ABSTRACT
Traumatic brain injury (TBI) is a neurological condition which affects a large number of individuals worldwide, across all ages. It can lead to major physical, cognitive and psychological impairment, and represents a considerable health cost burden. TBI is a heterogeneous condition and there has been intense effort over the last decade to identify better biomarkers, which would enable an optimum and personalized treatment. The brain is highly enriched in a variety of lipids, including fatty acids, glycerophospholipids, glycerolipids, sterols and sphingolipids. There is accumulating evidence in clinical studies in TBI patients and also in experimental models of TBI, that injury triggers a complex pattern of changes in various lipid classes. Such changes can be detected in blood (plasma/serum), cerebrospinal fluid and also in brain tissue. They provide new insights into the pathophysiology of TBI, and have biomarker potential. Here, we review the various changes reported and discuss the scope and value of these lipid focused studies within the TBI field.
Subject(s)
Brain Injuries, Traumatic/genetics , Brain/metabolism , Lipid Metabolism/genetics , Lipids/genetics , Animals , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Brain/pathology , Brain Injuries, Traumatic/blood , Brain Injuries, Traumatic/cerebrospinal fluid , Brain Injuries, Traumatic/pathology , Fatty Acids/blood , Fatty Acids/cerebrospinal fluid , Fatty Acids/metabolism , Glycerophospholipids/blood , Glycerophospholipids/cerebrospinal fluid , Glycerophospholipids/metabolism , Humans , Lipids/blood , Lipids/cerebrospinal fluidABSTRACT
BACKGROUND: Hypoxic-ischemic encephalopathy (HIE) is associated with brain injury in newborns and may lead to disability or death. Mild therapeutic hypothermia (TH) is an effective neuroprotective intervention and an established standard of care in western countries. The gut microbiome, the genomic and physicochemical contribution of the gut microbiota, serves important functions and is increasingly recognized as a major influencer on development. The impact of HIE and TH on the evolving gut microbiota of the newborn remains to be elucidated. OBJECTIVE: The objective of this study was to carry out an exploratory study on the effects of HIE and TH on the gut microbiome in term neonates. METHODS AND RESULTS: Stool samples were obtained from 28 newborns with HIE (median age 68 h) undergoing TH on the neonatal unit (HIE TH group), with a follow-on stool sample available for 20 of these babies (median age 151 h). For comparison, a single stool specimen was obtained from 19 healthy newborns on the postnatal ward (median age 34 h). The microbiota composition was determined using established microbial DNA extraction and 16S rRNA gene sequencing methodology. There was no difference in the mode of delivery or the method of feeding the newborns, once established, between the 2 groups. All the infants in the HIE TH group had received antibiotics compared to only one of the controls. A lower α-diversity, quantified by the Shannon diversity index, was noted in the microbiota of the HIE TH group in comparison to the control group. The HIE TH group had a higher mean relative abundance (MRA) of facultative anaerobes and aerobes such as Staphylococcus species and a lower MRA of strict anaerobes, such as members of the Bacteroides genus, compared to the control. Also, there was a significant reduction in the MRA of the genus Bifidobacterium in the HIE TH group. Although the mode of delivery exerts a profound influence on the gut microbiota of the newborn, distance-based redundancy analysis showed that TH may exert an independent influence. This study could not determine the independent contribution of the use of antibiotics or the neonatal intensive care unit environment. CONCLUSION: In this study, we demonstrate an alteration in the microbiota composition in newborns undergoing TH for HIE.
Subject(s)
Hypothermia, Induced , Hypoxia-Ischemia, Brain , Microbiota , Adult , Aged , Anti-Bacterial Agents , Humans , Hypothermia, Induced/methods , Hypoxia-Ischemia, Brain/therapy , Infant , Infant, Newborn , RNA, Ribosomal, 16SABSTRACT
Microglia are activated after spinal cord injury (SCI), but their phagocytic mechanisms and link to neuroprotection remain incompletely characterized. Docosahexaenoic acid (DHA) has been shown to have significant neuroprotective effects after hemisection and compression SCI and can directly affect microglia in these injury models. In rodent contusion SCI, we demonstrate that DHA (500 nmol/kg) administered acutely post-injury confers neuroprotection and enhances locomotor recovery, and also exerts a complex modulation of the microglial response to injury. In rodents, at 7 days after SCI, the level of phagocytosed myelin within Iba1-positive or P2Y12-positive cells was significantly lower after DHA treatment, and this occurred in parallel with an increase in intracellular miR-124 expression. Furthermore, intraspinal administration of a miR-124 inhibitor significantly reduced the DHA-induced decrease in myelin phagocytosis in mice at 7 days post-SCI. In rat spinal primary microglia cultures, DHA reduced the phagocytic response to myelin, which was associated with an increase in miR-124, but not miR-155. A similar response was observed in a microglia cell line (BV2) treated with DHA, and the effect was blocked by a miR-124 inhibitor. Furthermore, the phagocytic response of BV2 cells to stressed neurones was also reduced in the presence of DHA. In peripheral monocyte-derived macrophages, the expression of the M1, but not the M0 or M2 phenotype, was reduced by DHA, but the phagocytic activation was not altered. These findings show that DHA induces neuroprotection in contusion injury. Furthermore, the improved outcome is via a miR-124-dependent reduction in the phagocytic response of microglia.
