Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 127
Filter
Add more filters

Publication year range
1.
Nucleic Acids Res ; 50(15): 8626-8642, 2022 08 26.
Article in English | MEDLINE | ID: mdl-35947695

ABSTRACT

Mitochondrial DNA (mtDNA) is prone to mutation in aging and over evolutionary time, yet the processes that regulate the accumulation of de novo mtDNA mutations and modulate mtDNA heteroplasmy are not fully elucidated. Mitochondria lack certain DNA repair processes, which could contribute to polymerase error-induced mutations and increase susceptibility to chemical-induced mtDNA mutagenesis. We conducted error-corrected, ultra-sensitive Duplex Sequencing to investigate the effects of two known nuclear genome mutagens, cadmium and Aflatoxin B1, on germline mtDNA mutagenesis in Caenorhabditis elegans. Detection of thousands of mtDNA mutations revealed pervasive heteroplasmy in C. elegans and that mtDNA mutagenesis is dominated by C:G → A:T mutations generally attributed to oxidative damage. However, there was no effect of either exposure on mtDNA mutation frequency, spectrum, or trinucleotide context signature despite a significant increase in nuclear mutation rate after aflatoxin B1 exposure. Mitophagy-deficient mutants pink-1 and dct-1 accumulated significantly higher levels of mtDNA damage compared to wild-type C. elegans after exposures. However, there were only small differences in mtDNA mutation frequency, spectrum, or trinucleotide context signature compared to wild-type after 3050 generations, across all treatments. These findings suggest mitochondria harbor additional previously uncharacterized mechanisms that regulate mtDNA mutational processes across generations.


Subject(s)
Caenorhabditis elegans , DNA, Mitochondrial , Animals , DNA, Mitochondrial/genetics , Caenorhabditis elegans/genetics , Cadmium/toxicity , Aflatoxin B1/toxicity , Mutation Accumulation , Mitochondria/genetics , Mutation , Germ Cells
2.
BMC Biol ; 21(1): 252, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37950228

ABSTRACT

BACKGROUND: Diets high in saturated fat and sugar, termed "Western diets," have been associated with several negative health outcomes, including increased risk for neurodegenerative disease. Parkinson's disease (PD) is the second most prevalent neurodegenerative disease and is characterized by the progressive death of dopaminergic neurons in the brain. We build upon previous work characterizing the impact of high-sugar diets in Caenorhabditis elegans to mechanistically evaluate the relationship between high-sugar diets and dopaminergic neurodegeneration. RESULTS: Adult high-glucose and high-fructose diets, or exposure from day 1 to 5 of adulthood, led to increased lipid content, shorter lifespan, and decreased reproduction. However, in contrast to previous reports, we found that adult chronic high-glucose and high-fructose diets did not induce dopaminergic neurodegeneration alone and were protective from 6-hydroxydopamine (6-OHDA) induced degeneration. Neither sugar altered baseline electron transport chain function and both increased vulnerability to organism-wide ATP depletion when the electron transport chain was inhibited, arguing against energetic rescue as a basis for neuroprotection. The induction of oxidative stress by 6-OHDA is hypothesized to contribute to its pathology, and high-sugar diets prevented this increase in the soma of the dopaminergic neurons. However, we did not find increased expression of antioxidant enzymes or glutathione levels. Instead, we found evidence suggesting downregulation of the dopamine reuptake transporter dat-1 that could result in decreased 6-OHDA uptake. CONCLUSIONS: Our work uncovers a neuroprotective role for high-sugar diets, despite concomitant decreases in lifespan and reproduction. Our results support the broader finding that ATP depletion alone is insufficient to induce dopaminergic neurodegeneration, whereas increased neuronal oxidative stress may drive degeneration. Finally, our work highlights the importance of evaluating lifestyle by toxicant interactions.


