasome complex. A septal cell envelope synthesis machinery, the divisome, builds instead of the cell wall structures during cytokinesis. In recent years, a growing body of knowledge has emerged regarding the cell wall synthesizing complexes of Mycobacteriales., focusing particularly on three model species: Corynebacterium glutamicum, Mycobacterium smegmatis, and Mycobacterium tuberculosis.


Subject(s)
Cell Wall , Galactans , Mycolic Acids , Cell Wall/metabolism , Mycolic Acids/metabolism , Galactans/metabolism , Peptidoglycan/metabolism , Mycobacterium tuberculosis/metabolism , Mycobacterium tuberculosis/genetics , Corynebacterium glutamicum/metabolism , Corynebacterium glutamicum/growth & development , Corynebacterium glutamicum/genetics , Mycobacterium smegmatis/metabolism , Mycobacterium smegmatis/growth & development , Mycobacterium smegmatis/genetics , Arabinose/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics
2.
Nat Commun ; 15(1): 7616, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39223154

ABSTRACT

Curved cell shapes are widespread among bacteria and important for cellular motility, virulence and fitness. However, the underlying morphogenetic mechanisms are still incompletely understood. Here, we identify an outer-membrane protein complex that promotes cell curvature in the photosynthetic species Rhodospirillum rubrum. We show that the R. rubrum porins Por39 and Por41 form a helical ribbon-like structure at the outer curve of the cell that recruits the peptidoglycan-binding lipoprotein PapS, with PapS inactivation, porin delocalization or disruption of the porin-PapS interface resulting in cell straightening. We further demonstrate that porin-PapS assemblies act as molecular cages that entrap the cell elongation machinery, thus biasing cell growth towards the outer curve. These findings reveal a mechanistically distinct morphogenetic module mediating bacterial cell shape. Moreover, they uncover an unprecedented role of outer-membrane protein patterning in the spatial control of intracellular processes, adding an important facet to the repertoire of regulatory mechanisms in bacterial cell biology.


Subject(s)
Lipoproteins , Porins , Rhodospirillum rubrum , Porins/metabolism , Porins/genetics , Rhodospirillum rubrum/metabolism , Lipoproteins/metabolism , Bacterial Outer Membrane Proteins/metabolism , Bacterial Outer Membrane Proteins/genetics
3.
Cell Surf ; 10: 100116, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38044953

ABSTRACT

The mycomembrane (MM) is a mycolic acid layer covering the surface of Mycobacteria and related species. This group includes important pathogens such as Mycobacterium tuberculosis, Corynebacterium diphtheriae, but also the biotechnologically important strain Corynebacterium glutamicum. Biosynthesis of the MM is an attractive target for antibiotic intervention. The first line anti-tuberculosis drug ethambutol (EMB) and the new drug candidate, benzothiazinone 043 (BTZ) interfere with the synthesis of the arabinogalactan (AG), which is a structural scaffold for covalently attached mycolic acids that form the inner leaflet of the MM. We previously showed that C. glutamicum cells treated with a sublethal concentration of EMB lose the integrity of the MM. In this study we examined the effects of BTZ on the cell envelope. Our work shows that BTZ efficiently blocks the apical growth machinery, however effects in combinatorial treatment with ß-lactam antibiotics are only additive, not synergistic. Transmission electron microscopy (TEM) analysis revealed a distinct middle layer in the septum of control cells considered to be the inner leaflet of the MM covalently attached to the AG. This layer was not detectable in the septa of BTZ or EMB treated cells. In addition, we observed that EMB treated cells have a thicker and less electron dense peptidoglycan (PG). While EMB and BTZ both effectively block elongation growth, BTZ also strongly reduces septal cell wall synthesis, slowing down growth effectively. This renders BTZ treated cells likely more tolerant to antibiotics that act on growing bacteria.

SELECTION OF CITATIONS
SEARCH DETAIL