Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Mol Ther ; 31(9): 2767-2782, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37481701

ABSTRACT

The AAV9 gene therapy vector presented in this study is safe in mice and non-human primates and highly efficacious without causing overexpression toxicity, a major challenge for clinical translation of Rett syndrome gene therapy vectors to date. Our team designed a new truncated methyl-CpG-binding protein 2 (MECP2) promoter allowing widespread expression of MECP2 in mice and non-human primates after a single injection into the cerebrospinal fluid without causing overexpression symptoms up to 18 months after injection. Additionally, this new vector is highly efficacious at lower doses compared with previous constructs as demonstrated in extensive efficacy studies performed by two independent laboratories in two different Rett syndrome mouse models carrying either a knockout or one of the most frequent human mutations of Mecp2. Overall, data from this multicenter study highlight the efficacy and safety of this gene therapy construct, making it a promising candidate for first-in-human studies to treat Rett syndrome.


Subject(s)
Rett Syndrome , Humans , Mice , Animals , Rett Syndrome/genetics , Rett Syndrome/therapy , Rett Syndrome/metabolism , Primates/genetics , Genetic Therapy , Mutation
2.
Int J Mol Sci ; 24(6)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36982654

ABSTRACT

Neutralizing antibody (NAb) activity against the viral capsid of adeno-associated viral (AAV) vectors decreases transduction efficiency, thus limiting transgene expression. Several reports have mentioned a variation in NAb prevalence according to age, AAV serotype, and, most importantly, geographic location. There are currently no reports specifically describing the anti-AAV NAb prevalence in Latin America. Here, we describe the prevalence of NAb against different serotypes of AAV vectors (AAV1, AAV2, and AAV9) in Colombian patients with heart failure (HF) (referred to as cases) and healthy individuals (referred to as controls). The levels of NAb were evaluated in serum samples of 60 subjects from each group using an in vitro inhibitory assay. The neutralizing titer was reported as the first dilution inhibiting ≥50% of the transgene signal, and the samples with neutralizing titers at ≥1:50 dilution were considered positive. The prevalence of NAb in the case and control groups were similar (AAV2: 43% and 45%, respectively; AAV1 33.3% in each group; AAV9: 20% and 23.2%, respectively). The presence of NAb for two or more of the serotypes analyzed was observed in 25% of the studied samples, with the largest amount in the positive samples for AAV1 (55-75%) and AAV9 (93%), suggesting serial exposures, cross-reactivity, or coinfection. Moreover, patients in the HF group exhibited more common combined seropositivity for NAb against AAV1 d AAV9 than those in the control group (91.6% vs. 35.7%, respectively; p = 0.003). Finally, exposure to toxins was significantly associated with the presence of NAb in all regression models. These results constitute the first report of the prevalence of NAb against AAV in Latin America, being the first step to implementing therapeutic strategies based on AAV vectors in this population in our region.


Subject(s)
Antibodies, Neutralizing , Heart Failure , Humans , Serogroup , Latin America , Antibodies, Viral , Dependovirus/genetics , Prevalence , Heart Failure/epidemiology , Genetic Vectors/genetics , Transduction, Genetic
3.
Mol Ther Methods Clin Dev ; 32(3): 101275, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39022742

ABSTRACT

Heterozygous mutations in the FOXG1 gene manifest as FOXG1 syndrome, a severe neurodevelopmental disorder characterized by structural brain anomalies, including agenesis of the corpus callosum, hippocampal reduction, and myelination delays. Despite the well-defined genetic basis of FOXG1 syndrome, therapeutic interventions targeting the underlying cause of the disorder are nonexistent. In this study, we explore the therapeutic potential of adeno-associated virus 9 (AAV9)-mediated delivery of the FOXG1 gene. Remarkably, intracerebroventricular injection of AAV9-FOXG1 to Foxg1 heterozygous mouse model at the postnatal stage rescues a wide range of brain pathologies. This includes the amelioration of corpus callosum deficiencies, the restoration of dentate gyrus morphology in the hippocampus, the normalization of oligodendrocyte lineage cell numbers, and the rectification of myelination anomalies. Our findings highlight the efficacy of AAV9-based gene therapy as a viable treatment strategy for FOXG1 syndrome and potentially other neurodevelopmental disorders with similar brain malformations, asserting its therapeutic relevance in postnatal stages.