Subject(s)
Caenorhabditis elegans , Neurodegenerative Diseases , Animals , Humans , Caenorhabditis elegans/metabolism , Oxidopamine/adverse effects , Oxidopamine/metabolism , Dopamine/metabolism , Neurodegenerative Diseases/chemically induced , Neurodegenerative Diseases/metabolism , Nerve Degeneration/chemically induced , Nerve Degeneration/metabolism , Nerve Degeneration/prevention & control , Dopaminergic Neurons/physiology , Adenosine Triphosphate/metabolism , Sugars/adverse effects , Sugars/metabolism , Fructose/adverse effects , Fructose/metabolism , Glucose/metabolism , Disease Models, Animal
3.
Environ Sci Technol ; 56(2): 1113-1124, 2022 01 18.
Article in English | MEDLINE | ID: mdl-35038872

ABSTRACT

Silver nanoparticles (AgNPs) are extensively used in consumer products and biomedical applications, thus guaranteeing both environmental and human exposures. Despite extensive research addressing AgNP safety, there are still major knowledge gaps regarding AgNP toxicity mechanisms, particularly in whole organisms. Mitochondrial dysfunction is frequently described as an important cytotoxicity mechanism for AgNPs; however, it is still unclear if mitochondria are the direct targets of AgNPs. To test this, we exposed the nematodeCaenorhabditis elegans to sublethal concentrations of AgNPs and assessed specific mitochondrial parameters as well as organismal-level endpoints that are highly reliant on mitochondrial function, such as development and chemotaxis behavior. All AgNPs tested significantly delayed nematode development, disrupted mitochondrial bioenergetics, and blocked chemotaxis. However, silver was not preferentially accumulated in mitochondria, indicating that these effects are likely not due to direct mitochondria-AgNP interactions. Mutant nematodes with deficiencies in mitochondrial dynamics displayed both greater and decreased susceptibility to AgNPs compared to wild-type nematodes, which was dependent on the assay and AgNP type. Our study suggests that AgNPs indirectly promote mitochondrial dysfunction, leading to adverse outcomes at the organismal level, and reveals a role of gene-environment interactions in the susceptibility to AgNPs. Finally, we propose a novel hypothetical adverse outcome pathway for AgNP effects to guide future research.


Subject(s)
Metal Nanoparticles , Silver , Humans , Metal Nanoparticles/toxicity , Mitochondria/metabolism , Mitochondrial Dynamics , Silver/pharmacology
4.
Proc Natl Acad Sci U S A ; 116(47): 23829-23839, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31685639

ABSTRACT

Regular physical exercise is the most efficient and accessible intervention known to promote healthy aging in humans. The molecular and cellular mechanisms that mediate system-wide exercise benefits, however, remain poorly understood, especially as applies to tissues that do not participate directly in training activity. The establishment of exercise protocols for short-lived genetic models will be critical for deciphering fundamental mechanisms of transtissue exercise benefits to healthy aging. Here we document optimization of a long-term swim exercise protocol for Caenorhabditis elegans and we demonstrate its benefits to diverse aging tissues, even if exercise occurs only during a restricted phase of adulthood. We found that multiple daily swim sessions are essential for exercise adaptation, leading to body wall muscle improvements in structural gene expression, locomotory performance, and mitochondrial morphology. Swim exercise training enhances whole-animal health parameters, such as mitochondrial respiration and midlife survival, increases functional healthspan of the pharynx and intestine, and enhances nervous system health by increasing learning ability and protecting against neurodegeneration in models of tauopathy, Alzheimer's disease, and Huntington's disease. Remarkably, swim training only during early adulthood induces long-lasting systemic benefits that in several cases are still detectable well into midlife. Our data reveal the broad impact of swim exercise in promoting extended healthspan of multiple C. elegans tissues, underscore the potency of early exercise experience to influence long-term health, and establish the foundation for exploiting the powerful advantages of this genetic model for the dissection of the exercise-dependent molecular circuitry that confers system-wide health benefits to aging adults.


Subject(s)
Caenorhabditis elegans/physiology , Learning , Neuroprotection , Swimming , Adaptation, Physiological , Animals , Intestines/physiology , Muscles/physiology , Nervous System Physiological Phenomena
5.
J Toxicol Environ Health B Crit Rev ; 24(2): 51-94, 2021 02 17.
Article in English | MEDLINE | ID: mdl-33616007