Subject(s)
Docosahexaenoic Acids/therapeutic use , MicroRNAs/metabolism , Microglia/drug effects , Neurons/drug effects , Phagocytosis/drug effects , Spinal Cord Injuries/drug therapy , Animals , Contusions/drug therapy , Disease Models, Animal , Docosahexaenoic Acids/pharmacology , Female , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Microglia/cytology , Microglia/metabolism , Myelin Sheath/metabolism , Neurons/metabolism , Neuroprotection/drug effects , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , PC12 Cells , Rats , Rats, Sprague-DawleyABSTRACT
This article reviews novel approaches for omega-3 fatty acid (FA) therapeutics and the linked molecular mechanisms in cardiovascular and central nervous system (CNS) diseases. In vitro and in vivo research studies indicate that omega-3 FAs affect synergic mechanisms that include modulation of cell membrane fluidity, regulation of intracellular signaling pathways, and production of bioactive mediators. We compare how chronic and acute treatments with omega-3 FAs differentially trigger pathways of protection in heart, brain, and spinal cord injuries. We also summarize recent omega-3 FA randomized clinical trials and meta-analyses and discuss possible reasons for controversial results, with suggestions on improving the study design for future clinical trials. Acute treatment with omega-3 FAs offers a novel approach for preserving cardiac and neurological functions, and the combinations of acute treatment with chronic administration of omega-3 FAs might represent an additional therapeutic strategy for ameliorating adverse cardiovascular and CNS outcomes.
Subject(s)
Brain Injuries/drug therapy , Fatty Acids, Omega-3/therapeutic use , Heart Diseases/prevention & control , Spinal Cord Injuries/drug therapy , Drug Administration Schedule , Fatty Acids, Omega-3/administration & dosage , HumansABSTRACT
Mutating the side-chains of amino acids in a peptide ligand, with unnatural amino acids, aiming to mitigate its short half-life is an established approach. However, it is hypothesized that mutating specific backbone peptide bonds with bioisosters can be exploited not only to enhance the proteolytic stability of parent peptides, but also to tune its receptor subtype selectivity. Towards this end, four [Y]6 -Angiotensin II analogues are synthesized where amide bonds have been replaced by 1,4-disubstituted 1,2,3-triazole isosteres in four different backbone locations. All the analogues possessed enhanced stability in human plasma in comparison with the parent peptide, whereas only two of them achieved enhanced AT2 R/AT1 R subtype selectivity. This diversification has been studied through 2D NMR spectroscopy and unveiled a putative more structured microenvironment for the two selective ligands accompanied with increased number of NOE cross-peaks. The most potent analogue, compoundâ 2, has been explored regarding its neurotrophic potential and resulted in an enhanced neurite growth with respect to the established agent C21.
Subject(s)
Angiotensin II/chemistry , Angiotensin II/metabolism , Mutation , Peptides/genetics , Receptors, Angiotensin/chemistry , Receptors, Angiotensin/metabolism , Amino Acids/genetics , Angiotensin II/genetics , Animals , HEK293 Cells , Humans , Ligands , Peptides/chemistry , Peptides/metabolism , Substrate SpecificityABSTRACT
This review aims to highlight a possible relationship between hypoxic-ischaemic encephalopathy (HIE) and the disruption of the blood-brain barrier (BBB). Inflammatory reactions perpetuate a large proportion of cerebral injury. The extent of injury noted in HIE is not only determined by the biochemical cascades that trigger the apoptosis-necrosis continuum of cell death in the brain parenchyma, but also by the breaching of the BBB by pro-inflammatory factors. We examine the changes that contribute to the breakdown of the BBB that occur during HIE at a macroscopic, cellular, and molecular level. The BBB is a permeability barrier which separates a large majority of brain areas from the systemic circulation. The concept of a physiological BBB is based at the anatomical level on the neurovascular unit (NVU). The NVU consists of various cellular components that jointly regulate the exchanges that occur at the interface between the systemic circulation and the brain parenchyma. There is increased understanding of the contribution of the components of the NVU, e.g., astrocytes and pericytes, to the maintenance of this physiological barrier. We also explore the development of therapeutic options in HIE, such as harnessing the transport systems in the BBB, to enable the delivery of large molecules with molecular Trojan horse technology, and the reinforcement of the physical barrier with cell-based therapy which utilizes endothelial progenitor cells and stem cells.