4.
Mol Ther Methods Clin Dev ; 32(1): 101176, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38225934

ABSTRACT

Thirty genes are involved in the biosynthesis and modification of glycosylphosphatidylinositol (GPI)-anchored proteins, and defects in these genes cause inherited GPI deficiency (IGD). PIGA is X-linked and involved in the first step of GPI biosynthesis, and only males are affected by variations in this gene. The main symptoms of IGD are neurological abnormalities, such as developmental delay and seizures. There is no effective treatment at present. We crossed Nestin-Cre mice with Piga-floxed mice to generate CNS-specific Piga knockout (KO) mice. Hemizygous KO male mice died by P10 with severely defective growth. Heterozygous Piga KO female mice are mosaic for Piga expression and showed severe defects in growth and myelination and died by P25. Using these mouse models, we evaluated the effect of gene replacement therapy with adeno-associated virus (AAV). It expressed efficacy within 6 days, and the survival of male mice was extended to up to 3 weeks, whereas 40% of female mice survived for approximately 1 year and the growth defect was improved. However, liver cancer developed in all three treated female mice at 1 year of age, which was probably caused by the AAV vector bearing a strong CAG promoter.

5.
Fluids Barriers CNS ; 21(1): 34, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605366

ABSTRACT

The blood-brain barrier (BBB) serves as a highly intricate and dynamic interface connecting the brain and the bloodstream, playing a vital role in maintaining brain homeostasis. BBB dysfunction has been associated with multiple neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS); however, the role of the BBB in neurodegeneration is understudied. We developed an ALS patient-derived model of the BBB by using cells derived from 5 patient donors carrying C9ORF72 mutations. Brain microvascular endothelial-like cells (BMEC-like cells) derived from C9ORF72-ALS patients showed altered gene expression, compromised barrier integrity, and increased P-glycoprotein transporter activity. In addition, mitochondrial metabolic tests demonstrated that C9ORF72-ALS BMECs display a significant decrease in basal glycolysis accompanied by increased basal and ATP-linked respiration. Moreover, our study reveals that C9-ALS derived astrocytes can further affect BMECs function and affect the expression of the glucose transporter Glut-1. Finally, C9ORF72 patient-derived BMECs form leaky barriers through a cell-autonomous mechanism and have neurotoxic properties towards motor neurons.


Subject(s)
Amyotrophic Lateral Sclerosis , Blood-Brain Barrier , Endothelial Cells , Humans , Amyotrophic Lateral Sclerosis/genetics , Blood-Brain Barrier/metabolism , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Endothelial Cells/metabolism
6.
Cell Rep ; 43(2): 113802, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38368610

ABSTRACT

RNA helicases constitute a large protein family implicated in cellular RNA homeostasis and disease development. Here, we show that the RNA helicase IGHMBP2, linked to the neuromuscular disorder spinal muscular atrophy with respiratory distress type 1 (SMARD1), associates with polysomes and impacts translation of mRNAs containing short, GC-rich, and structured 5' UTRs. The absence of IGHMBP2 causes ribosome stalling at the start codon of target mRNAs, leading to reduced translation efficiency. The main mRNA targets of IGHMBP2-mediated regulation encode for components of the THO complex (THOC), linking IGHMBP2 to mRNA production and nuclear export. Accordingly, failure of IGHMBP2 regulation of THOC causes perturbations of the transcriptome and its encoded proteome, and ablation of THOC subunits phenocopies these changes. Thus, IGHMBP2 is an upstream regulator of THOC. Of note, IGHMBP2-dependent regulation of THOC is also observed in astrocytes derived from patients with SMARD1 disease, suggesting that deregulated mRNA metabolism contributes to SMARD1 etiology and may enable alternative therapeutic avenues.


