Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Publication year range
1.
Phys Rev Lett ; 110(12): 126804, 2013 Mar 22.
Article in English | MEDLINE | ID: mdl-25166834

ABSTRACT

A combined experimental and theoretical study of doping individual Fe atoms into Bi(2)Se(3) is presented. It is shown through a scanning tunneling microscopy study that single Fe atoms initially located at hollow sites on top of the surface (adatoms) can be incorporated into subsurface layers by thermally activated diffusion. Angle-resolved photoemission spectroscopy in combination with ab initio calculations suggest that the doping behavior changes from electron donation for the Fe adatom to neutral or electron acceptance for Fe incorporated into substitutional Bi sites. According to first principles calculations within density functional theory, these Fe substitutional impurities retain a large magnetic moment, thus presenting an alternative scheme for magnetically doping the topological surface state. For both types of Fe doping, we see no indication of a gap at the Dirac point.

2.
Phys Rev Lett ; 108(25): 256811, 2012 Jun 22.
Article in English | MEDLINE | ID: mdl-23004640

ABSTRACT

The robustness of the gapless topological surface state hosted by a 3D topological insulator against perturbations of magnetic origin has been the focus of recent investigations. We present a comprehensive study of the magnetic properties of Fe impurities on the prototypical 3D topological insulator Bi(2)Se(3) using local low-temperature scanning tunneling spectroscopy and integral x-ray magnetic circular dichroism techniques. Single Fe adatoms on the Bi(2)Se(3) surface, in the coverage range ≈ 1% of a monolayer, are heavily relaxed into the surface and exhibit a magnetic easy axis within the surface plane, contrary to what was assumed in recent investigations on the supposed opening of a gap. Using ab initio approaches, we demonstrate that an in-plane easy axis arises from the combination of the crystal field and dynamic hybridization effects.

3.
Nat Commun ; 13(1): 3096, 2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35654938

ABSTRACT

In spintronics, the two main approaches to actively control the electrons' spin involve static magnetic or electric fields. An alternative avenue relies on the use of optical fields to generate spin currents, which can bolster spin-device performance, allowing for faster and more efficient logic. To date, research has mainly focused on the optical injection of spin currents through the photogalvanic effect, and little is known about the direct optical control of the intrinsic spin-splitting. To explore the optical manipulation of a material's spin properties, we consider the Rashba effect. Using time- and angle-resolved photoemission spectroscopy (TR-ARPES), we demonstrate that an optical excitation can tune the Rashba-induced spin splitting of a two-dimensional electron gas at the surface of Bi2Se3. We establish that light-induced photovoltage and charge carrier redistribution - which in concert modulate the Rashba spin-orbit coupling strength on a sub-picosecond timescale - can offer an unprecedented platform for achieving optically-driven spin logic devices.

4.
Phys Rev Lett ; 107(9): 096802, 2011 Aug 26.
Article in English | MEDLINE | ID: mdl-21929260

ABSTRACT

We report a Rashba spin splitting of a two-dimensional electron gas in the topological insulator Bi(2)Se(3) from angle-resolved photoemission spectroscopy. We further demonstrate its electrostatic control, and show that spin splittings can be achieved which are at least an order-of-magnitude larger than in other semiconductors. Together these results show promise for the miniaturization of spintronic devices to the nanoscale and their operation at room temperature.

SELECTION OF CITATIONS
SEARCH DETAIL