ABSTRACT

Caenorhabditis elegans has emerged as a major model in biomedical and environmental toxicology. Numerous papers on toxicology and pharmacology in C. elegans have been published, and this species has now been adopted by investigators in academic toxicology, pharmacology, and drug discovery labs. C. elegans has also attracted the interest of governmental regulatory agencies charged with evaluating the safety of chemicals. However, a major, fundamental aspect of toxicological science remains underdeveloped in C. elegans: xenobiotic metabolism and transport processes that are critical to understanding toxicokinetics and toxicodynamics, and extrapolation to other species. The aim of this review was to initially briefly describe the history and trajectory of the use of C. elegans in toxicological and pharmacological studies. Subsequently, physical barriers to chemical uptake and the role of the worm microbiome in xenobiotic transformation were described. Then a review of what is and is not known regarding the classic Phase I, Phase II, and Phase III processes was performed. In addition, the following were discussed (1) regulation of xenobiotic metabolism; (2) review of published toxicokinetics for specific chemicals; and (3) genetic diversity of these processes in C. elegans. Finally, worm xenobiotic transport and metabolism was placed in an evolutionary context; key areas for future research highlighted; and implications for extrapolating C. elegans toxicity results to other species discussed.


Subject(s)
Caenorhabditis elegans/metabolism , Pharmaceutical Preparations/metabolism , Xenobiotics/metabolism , Animals , Biological Transport/physiology , Ecotoxicology/methods , Humans , Models, Animal , Species Specificity , Toxicology/methods
6.
Environ Sci Technol ; 2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34346225

ABSTRACT

Silver nanoparticles (AgNPs) are well-proven antimicrobial nanomaterials, yet little is elucidated regarding the mechanism underlying cytotoxicity induced by these nanoparticles. Here, we tested the hypothesis that mitochondria are primary intracellular targets of two AgNPs and silver ions in mouse hepatocytes (AML12) cultured in glucose- and galactose-based media. AML12 cells were more sensitive to mitochondrial uncoupling when grown with galactose rather than glucose. However, 24 h treatments with 15 nm AgNPs and 6 nm GA-AgNPs (5 and 10 µg/mL) and AgNO3 (1 and 3 µg/mL), concentrations that resulted in either 10 or 30% cytotoxicity, failed to cause more toxicity to AML12 cells grown on galactose than glucose. Furthermore, colocalization analysis and subcellular Ag quantification did not show any enrichment of silver content in mitochondria in either medium. Finally, the effects of the same exposures on mitochondrial respiration were mild or undetectable, a result inconsistent with mitochondrial toxicity causing cell death. Our results suggest that neither ionic Ag nor the AgNPs that we tested specifically target mitochondria and are inconsistent with mitochondrial dysfunction being the primary cause of cell death after Ag exposure under these conditions.

7.
J Surg Res ; 249: 50-57, 2020 05.
Article in English | MEDLINE | ID: mdl-31918330

ABSTRACT

BACKGROUND: Immunosuppressive medications are widely used for the prevention of allograft rejection in transplantation and graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Despite their clinical utility, these medications are accompanied by multiple off-target effects, some of which may be mediated by their effects on mitochondria. METHODS: We examined the effect of commonly used immunosuppressive reagents, mycophenolate mofetil (MMF), cyclosporine A (CsA), rapamycin, and tacrolimus on mitochondrial function in human T-cells. T-cells were cultured in the presence of immunosuppressive medications in a range of therapeutic doses. After incubation, mitochondrial membrane potential, reactive oxygen species (ROS) production, and apoptotic cell death were measured by flow cytometry after staining with DiOC6, MitoSOX Red, and Annexin V and 7-AAD, respectively. Increases in cytosolic cytochrome c were demonstrated by Western blot. T-cell basal oxygen consumption rates were measured using a Seahorse bioanalyzer. RESULTS: T-cells demonstrated significant levels of mitochondrial depolarization after treatment with therapeutic levels of MMF but not after treatment with CsA, tacrolimus, or rapamycin. Only MMF induced T-cell ROS production and induced significant levels of apoptotic cell death that were associated with increased levels of cytosolic cytochrome c. MMF decreased T-cell basal oxygen consumption within its therapeutic range, and CsA demonstrated a trend toward this result. CONCLUSIONS: The impairment of mitochondrial function by commonly used immunosuppressive reagents may impair T-cell differentiation and function by decreasing energy production, producing toxic ROS, and inducing apoptotic cell death.


Subject(s)
Immunosuppressive Agents/adverse effects , Mitochondria/drug effects , T-Lymphocytes/drug effects , Apoptosis/drug effects , Cell Differentiation/drug effects , Cyclosporine/adverse effects , Energy Metabolism/drug effects , Graft Rejection/immunology , Graft Rejection/prevention & control , Graft vs Host Disease/immunology , Graft vs Host Disease/prevention & control , Humans , Jurkat Cells , Membrane Potential, Mitochondrial , Mitochondria/pathology , Mycophenolic Acid/adverse effects , Reactive Oxygen Species/metabolism , Sirolimus/adverse effects , T-Lymphocytes/cytology , T-Lymphocytes/pathology , Tacrolimus/adverse effects
8.
Int J Mol Sci ; 20(13)2019 Jun 29.
Article in English | MEDLINE | ID: mdl-31261893

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is one of the most common neurodegenerative disorders involving devastating loss of dopaminergic neurons in the substantia nigra. Early steps in PD pathogenesis include mitochondrial dysfunction, and mutations in mitochondrial genes have been linked to familial forms of the disease. However, low penetrance of mutations indicates a likely important role for environmental factors in PD risk through gene by environment interactions. Herein, we study how genetic deficiencies in mitochondrial dynamics processes including fission, fusion, and mitophagy interact with environmental exposures to impact neurodegeneration. METHODS: We utilized the powerful model organism Caenorhabditis elegans to study ultraviolet C radiation (UVC)- and 6-hydroxydopamine-induced degeneration of fluorescently-tagged dopaminergic neurons in the background of fusion deficiency (MFN1/2 homolog, fzo-1), fission deficiency (DMN1L homolog, drp-1), and mitochondria-specific autophagy (mitophagy) deficiency (PINK1 and PRKN homologs, pink-1 and pdr-1). RESULTS: Overall, we found that deficiency in either mitochondrial fusion or fission sensitizes nematodes to UVC exposure (used to model common environmental pollutants) but protects from 6-hydroxydopamine-induced neurodegeneration. By contrast, mitophagy deficiency makes animals more sensitive to these stressors with an interesting exception-pink-1 deficiency conferred remarkable protection from 6-hydroxydopamine. We found that this protection could not be explained by compensatory antioxidant gene expression in pink-1 mutants or by differences in mitochondrial morphology. CONCLUSIONS: Together, our results support a strong role for gene by environment interactions in driving dopaminergic neurodegeneration and suggest that genetic deficiency in mitochondrial processes can have complex effects on neurodegeneration.


Subject(s)
Dopaminergic Neurons/metabolism , Mitochondrial Dynamics , Parkinson Disease/genetics , Radiation Tolerance/genetics , Animals , Caenorhabditis elegans , Caenorhabditis elegans Proteins/genetics , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/radiation effects , Dynamins/genetics , GTP Phosphohydrolases/genetics , Mitophagy , Oxidopamine/toxicity , Parkinson Disease/etiology , Protein Serine-Threonine Kinases/genetics , Ubiquitin-Protein Ligases/genetics , Ultraviolet Rays/adverse effects
9.
Am J Physiol Cell Physiol ; 315(6): C781-C792, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30133321

ABSTRACT

Starvation significantly alters cellular physiology, and signs of aging have been reported to occur during starvation. Mitochondria are essential to the regulation of cellular energetics and aging. We sought to determine whether mitochondria exhibit signs of aging during starvation and whether quality control mechanisms regulate mitochondrial physiology during starvation. We describe effects of starvation on mitochondria in the first and third larval stages of the nematode Caenorhabditis elegans. When starved, C. elegans larvae enter developmental arrest. We observed fragmentation of the mitochondrial network, a reduction in mitochondrial DNA (mtDNA) copy number, and accumulation of DNA damage during starvation-induced developmental arrest. Mitochondrial function was also compromised by starvation. Starved worms had lower basal, maximal, and ATP-linked respiration. These observations are consistent with reduced mitochondrial quality, similar to mitochondrial phenotypes during aging. Using pharmacological and genetic approaches, we found that worms deficient for autophagy were short-lived during starvation and recovered poorly from extended starvation, indicating sensitivity to nutrient stress. Autophagy mutants unc-51/Atg1 and atg-18/Atg18 maintained greater mtDNA content than wild-type worms during starvation, suggesting that autophagy promotes mitochondrial degradation during starvation. unc-51 mutants also had a proportionally smaller reduction in oxygen consumption rate during starvation, suggesting that autophagy also contributes to reduced mitochondrial function. Surprisingly, mutations in genes involved in mitochondrial fission and fusion as well as selective mitophagy of damaged mitochondria did not affect mitochondrial content during starvation. Our results demonstrate the profound influence of starvation on mitochondrial physiology with organismal consequences, and they show that these physiological effects are influenced by autophagy.


Subject(s)
Autophagy-Related Protein-1 Homolog/genetics , Autophagy/genetics , Caenorhabditis elegans/physiology , Mitochondrial Dynamics/genetics , Starvation/genetics , Animals , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , DNA Damage/genetics , DNA, Mitochondrial/genetics , Larva/genetics , Larva/metabolism , Longevity/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Dynamics/physiology , Mitophagy/genetics , Starvation/metabolism
10.
Environ Sci Technol ; 51(1): 560-569, 2017 01 03.
Article in English | MEDLINE | ID: mdl-27785914

ABSTRACT

Traditional cooking using biomass is associated with ill health, local environmental degradation, and regional climate change. Clean stoves (liquefied petroleum gas (LPG), biogas, and electric) are heralded as a solution, but few studies have demonstrated their environmental health benefits in field settings. We analyzed the impact of mainly biogas (as well as electric and LPG) stove use on social, environmental, and health outcomes in two districts in Odisha, India, where the Indian government has promoted household biogas. We established a cross-sectional observational cohort of 105 households that use either traditional mud stoves or improved cookstoves (ICS). Our multidisciplinary team conducted surveys, environmental air sampling, fuel weighing, and health measurements. We examined associations between traditional or improved stove use and primary outcomes, stratifying households by proximity to major industrial plants. ICS use was associated with 91% reduced use of firewood (p < 0.01), substantial time savings for primary cooks, a 72% reduction in PM2.5, a 78% reduction in PAH levels, and significant reductions in water-soluble organic carbon and nitrogen (p < 0.01) in household air samples. ICS use was associated with reduced time in the hospital with acute respiratory infection and reduced diastolic blood pressure but not with other health measurements. We find many significant gains from promoting rural biogas stoves in a context in which traditional stove use persists, although pollution levels in ICS households still remained above WHO guidelines.


Subject(s)
Air Pollution, Indoor , Biofuels , Air Pollution , Climate Change , Cooking , Cross-Sectional Studies , Humans , India
11.
Environ Sci Technol ; 50(6): 3256-64, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26938845

ABSTRACT

The relationship between mercury (Hg) and selenium (Se) toxicity is complex, with coexposure reported to reduce, increase, and have no effect on toxicity. Different interactions may be related to chemical compound, but this has not been systematically examined. Our goal was to assess the interactive effects between the two elements on growth in the nematode Caenorhabditis elegans, focusing on inorganic and organic Hg (HgCl2 and MeHgCl) and Se (selenomethionine, sodium selenite, and sodium selenate) compounds. We utilized aqueous Hg/Se dosing molar ratios that were either above, below, or equal to 1 and measured the internal nematode total Hg and Se concentrations for the highest concentrations of each Se compound. Observed interactions were complicated, differed between Se and Hg compounds, and included greater-than-additive, additive, and less-than-additive growth impacts. Biologically significant interactions were only observed when the dosing Se solution concentration was 100-25,000 times greater than the dosing Hg concentration. Mitigation of growth impacts was not predictable on the basis of internal Hg/Se molar ratio; improved growth was observed at some internal Hg/Se molar ratios both above and below 1. These findings suggest that future assessments of the Hg and Se relationship should incorporate chemical compound into the evaluation.


Subject(s)
Caenorhabditis elegans/drug effects , Caenorhabditis elegans/growth & development , Mercury/toxicity , Selenium/toxicity , Animals , Drug Interactions , Environmental Pollutants/toxicity , Mercuric Chloride/toxicity , Mercury/administration & dosage , Selenic Acid/toxicity , Selenium/administration & dosage , Selenomethionine/toxicity , Sodium Selenite/toxicity
12.
Environ Sci Technol ; 49(16): 10093-8, 2015 Aug 18.
Article in English | MEDLINE | ID: mdl-26146787

ABSTRACT

The use of antibacterial silver nanomaterials in consumer products ranging from textiles to toys has given rise to concerns over their environmental toxicity. These materials, primarily nanoparticles, have been shown to be toxic to a wide range of organisms; thus methods and materials that reduce their environmental toxicity while retaining their useful antibacterial properties can potentially solve this problem. Here we demonstrate that silver nanocubes display a lower toxicity toward the model plant species Lolium multiflorum while showing similar toxicity toward other environmentally relevant and model organisms (Danio rerio and Caenorhabditis elegans) and bacterial species (Esherichia coli, Bacillus cereus, and Pseudomonas aeruginosa) compared to quasi-spherical silver nanoparticles and silver nanowires. More specifically, in the L. multiflorum experiments, the roots of silver nanocube treated plants were 5.3% shorter than the control, while silver nanoparticle treated plant roots were 39.6% shorter than the control. The findings here could assist in the future development of new antibacterial products that cause less environmental toxicity after their intended use.


Subject(s)
Environmental Pollutants/toxicity , Metal Nanoparticles/toxicity , Silver/toxicity , Bacillus cereus/drug effects , Bacillus cereus/growth & development , Escherichia coli/drug effects , Escherichia coli/growth & development , Lolium/drug effects , Metal Nanoparticles/ultrastructure , Microbial Sensitivity Tests , Particle Size , Plant Roots/drug effects , Plant Roots/growth & development , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/growth & development
13.
Chem Res Toxicol ; 27(1): 42-50, 2014 Jan 21.
Article in English | MEDLINE | ID: mdl-24299273

ABSTRACT

The biotransformation of fluorotelomer based compounds yields saturated and unsaturated fluorotelomer aldehydes (FTALs and FTUALs, respectively) and carboxylic acids (FTCAs and FTUCAs, respectively) as intermediate metabolites that subsequently transform to perfluorinated carboxylic acids (PFCAs). Previous studies have demonstrated that the FTCAs and FTUCAs are 1 to 5 orders of magnitude more toxic than PFCAs after exposure to aquatic organisms. Additionally, FTUALs have demonstrated reactivity with proteins, which may be associated with toxicity through the inhibition of protein function. The purpose of this study was to carry out a comprehensive assessment of the relative toxicity between PFCAs and their intermediate precursor metabolites: the FTALs, FTUALs, FTCAs, and FTUCAs. Analytes were separately incubated with human liver epithelial (THLE-2) cells to assess how varying the functional group and the fluorinated chain length affects cell viability. For each analyte, dose-response EC50 values were calculated. The EC50 values for FTUCAs and FTCAs were similar, with values ranging from 22 ± 9 and 24 ± 9 µM for the 10:2 congeners to 1004 ± 20 and 1004 ± 24 µM for the 4:2 congeners, respectively. The EC50 values for the PFCAs ranged from 65 ± 41 (PFDA) to 1361 ± 146 (PFBA) µM. The range of toxicity between PFCAs and their acid precursors were similar. However, the comparative toxicity between the 6:2 and 8:2 congeners and their corresponding PFCA had toxicity thresholds that varied depending on the functional headgroup, where FTUALs ≥ FTALs > FTUCAs ≥ FTCAs > PFCAs. For all PFCAs and acid precursors, toxicity depended on the length of the fluorinated chain, where the longer chain lengths yielded greater bioaccumulation and enhanced toxicity, results which agreed with those previously reported. By contrast, FTALs and FTUALs were the most toxic of all the analytes examined, where toxicity was enhanced at shorter chain lengths, with EC50 values of 7 ± 1 µM (6:2 FTUAL) and 8.6 ± 0.8 µM (6:2 FTAL). DNA adducts were not detectable for the aldehyde precursors, using a quantitative long-range PCR method. Our data provide the first evidence that aldehyde intermediates have demonstrated toxicity in cellular systems that is more significant than PFCAs and their corresponding acid intermediates.


Subject(s)
Aldehydes/metabolism , Aldehydes/pharmacology , Cytotoxins/metabolism , Cytotoxins/pharmacology , Hydrocarbons, Fluorinated/metabolism , Hydrocarbons, Fluorinated/pharmacology , Aldehydes/chemistry , Cell Survival/drug effects , Cells, Cultured , Cytotoxins/chemistry , Dose-Response Relationship, Drug , Humans , Hydrocarbons, Fluorinated/chemistry , Molecular Structure , Structure-Activity Relationship
14.
Environ Sci Technol ; 48(6): 3486-95, 2014 Mar 18.
Article in English | MEDLINE | ID: mdl-24568198

ABSTRACT

Significant progress has been made in understanding the toxicity of silver nanoparticles (Ag NPs) under carefully controlled laboratory conditions. Natural organic matter (NOM) is omnipresent in complex environmental systems, where it may alter the behavior of nanoparticles in these systems. We exposed the nematode Caenorhabditis elegans to Ag NP suspensions with or without one of two kinds of NOM, Suwannee River and Pony Lake fulvic acids (SRFA and PLFA, respectively). PLFA rescued toxicity more effectively than SRFA. Measurement of total tissue silver content indicated that PLFA reduced total organismal (including digestive tract) uptake of ionic silver, but not of citrate-coated Ag NPs (CIT-Ag NPs). The majority of the CIT-Ag NP uptake was in the digestive tract. Limited tissue uptake was detected by hyperspectral microscopy but not by transmission electron microscopy. Co-exposure to PLFA resulted in the formation of NOM-Ag NP composites (both in medium and in nematodes) and rescued AgNO3- and CIT-Ag NP-induced cellular damage, potentially by decreasing intracellular uptake of CIT-Ag NPs.


Subject(s)
Benzopyrans/pharmacology , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/metabolism , Metal Nanoparticles/toxicity , Silver/pharmacokinetics , Silver/toxicity , Animals , Benzopyrans/chemistry , Humic Substances , Rivers
15.
Nucleic Acids Res ; 40(16): 7916-31, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22718972

ABSTRACT

Mitochondria lack the ability to repair certain helix-distorting lesions that are induced at high levels in mitochondrial DNA (mtDNA) by important environmental genotoxins and endogenous metabolites. These lesions are irreparable and persistent in the short term, but their long-term fate is unknown. We report that removal of such mtDNA damage is detectable by 48 h in Caenorhabditis elegans, and requires mitochondrial fusion, fission and autophagy, providing genetic evidence for a novel mtDNA damage removal pathway. Furthermore, mutations in genes involved in these processes as well as pharmacological inhibition of autophagy exacerbated mtDNA damage-mediated larval arrest, illustrating the in vivo relevance of removal of persistent mtDNA damage. Mutations in genes in these pathways exist in the human population, demonstrating the potential for important gene-environment interactions affecting mitochondrial health after genotoxin exposure.


Subject(s)
Autophagy , DNA Damage , DNA, Mitochondrial/metabolism , Mitochondrial Dynamics , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/radiation effects , DNA Replication , DNA, Mitochondrial/biosynthesis , DNA, Mitochondrial/radiation effects , Larva/genetics , Larva/radiation effects , Mitochondria/ultrastructure , Ultraviolet Rays/adverse effects
16.
PLoS One ; 19(4): e0292415, 2024.
Article in English | MEDLINE | ID: mdl-38669260

ABSTRACT

One aspect of Caenorhabditis elegans that makes it a highly valuable model organism is the ease of use of in vivo genetic reporters, facilitated by its transparent cuticle and highly tractable genetics. Despite the rapid advancement of these technologies, worms must be paralyzed for most imaging applications, and few investigations have characterized the impacts of common chemical anesthetic methods on the parameters measured, in particular biochemical measurements such as cellular energetics and redox tone. Using two dynamic reporters, QUEEN-2m for relative ATP levels and reduction-oxidation sensitive GFP (roGFP) for redox tone, we assess the impact of commonly used chemical paralytics. We report that no chemical anesthetic is entirely effective at doses required for full paralysis without altering redox tone or ATP levels, and that anesthetic use alters the detected outcome of rotenone exposure on relative ATP levels and redox tone. We also assess the use of cold shock, commonly used in combination with physical restraint methods, and find that cold shock does not alter either ATP levels or redox tone. In addition to informing which paralytics are most appropriate for research in these topics, we highlight the need for tailoring the use of anesthetics to different endpoints and experimental questions. Further, we reinforce the need for developing less disruptive paralytic methods for optimal imaging of dynamic in vivo reporters.