Subject(s)
Muscular Atrophy, Spinal , Respiratory Distress Syndrome, Newborn , Humans , RNA, Messenger/genetics , Muscular Atrophy, Spinal/genetics , 5' Untranslated Regions , Homeostasis , DNA-Binding Proteins/genetics , Transcription Factors/genetics
7.
Neurotherapeutics ; : e00376, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38876822

ABSTRACT

The neurodevelopmental disorder Pitt Hopkins syndrome (PTHS) causes clinical symptoms similar to Rett syndrome (RTT) patients. However, RTT is caused by MECP2 mutations whereas mutations in the TCF4 gene lead to PTHS. The mechanistic commonalities underling these two disorders are unknown, but their shared symptomology suggest that convergent pathway-level disruption likely exists. We reprogrammed patient skin derived fibroblasts into induced neuronal progenitor cells. Interestingly, we discovered that MeCP2 levels were decreased in PTHS patient iNPCs relative to healthy controls and that both iNPCs and iAstrocytes displayed defects in function and differentiation in a mutation-specific manner. When Tcf4+/- mice were genetically crossed with mice overexpressing MeCP2, molecular and phenotypic defects were significantly ameliorated, underlining and important role of MeCP2 in PTHS pathology. Importantly, post-natal intracerebroventricular gene replacement therapy with adeno-associated viral vector serotype 9 (AAV9)-expressing MeCP2 (AAV9.P546.MeCP2) significantly improved iNPC and iAstrocyte function and effectively ameliorated histological and behavioral defects in Tcf4+/- mice. Combined, our data suggest a previously unknown role of MeCP2 in PTHS pathology and common pathways that might be affected in multiple neurodevelopmental disorders. Our work highlights potential novel therapeutic targets for PTHS, including upregulation of MeCP2 expression or its downstream targets or, potentially, MeCP2-based gene therapy.

8.
Mol Ther Methods Clin Dev ; 30: 16-29, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37746244

ABSTRACT

Anc80L65 is a synthetic, ancestral adeno-associated virus that has high tropism toward retinal photoreceptors after subretinal injection in mice and non-human primates. We characterized, for the first time, the post-intravitreal cell-specific transduction profile of Anc80L65 compared with AAV9. Here we use Anc80L65 and AAV9 to intravitreally deliver a copy of the gene encoding GFP into WT C57Bl/6J mice. GFP expression was driven by one of two clinically relevant promoters, chicken ß actin (CB) or truncated MECP2 (P546). After qualitative assessment of relative GFP expression, we found Anc80L65 and AAV9 to have similar transduction profiles. Through the development of a novel method for quantifying GFP-positive retinal cells, we found Anc80L65 to have higher tropism in Müller glia and AAV9 to have higher tropism in horizontal cells. In addition, we found P546 to promote GFP expression at a more moderate level compared with the high levels seen under the CB promoter. Finally, for the first time, we characterized Anc80L65 cross-reactivity in human sera; 83% of patients with AAV2 pre-existing antibodies were found to be seropositive for Anc80L65. This study demonstrates the expanded therapeutic applications of Anc80L65 to treat retinal disease and provides the first insights to Anc80L65 pre-existing immunity in humans.

9.
iScience ; 25(9): 104877, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36034213

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a degenerative disease that progressively destroys motor neurons (MNs). Earlier studies identified EphA4, a receptor tyrosine kinase, as a possible disease-modifying gene. The complex interplay between the EphA4 receptor and its ephrin ligands in motor neurons and astrocytes has not yet been fully elucidated and includes a putative pro-apoptotic activity of the unbound receptor compared to ephrin-bound receptor. We recently reported that astrocytes from patients with ALS induce cell death in co-cultured MNs. Here we found that first-generation synthetic EphA4 agonistic agent 123C4, effectively protected MNs when co-cultured with reactive astrocytes from patients with ALS from multiple subgroups (sALS and mutant SOD1). Newer generation and more potent EphA4 agonistic agents 150D4, 150E8, and 150E7 provided effective protection at a lower therapeutic dose. Combined, the data suggest that the development of EphA4 agonistic agents provides potentially a promising therapeutic strategy for patients with ALS.