Subject(s)
Asphyxia Neonatorum/pathology , Blood-Brain Barrier/pathology , Hypoxia-Ischemia, Brain/pathology , Animals , Humans , Infant, NewbornABSTRACT
Docosahexaenoic acid (DHA) is an ω-3 polyunsaturated fatty acid that is essential in brain development and has structural and signaling roles. Acute DHA administration is neuroprotective and promotes functional recovery in animal models of adult spinal cord injury (SCI). However, the mechanisms underlying this recovery have not been fully characterized. Here we investigated the effects of an acute intravenous bolus of DHA delivered after SCI and characterized DHA-induced neuroplasticity within the adult injured spinal cord. We found robust sprouting of uninjured corticospinal and serotonergic fibers in a rat cervical hemisection SCI model. A mouse pyramidotomy model was used to confirm that this robust sprouting was not species or injury model specific. Furthermore, we demonstrated that corticospinal fibers sprouting to the denervated side of the cord following pyramidotomy contact V2a interneurons. We also demonstrated increased serotonin fibers and synaptophysin in direct contact with motor neurons. DHA also increased synaptophysin in rat cortical cell cultures. A reduction in phosphatase and tensin homolog (PTEN) has been shown to be involved in axonal regeneration and synaptic plasticity. We showed that DHA significantly upregulates miR-21 and downregulates PTEN in corticospinal neurons. Downregulation of PTEN and upregulation of phosphorylated AKT by DHA were also seen in primary cortical neuron cultures and were accompanied by increased neurite outgrowth. In summary, acute DHA induces anatomical and synaptic plasticity in adult injured spinal cord. This study shows that DHA has therapeutic potential in cervical SCI and provides evidence that DHA could exert its beneficial effects in SCI via enhancement of neuroplasticity. SIGNIFICANCE STATEMENT: In this study, we show that an acute intravenous injection of docosahexaenoic acid (DHA) 30 min after spinal cord injury induces neuroplasticity. We found robust sprouting of uninjured corticospinal and serotonergic fibers in a rat hemisection spinal cord injury model. A mouse pyramidotomy model was used to confirm that the robust sprouting involved V2a interneurons. We show that DHA significantly upregulates miR-21 and phosphorylated AKT, and downregulates phosphatase and tensin homolog (PTEN), which is involved in suppressing anatomical plasticity, in corticospinal neurons and in primary cortical neuron cultures. We conclude that acute DHA can induce anatomical and synaptic plasticity. This provides direct evidence that DHA could exert its beneficial effects in spinal cord injury via neuroplasticity enhancement.
Subject(s)
Docosahexaenoic Acids/therapeutic use , Interneurons/drug effects , Motor Neurons/drug effects , Nerve Regeneration/drug effects , Neuronal Plasticity/drug effects , Neuroprotective Agents/therapeutic use , Pyramidal Tracts/drug effects , Spinal Cord Injuries/drug therapy , Spinal Cord/drug effects , Animals , Cells, Cultured , Cervical Vertebrae , Docosahexaenoic Acids/administration & dosage , Docosahexaenoic Acids/pharmacology , Drug Evaluation, Preclinical , Exploratory Behavior/drug effects , Female , Gait Disorders, Neurologic/drug therapy , Gait Disorders, Neurologic/etiology , Gene Expression Regulation/drug effects , Injections, Intravenous , Interneurons/physiology , Mice , MicroRNAs/biosynthesis , MicroRNAs/genetics , Motor Neurons/physiology , Nerve Regeneration/physiology , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurites/drug effects , Neurites/ultrastructure , Neuronal Plasticity/physiology , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/pharmacology , PTEN Phosphohydrolase/biosynthesis , PTEN Phosphohydrolase/genetics , Phosphorylation/drug effects , Protein Processing, Post-Translational/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Pyramidal Tracts/injuries , Pyramidal Tracts/pathology , Pyramidal Tracts/physiology , Rats , Rats, Sprague-Dawley , Serotonergic Neurons/physiology , Serotonergic Neurons/ultrastructure , Spinal Cord/physiology , Spinal Cord Injuries/complications , Spinal Cord Injuries/physiopathologyABSTRACT
Spinal cord injury leads to major neurological impairment for which there is currently no effective treatment. Recent clinical trials have demonstrated the efficacy of Fortasyn® Connect in Alzheimer's disease. Fortasyn® Connect is a specific multi-nutrient combination containing DHA, EPA, choline, uridine monophosphate, phospholipids, and various vitamins. We examined the effect of Fortasyn® Connect in a rat compression model of spinal cord injury. For 4 or 9 weeks following the injury, rats were fed either a control diet or a diet enriched with low, medium, or high doses of Fortasyn® Connect. The medium-dose Fortasyn® Connect-enriched diet showed significant efficacy in locomotor recovery after 9 weeks of supplementation, along with protection of spinal cord tissue (increased neuronal and oligodendrocyte survival, decreased microglial activation, and preserved axonal integrity). Rats fed the high-dose Fortasyn® Connect-enriched diet for 4 weeks showed a much greater enhancement of locomotor recovery, with a faster onset, than rats fed the medium dose. Bladder function recovered quicker in these rats than in rats fed the control diet. Their spinal cord tissues showed a smaller lesion, reduced neuronal and oligodendrocyte loss, decreased neuroinflammatory response, reduced astrocytosis and levels of inhibitory chondroitin sulphate proteoglycans, and better preservation of serotonergic axons than those of rats fed the control diet. These results suggest that this multi-nutrient preparation has a marked therapeutic potential in spinal cord injury, and raise the possibility that this original approach could be used to support spinal cord injured patients.
Subject(s)
Dietary Supplements , Docosahexaenoic Acids , Eicosapentaenoic Acid , Phospholipids , Spinal Cord Injuries/diet therapy , Animals , Astrocytes/immunology , Astrocytes/pathology , Cell Death , Cell Survival , Cicatrix/diet therapy , Cicatrix/pathology , Cicatrix/physiopathology , Disease Models, Animal , Female , Gliosis/diet therapy , Gliosis/pathology , Gliosis/physiopathology , Motor Activity , Neurons/immunology , Neurons/pathology , Oligodendroglia/immunology , Oligodendroglia/pathology , Rats, Sprague-Dawley , Rats, Wistar , Recovery of Function , Spinal Cord/immunology , Spinal Cord/pathology , Spinal Cord Injuries/pathology , Spinal Cord Injuries/physiopathology , Thoracic Vertebrae , Treatment Outcome , Urinary Bladder/physiopathologyABSTRACT
BACKGROUND: Two families of polyunsaturated fatty acid (PUFA), omega-3 (ω-3) and omega-6 (ω-6), are required for physiological functions. The long chain ω-3 PUFAs, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have significant biological effects. In particular, DHA is a major component of cell membranes in the brain. It is also involved in neurotransmission. Spinal cord injury (SCI) is a highly devastating pathology that can lead to catastrophic dysfunction, with a significant reduction in the quality of life. Previous studies have shown that EPA and DHA can exert neuroprotective effects in SCI in mice and rats. The aim of this study was to analyze the mechanism of action of ω-3 PUFAs, such as DHA, in a mouse model of SCI, with a focus on the early pathophysiological processes. METHODS: In this study, SCI was induced in mice by the application of an aneurysm clip onto the dura mater via a four-level T5 to T8 laminectomy. Thirty minutes after compression, animals received a tail vein injection of DHA at a dose of 250 nmol/kg. All animals were killed at 24 h after SCI, to evaluate various parameters implicated in the spread of the injury. RESULTS: Our results in this in-vivo study clearly demonstrate that DHA treatment reduces key factors associated with spinal cord trauma. Treatment with DHA significantly reduced: (1) the degree of spinal cord inflammation and tissue injury, (2) pro-inflammatory cytokine expression (TNF-α), (3) nitrotyrosine formation, (4) glial fibrillary acidic protein (GFAP) expression, and (5) apoptosis (Fas-L, Bax, and Bcl-2 expression). Moreover, DHA significantly improved the recovery of limb function.Furthermore, in this study we evaluated the effect of oxidative stress on dorsal root ganglion (DRG) cells using a well-characterized in-vitro model. Treatment with DHA ameliorated the effects of oxidative stress on neurite length and branching. CONCLUSIONS: Our results, in vivo and in vitro, clearly demonstrate that DHA treatment reduces the development of inflammation and tissue injury associated with spinal cord trauma.
Subject(s)
Anti-Inflammatory Agents/therapeutic use , Docosahexaenoic Acids/therapeutic use , Inflammation/drug therapy , Inflammation/etiology , Spinal Cord Injuries/complications , Animals , Cells, Cultured , Cytokines/metabolism , Disease Models, Animal , Fatty Acids, Omega-3/pharmacology , Ganglia, Spinal/cytology , In Vitro Techniques , Laminectomy , Male , Mice , Mice, Knockout , Movement Disorders/drug therapy , Movement Disorders/etiology , Neurites/drug effects , Neurons/cytology , Neurons/drug effects , Oxidative Stress/drug effects , PPAR alpha/deficiency , fas Receptor/metabolismABSTRACT
Traumatic brain injury (TBI) leads to major membrane lipid breakdown. We investigated plasma lipids over 3 days post-TBI, to identify a signature of acute human TBI and assess its correlation with neuronal injury and inflammation. Plasma from patients with TBI (Abbreviated Injury Scale (AIS)3 - serious injury, n = 5; AIS4 - severe injury, n = 8), and controls (n = 13) was analysed for lipidomic profile, neurofilament light (NFL) and cytokines, and the omega-3 index was measured in red blood cells. A lipid signature separated TBI from controls, at 24 and 72 h. Major species driving the separation were: lysophosphatidylcholine (LPC), phosphatidylcholine (PC) and hexosylceramide (HexCer). Docosahexaenoic acid (DHA, 22:6) and LPC (0:0/22:6) decreased post-injury. NFL levels were increased at 24 and 72 h post-injury in AIS4 TBI vs. controls. Interleukin (IL-)6, IL-2 and IL-13 were elevated at 24 h in AIS4 patients vs. controls. NFL and IL-6 were negatively correlated with several lipids. The omega-3 index at admission was low in all patients (controls: 4.3 ± 1.1% and TBI: 4.0 ± 1.1%) and did not change significantly over 3 days post-injury. We have identified specific lipid changes, correlated with markers of injury and inflammation in acute TBI. These observations could inform future lipid-based therapeutic approaches.
ABSTRACT
Traumatic brain injury (TBI) can cause major disability and increases the risk of neurodegeneration. Post-TBI, there is infiltration of peripheral myeloid and lymphoid cells; there is limited information on the peripheral immune response post-TBI in the immature brain-where injury may interfere with neurodevelopment. We carried out two injury types in juvenile mice: invasive TBI with a controlled cortical impact (CCI) and repetitive mild TBI (rmTBI) using weight drop injury and analysed the response at 5- and 35-days post-injury. In the two models, we detected the brain infiltration of immune cells (e.g., neutrophils, monocytes, dendritic cells, CD4+ T cells, and NK cells). There were increases in macrophages, neutrophils, and dendritic cells in the spleen, increases in dendritic cells in blood, and increases in CD8+ T cells and B cells in lymph nodes. These results indicate a complex peripheral immune response post-TBI in the immature brain, with differences between an invasive injury and a repetitive mild injury.
Subject(s)
Brain Injuries, Traumatic , Disease Models, Animal , Mice, Inbred C57BL , Animals , Brain Injuries, Traumatic/immunology , Brain Injuries, Traumatic/pathology , Mice , Brain/pathology , Brain/immunology , Male , Dendritic Cells/immunology , Spleen/immunology , Spleen/pathologyABSTRACT
N-methyl-d-aspartate receptor (NMDAR)-dependent short- and long-term types of potentiation (STP and LTP, respectively) are frequently studied in the CA1 area of dorsal hippocampal slices (DHS). Far less is known about the NMDAR dependence of STP and LTP in ventral hippocampal slices (VHS), where both types of potentiation are smaller in magnitude than in the DHS. Here, we first briefly review our knowledge about the NMDAR dependence of STP and LTP and some other forms of synaptic plasticity. We then show in new experiments that the decay of NMDAR-STP in VHS, similar to dorsal hippocampal NMDAR-STP, is not time- but activity-dependent. We also demonstrate that the induction of submaximal levels of NMDAR-STP and NMDAR-LTP in VHS differs from the induction of saturated levels of plasticity in terms of their sensitivity to subunit-preferring NMDAR antagonists. These data suggest that activation of distinct NMDAR subtypes in a population of neurons results in an incremental increase in the induction of different phases of potentiation with changing sensitivity to pharmacological agents. Differences in pharmacological sensitivity, which arise due to differences in the levels of agonist-evoked biological response, might explain the disparity of the results concerning NMDAR subunit involvement in the induction of NMDAR-dependent plasticity.This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Subject(s)
CA1 Region, Hippocampal , Long-Term Potentiation , Receptors, N-Methyl-D-Aspartate , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Long-Term Potentiation/physiology , CA1 Region, Hippocampal/physiology , Neuronal Plasticity/physiology , Rats , Hippocampus/physiologyABSTRACT
[This corrects the article DOI: 10.3389/fneur.2018.00086.].
ABSTRACT
Traumatic brain injury (TBI) is a leading cause of disability and increases the risk of developing neurodegenerative diseases. The mechanisms linking TBI to neurodegeneration remain to be defined. It has been proposed that the induction of cellular senescence after injury could amplify neuroinflammation and induce long-term tissue changes. The induction of a senescence response post-injury in the immature brain has yet to be characterised. We carried out two types of brain injury in juvenile CD1 mice: invasive TBI using controlled cortical impact (CCI) and repetitive mild TBI (rmTBI) using weight drop injury. The analysis of senescence-related signals showed an increase in γH2AX-53BP1 nuclear foci, p53, p19ARF, and p16INK4a expression in the CCI group, 5 days post-injury (dpi). At 35 days, the difference was no longer statistically significant. Gene expression showed the activation of different senescence pathways in the ipsilateral and contralateral hemispheres in the injured mice. CCI-injured mice showed a neuroinflammatory early phase after injury (increased Iba1 and GFAP expression), which persisted for GFAP. After CCI, there was an increase at 5 days in p16INK4, whereas in rmTBI, a significant increase was seen at 35 dpi. Both injuries caused a decrease in p21 at 35 dpi. In rmTBI, other markers showed no significant change. The PCR array data predicted the activation of pathways connected to senescence after rmTBI. These results indicate the induction of a complex cellular senescence and glial reaction in the immature mouse brain, with clear differences between an invasive brain injury and a repetitive mild injury.
Subject(s)
Brain Concussion , Brain Injuries, Traumatic , Brain Injuries , Mice , Animals , Brain Concussion/complications , Neuroinflammatory Diseases , Brain Injuries, Traumatic/complications , Cellular Senescence , Mice, Inbred C57BL , Disease Models, AnimalABSTRACT
Functional recovery after a peripheral nerve injury (PNI) is often poor. There is a need for therapies that protect neurons against injury and enhance regeneration. ω-3 polyunsaturated fatty acids (PUFAs) have been shown to have therapeutic potential in a variety of neurological disorders, including acute traumatic injury. The objective of this study was to assess the neuroprotective and pro-regenerative potential of ω-3 PUFAs in PNI. We investigated this in mice that express the fat-1 gene encoding for ω-3 fatty acid desaturase, which leads to an increase in endogenous ω-3 PUFAs and a concomitant decrease in ω-6 PUFAs. Dorsal root ganglion (DRG) neurons from wild-type or fat-1 mice were subjected to a mechanical strain or hypoxic injury, and cell death was assessed using ethidium homodimer-1 labeling. The fat-1 background appears to confer robust neuroprotection against both injuries. We then examined the early functional and morphological changes in wild-type and fat-1 mice after a sciatic nerve crush. An accelerated functional recovery 7 d after injury was seen in fat-1 mice when assessed using von Frey filaments and the sciatic nerve functional index. These observations were also mapped to changes in injury-related markers. The injury-induced expression of ATF-3 was decreased in the DRG of fat-1 mice, whereas the axons detected 6 mm distal to the crush were increased. Fat-1 animals also had some protection against muscle atrophy after injury. In conclusion, both in vitro and in vivo experiments support the idea that a higher endogenous ω-3 PUFA could lead to beneficial effects after a PNI.
Subject(s)
Dietary Fats, Unsaturated/pharmacology , Fatty Acids, Omega-3/biosynthesis , Neuroprotective Agents/pharmacology , Peripheral Nerve Injuries/diet therapy , Peripheral Nerve Injuries/prevention & control , Animals , Cadherins/genetics , Cadherins/metabolism , Cells, Cultured , Dietary Fats, Unsaturated/metabolism , Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-3/physiology , Female , Male , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Neuroprotective Agents/blood , Peripheral Nerve Injuries/metabolismABSTRACT
The long-chain omega-3 polyunsaturated fatty acids (n-3 PUFAs)-eicosapentaenoic acid (EPA) and its metabolite docosahexaenoic acid (DHA)-inhibit cancer formation in vivo, but their mechanism of action is unclear. Extracellular signal-regulated kinase 1/2 (ERK1/2) activation and inhibition have both been associated with the induction of tumour cell apoptosis by n-3 PUFAs. We show here that low doses of EPA, in particular, inhibited the growth of premalignant and malignant keratinocytes more than the growth of normal counterparts by a combination of cell cycle arrest and apoptosis. The growth inhibition of the oral squamous cell carcinoma (SCC) lines, but not normal keratinocytes, by both n-3 PUFAs was associated with epidermal growth factor receptor (EGFR) autophosphorylation, a sustained phosphorylation of ERK1/2 and its downstream target p90RSK but not with phosphorylation of the PI3 kinase target Akt. Inhibition of EGFR with either the EGFR kinase inhibitor AG1478 or an EGFR-blocking antibody inhibited ERK1/2 phosphorylation, and the blocking antibody partially antagonized growth inhibition by EPA but not by DHA. DHA generated more reactive oxygen species and activated more c-jun N-terminal kinase than EPA, potentially explaining its increased toxicity to normal keratinocytes. Our results show that, in part, EPA specifically inhibits SCC growth and development by creating a sustained signalling imbalance to amplify the EGFR/ERK/p90RSK pathway in neoplastic keratinocytes to a supraoptimal level, supporting the chemopreventive potential of EPA, whose toxicity to normal cells might be reduced further by blocking its metabolism to DHA. Furthermore, ERK1/2 phosphorylation may have potential as a biomarker of n-3 PUFA function in vivo.
Subject(s)
Fatty Acids, Omega-3/pharmacology , Keratinocytes/metabolism , MAP Kinase Signaling System/drug effects , Apoptosis/drug effects , Caspases/metabolism , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Docosahexaenoic Acids/pharmacology , Eicosapentaenoic Acid/pharmacology , ErbB Receptors/metabolism , Humans , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Signal Transduction/drug effectsABSTRACT
Omega-3 polyunsaturated fatty acids have been shown to have therapeutic potential in a variety of neurological disorders, including acute traumatic injury of the spinal cord. We addressed the question whether the neuroprotective effect of these compounds after spinal cord injury could also be seen when their level is raised in tissues prophylactically, prior to injury. In this study we used transgenic fat-1 mice to examine whether enriching spinal cord tissue in endogenous omega-3 polyunsaturated fatty acids has an effect on the outcome after compression spinal cord injury. The results demonstrate that after thoracic compression spinal cord injury, fat-1 mice display better locomotor recovery compared with the wild-type mice on a high omega-6 diet (high omega-6 polyunsaturated fatty acids in tissues), and wild-type mice on a normal diet (controls). This is associated with a significant increase in neuronal and oligodendrocyte survival and a decrease in non-phosphorylated neurofilament loss. The protection from spinal cord injury in fat-1 mice was also correlated with a reduction in microglia/macrophage activation and in pro-inflammatory mediators. In vitro experiments in dorsal root ganglia primary sensory neurons further demonstrated that a fat-1 tissue background confers robust neuroprotection against a combined mechanical stretch and hypoxic injury. In conclusion, our studies support the hypothesis that a raised omega-3 polyunsaturated fatty acid level and an altered tissue omega-6/omega-3 ratio prior to injury leads to a much improved outcome after spinal cord injury.
Subject(s)
Fatty Acids, Omega-3/metabolism , Recovery of Function/physiology , Spinal Cord Injuries/metabolism , Spinal Cord/chemistry , Animals , Cadherins/genetics , Diet , Immunohistochemistry , Mice , Mice, Inbred C57BL , Mice, Transgenic , Spinal Cord/metabolism , Spinal Cord Injuries/pathologyABSTRACT
Hypoxic-ischaemic encephalopathy (HIE) is an important cause of morbidity and mortality globally. Although mild therapeutic hypothermia (TH) may improve outcomes in selected babies, the mechanism of action is not fully understood. A proteomics discovery study was carried out to analyse proteins in the plasma of newborns with HIE. Proteomic analysis of plasma from 22 newborns with moderate-severe HIE that had initially undergone TH, and relative controls including 10 newborns with mild HIE who did not warrant TH and also cord blood from 10 normal births (non-HIE) were carried out using the isobaric Tandem Mass Tag (TMT®) 10plexTM labelling with tandem mass spectrometry. A total of 7818 unique peptides were identified in all TMT10plexTM samples, translating to 3457 peptides representing 405 proteins, after applying stringent filter criteria. Apart from the unique protein signature from normal cord blood, unsupervised analysis revealed several significantly regulated proteins in the TH-treated moderate-severe HIE group. GO annotation and functional clustering revealed various proteins associated with glucose metabolism: the enzymes fructose-bisphosphate aldolase A, glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate mutase 1, phosphoglycerate kinase 1, and pyruvate kinase PKM were upregulated in newborns with favourable (sHIE+) outcomes compared to newborns with unfavourable (sHIE-) outcomes. Those with favourable outcomes had normal MR imaging or mild abnormalities not predictive of adverse outcomes. However, in comparison to mild HIE and the sHIE- groups, the sHIE+ group had the additional glucose metabolism-related enzymes upregulated, including triosephosphate isomerase, α-enolase, 6-phosphogluconate dehydrogenase, transaldolase, and mitochondrial glutathione reductase. In conclusion, our plasma proteomic study demonstrates that TH-treated newborns with favourable outcomes have an upregulation in glucose metabolism. These findings may open new avenues for more effective neuroprotective therapy.
Subject(s)
Asphyxia , Proteomics , Infant , Humans , Infant, Newborn , Carbohydrate Metabolism , Tandem Mass Spectrometry , PeptidesABSTRACT
Hypoxic-ischemic encephalopathy (HIE) is a major cause of neonatal morbidity and mortality. Although therapeutic hypothermia is an effective treatment, substantial chronic neurological impairment often persists. The long-chain omega-3 polyunsaturated fatty acids (PUFAs), docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids, offer therapeutic potential in the post-acute phase. To understand how PUFAs are affected by HIE and therapeutic hypothermia we quantified for the first time the effects of HIE and therapeutic hypothermia on blood PUFA levels and lipid peroxidation. In a cross-sectional approach, blood samples from newborns with moderate to severe HIE, who underwent therapeutic hypothermia (sHIE group) were compared to samples from newborns with mild HIE, who did not receive therapeutic hypothermia, and controls. The sHIE group was stratified into cerebral MRI predictive of good (n = 10), or poor outcomes (n = 10; nine developed cerebral palsy). Cell pellets were analyzed for fatty acid content, and plasma for lipid peroxidation products, thiobarbituric acid reactive substances and 4-hydroxy-2-nonenal. Omega-3 Index (% DHA + EPA) was similar between control and HIE groups; however, with therapeutic hypothermia there were significantly lower levels in poor vs. good prognosis sHIE groups. Estimated Δ-6 desaturase activity was significantly lower in sHIE compared to mild HIE and control groups, and linoleic acid significantly increased in the sHIE group with good prognosis. Reduced long-chain omega-3 PUFAs was associated with poor outcome after HIE and therapeutic hypothermia, potentially due to decreased biosynthesis and tissue incorporation. We speculate a potential role for long-chain omega-3 PUFA interventions in addition to existing treatments to improve neurologic outcomes in sHIE.
ABSTRACT
Docosahexaenoic acid (DHA, 22 : 6) and eicosapentaenoic acid (EPA, 20 : 5) are omega-3 polyunsaturated fatty acids (n-3 PUFAs) with distinct anti-inflammatory properties. Both have neuroprotective effects acutely following spinal cord injury (SCI). We examined the effect of intravenous DHA and EPA on early inflammatory events after SCI. Saline, DHA or EPA (both 250 nmol/kg) were administered 30 min after T12 compression SCI, to female Sprague-Dawley rats. DHA significantly reduced the number of neutrophils to some areas of the injured epicentre at 4 h and 24 h. DHA also reduced C-reactive protein plasma levels, whereas EPA did not significantly reduce neutrophils or C-reactive protein. Laminectomy and SCI elicited a sustained inflammatory response in the liver, which was not reversed by the PUFAs. The chemokine KC/GRO/CINC and the cytokine IL-6 provide gradients for chemotaxis of neutrophils to the epicentre. At 4 h after injury, there was a significant increase in IL-6, KC/GRO/CINC, IL-1ß and tumour necrosis factor-α in the epicentre, with a return to baseline at 24 h. Neither DHA nor EPA returned their levels to control values. These results indicate that the acute neuroprotective effects of n-3 PUFAs in rat compression SCI may be only partly attributed to reduction of some of the early inflammatory events occurring after injury.