Subject(s)
Adenosine Triphosphate , Caenorhabditis elegans , Oxidation-Reduction , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/drug effects , Adenosine Triphosphate/metabolism , Optical Imaging/methods , Paralysis/chemically induced , Paralysis/metabolism , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/genetics , Rotenone/pharmacology , Anesthetics/pharmacology
17.
Neurotoxicology ; 100: 100-106, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38070655

ABSTRACT

Caenorhabditis elegans (C. elegans) is an excellent model system to study neurodegenerative diseases, such as Parkinson's disease, as it enables analysis of both neuron morphology and function in live animals. Multiple structural changes in neurons, such as cephalic dendrite morphological abnormalities, have been considered hallmarks of neurodegeneration in this model, but their relevance to changes in neuron function are not entirely clear. We sought to test whether hallmark morphological changes associated with chemically induced dopaminergic neuron degeneration, such as dendrite blebbing, breakage, and loss, are indicative of neuronal malfunction and result in changes in behavior. We adapted an established dopaminergic neuronal function assay by measuring paralysis in the presence of exogenous dopamine, which revealed clear differences between cat-2 dopamine deficient mutants, wildtype worms, and dat-1 dopamine abundant mutants. Next, we integrated an automated image processing algorithm and a microfluidic device to segregate worm populations by their cephalic dendrite morphologies. We show that nematodes with dopaminergic dendrite degeneration markers, such as blebbing or breakage, paralyze at higher rates in a dopamine solution, providing evidence that dopaminergic neurodegeneration morphologies are correlated with functional neuronal outputs.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Dopamine , Animals, Genetically Modified , Dopaminergic Neurons , Disease Models, Animal
18.
BMC Ecol Evol ; 24(1): 55, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38664688

ABSTRACT

BACKGROUND: Sex differences in mitochondrial function have been reported in multiple tissue and cell types. Additionally, sex-variable responses to stressors including environmental pollutants and drugs that cause mitochondrial toxicity have been observed. The mechanisms that establish these differences are thought to include hormonal modulation, epigenetic regulation, double dosing of X-linked genes, and the maternal inheritance of mtDNA. Understanding the drivers of sex differences in mitochondrial function and being able to model them in vitro is important for identifying toxic compounds with sex-variable effects. Additionally, understanding how sex differences in mitochondrial function compare across species may permit insight into the drivers of these differences, which is important for basic biology research. This study explored whether Caenorhabditis elegans, a model organism commonly used to study stress biology and toxicology, exhibits sex differences in mitochondrial function and toxicant susceptibility. To assess sex differences in mitochondrial function, we utilized four male enriched populations (N2 wild-type male enriched, fog-2(q71), him-5(e1490), and him-8(e1498)). We performed whole worm respirometry and determined whole worm ATP levels and mtDNA copy number. To probe whether sex differences manifest only after stress and inform the growing use of C. elegans as a mitochondrial health and toxicologic model, we also assessed susceptibility to a classic mitochondrial toxicant, rotenone. RESULTS: We detected few to no large differences in mitochondrial function between C. elegans sexes. Though we saw no sex differences in vulnerability to rotenone, we did observe sex differences in the uptake of this lipophilic compound, which may be of interest to those utilizing C. elegans as a model organism for toxicologic studies. Additionally, we observed altered non-mitochondrial respiration in two him strains, which may be of interest to other researchers utilizing these strains. CONCLUSIONS: Basal mitochondrial parameters in male and hermaphrodite C. elegans are similar, at least at the whole-organism level, as is toxicity associated with a mitochondrial Complex I inhibitor, rotenone. Our data highlights the limitation of using C. elegans as a model to study sex-variable mitochondrial function and toxicological responses.


Subject(s)
Caenorhabditis elegans , DNA, Mitochondrial , Mitochondria , Sex Characteristics , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Male , Female , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , DNA, Mitochondrial/drug effects
19.
20.
Front Genet ; 15: 1348855, 2024.
Article in English | MEDLINE | ID: mdl-38356697

ABSTRACT

The field of environmental epigenetics is uniquely suited to investigate biologic mechanisms that have the potential to link stressors to health disparities. However, it is common practice in basic epigenetic research to treat race as a covariable in large data analyses in a way that can perpetuate harmful biases without providing any biologic insight. In this article, we i) propose that epigenetic researchers open a dialogue about how and why race is employed in study designs and think critically about how this might perpetuate harmful biases; ii) call for interdisciplinary conversation and collaboration between epigeneticists and social scientists to promote the collection of more detailed social metrics, particularly institutional and structural metrics such as levels of discrimination that could improve our understanding of individual health outcomes; iii) encourage the development of standards and practices that promote full transparency about data collection methods, particularly with regard to race; and iv) encourage the field of epigenetics to continue to investigate how social structures contribute to biological health disparities, with a particular focus on the influence that structural racism may have in driving these health disparities.

SELECTION OF CITATIONS
SEARCH DETAIL