10.
Cell Rep ; 41(10): 111751, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36476864

ABSTRACT

The recently discovered neurological disorder NEDAMSS is caused by heterozygous truncations in the transcriptional regulator IRF2BPL. Here, we reprogram patient skin fibroblasts to astrocytes and neurons to study mechanisms of this newly described disease. While full-length IRF2BPL primarily localizes to the nucleus, truncated patient variants sequester the wild-type protein to the cytoplasm and cause aggregation. Moreover, patient astrocytes fail to support neuronal survival in coculture and exhibit aberrant mitochondria and respiratory dysfunction. Treatment with the small molecule copper ATSM (CuATSM) rescues neuronal survival and restores mitochondrial function. Importantly, the in vitro findings are recapitulated in vivo, where co-expression of full-length and truncated IRF2BPL in Drosophila results in cytoplasmic accumulation of full-length IRF2BPL. Moreover, flies harboring heterozygous truncations of the IRF2BPL ortholog (Pits) display progressive motor defects that are ameliorated by CuATSM treatment. Our findings provide insights into mechanisms involved in NEDAMSS and reveal a promising treatment for this severe disorder.

11.
Sci Adv ; 8(3): eabl5613, 2022 01 21.
Article in English | MEDLINE | ID: mdl-35044823

ABSTRACT

De novo truncations in Interferon Regulatory Factor 2 Binding Protein Like (IRF2BPL) lead to severe childhood-onset neurodegenerative disorders. To determine how loss of IRF2BPL causes neural dysfunction, we examined its function in Drosophila and zebrafish. Overexpression of either IRF2BPL or Pits, the Drosophila ortholog, represses Wnt transcription in flies. In contrast, neuronal depletion of Pits leads to increased wingless (wg) levels in the brain and is associated with axonal loss, whereas inhibition of Wg signaling is neuroprotective. Moreover, increased neuronal expression of wg in flies is sufficient to cause age-dependent axonal loss, similar to reduction of Pits. Loss of irf2bpl in zebrafish also causes neurological defects with an associated increase in wnt1 transcription and downstream signaling. WNT1 is also increased in patient-derived astrocytes, and pharmacological inhibition of Wnt suppresses the neurological phenotypes. Last, IRF2BPL and the Wnt antagonist, CKIα, physically and genetically interact, showing that IRF2BPL and CkIα antagonize Wnt transcription and signaling.


Subject(s)
Drosophila Proteins , Animals , Carrier Proteins/metabolism , Child , Drosophila/genetics , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Humans , Interferon Regulatory Factor-2/metabolism , Nuclear Proteins/metabolism , Proto-Oncogene Proteins/genetics , Wnt Signaling Pathway , Wnt1 Protein/genetics , Wnt1 Protein/metabolism , Zebrafish/genetics , Zebrafish/metabolism
12.
Neurobiol Aging ; 104: 32-41, 2021 08.
Article in English | MEDLINE | ID: mdl-33964607

ABSTRACT

Sarcopenia, or age-related loss of muscle mass and strength, is an important contributor to loss of physical function in older adults. The pathogenesis of sarcopenia is likely multifactorial, but recently the role of neurological degeneration, such as motor unit loss, has received increased attention. Here, we investigated the longitudinal effects of muscle hypertrophy (via overexpression of human follistatin, a myostatin antagonist) on neuromuscular integrity in C57BL/6J mice between the ages of 24 and 27 months. Following follistatin overexpression (delivered via self-complementary adeno-associated virus subtype 9 injection), muscle weight and torque production were significantly improved. Follistatin treatment resulted in improvements of neuromuscular junction innervation and transmission but had no impact on age-related losses of motor units. These studies demonstrate that follistatin overexpression-induced muscle hypertrophy not only increased muscle weight and torque production but also countered age-related degeneration at the neuromuscular junction in mice.


Subject(s)
Aging/pathology , Aging/physiology , Follistatin/pharmacology , Muscle, Skeletal/pathology , Neuromuscular Junction/drug effects , Neuromuscular Junction/physiology , Animals , Female , Follistatin/genetics , Follistatin/metabolism , Gene Expression , Hypertrophy/genetics , Male , Mice, Inbred C57BL , Organ Size/drug effects , Organ Size/genetics , Sarcopenia/genetics , Sarcopenia/prevention & control , Synaptic Transmission/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL