Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
Add more filters

Publication year range
1.
Nature ; 574(7777): 273-277, 2019 10.
Article in English | MEDLINE | ID: mdl-31578525

ABSTRACT

Transcription and pre-mRNA splicing are key steps in the control of gene expression and mutations in genes regulating each of these processes are common in leukaemia1,2. Despite the frequent overlap of mutations affecting epigenetic regulation and splicing in leukaemia, how these processes influence one another to promote leukaemogenesis is not understood and, to our knowledge, there is no functional evidence that mutations in RNA splicing factors initiate leukaemia. Here, through analyses of transcriptomes from 982 patients with acute myeloid leukaemia, we identified frequent overlap of mutations in IDH2 and SRSF2 that together promote leukaemogenesis through coordinated effects on the epigenome and RNA splicing. Whereas mutations in either IDH2 or SRSF2 imparted distinct splicing changes, co-expression of mutant IDH2 altered the splicing effects of mutant SRSF2 and resulted in more profound splicing changes than either mutation alone. Consistent with this, co-expression of mutant IDH2 and SRSF2 resulted in lethal myelodysplasia with proliferative features in vivo and enhanced self-renewal in a manner not observed with either mutation alone. IDH2 and SRSF2 double-mutant cells exhibited aberrant splicing and reduced expression of INTS3, a member of the integrator complex3, concordant with increased stalling of RNA polymerase II (RNAPII). Aberrant INTS3 splicing contributed to leukaemogenesis in concert with mutant IDH2 and was dependent on mutant SRSF2 binding to cis elements in INTS3 mRNA and increased DNA methylation of INTS3. These data identify a pathogenic crosstalk between altered epigenetic state and splicing in a subset of leukaemias, provide functional evidence that mutations in splicing factors drive myeloid malignancy development, and identify spliceosomal changes as a mediator of IDH2-mutant leukaemogenesis.


Subject(s)
Alternative Splicing/genetics , Carcinogenesis/genetics , Epigenesis, Genetic , Leukemia, Myeloid, Acute/genetics , Animals , Cell Line, Tumor , Cell Proliferation , DNA Methylation , DNA-Binding Proteins/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Isocitrate Dehydrogenase/genetics , Male , Mutation/genetics , RNA Polymerase II/metabolism , Serine-Arginine Splicing Factors/genetics , Transcriptome
2.
Blood ; 140(7): 756-768, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35443031

ABSTRACT

DDX41 germline mutations (DDX41MutGL) are the most common genetic predisposition to myelodysplastic syndrome and acute myeloid leukemia (AML). Recent reports suggest that DDX41MutGL myeloid malignancies could be considered as a distinct entity, even if their specific presentation and outcome remain to be defined. We describe here the clinical and biological features of 191 patients with DDX41MutGL AML. Baseline characteristics and outcome of 86 of these patients, treated with intensive chemotherapy in 5 prospective Acute Leukemia French Association/French Innovative Leukemia Organization trials, were compared with those of 1604 patients with DDX41 wild-type (DDX41WT) AML, representing a prevalence of 5%. Patients with DDX41MutGL AML were mostly male (75%), in their seventh decade, and with low leukocyte count (median, 2 × 109/L), low bone marrow blast infiltration (median, 33%), normal cytogenetics (75%), and few additional somatic mutations (median, 2). A second somatic DDX41 mutation (DDX41MutSom) was found in 82% of patients, and clonal architecture inference suggested that it could be the main driver for AML progression. DDX41MutGL patients displayed higher complete remission rates (94% vs 69%; P < .0001) and longer restricted mean overall survival censored at hematopoietic stem cell transplantation (HSCT) than 2017 European LeukemiaNet intermediate/adverse (Int/Adv) DDX41WT patients (5-year difference in restricted mean survival times, 13.6 months; P < .001). Relapse rates censored at HSCT were lower at 1 year in DDX41MutGL patients (15% vs 44%) but later increased to be similar to Int/Adv DDX41WT patients at 3 years (82% vs 75%). HSCT in first complete remission was associated with prolonged relapse-free survival (hazard ratio, 0.43; 95% confidence interval, 0.21-0.88; P = .02) but not with longer overall survival (hazard ratio, 0.77; 95% confidence interval, 0.35-1.68; P = .5).


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , DEAD-box RNA Helicases/genetics , Female , Germ-Line Mutation , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/therapy , Male , Prognosis , Prospective Studies , Retrospective Studies
3.
Eur J Haematol ; 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39305190

ABSTRACT

BACKGROUND: Early-phases clinical trials (Phases 1 and 2) have evolved from a traditional assessment of toxicity to an adaptive approach based on patients' medical needs and access to effective new therapies. The global risks, benefits, and relevance of early-phases clinical trials participation for patients with hematological malignancies remain poorly evaluated. PATIENTS AND METHODS: All early-phases clinical trials participations for patients with hematological malignancies, from 2008 to 2023, in a tertiary academic center in Europe, were reviewed. Patient's demographics, tumor type categories, therapeutic responses, mortality, overall survival (OS), and investigational product (IP) were assessed. RESULTS: Over the period 2008-2023, 736 patients participating in 92 different early-phases clinical trials, were analyzed. The most common tumor categories were diffuse large B-cell lymphoma (n = 253; 34.4%), acute myeloid leukemia/myelodysplastic syndrome (n = 164; 22.3%) and multiple myeloma (n = 100; 13.6%). The median OS was 14.8 (95% CI: 12.4-17.9) months and response rate 31.9%, including complete responses in 13.5% of patients. By tumor categories, the highest and lowest median duration of OS were observed for patients with Hodgkin lymphoma (99.8; [95% CI: 47.0-not reached] months) and peripheral T-cell lymphoma (8.9 [95% CI: 5.3-12.0] months), respectively. The on-protocol and treatment-related mortality rates were 5.43% and 0.54%, respectively. Overall response rate was 29.1% including 13.5% of complete response. Overall, 202 (27.5%) patients received an IP later approved by the health authorities, and those patients had better OS (18.2 months vs. 12.1 months HR: 1.160 [95% CI; 0.6977-1.391], p = 0.0283). CONCLUSION: In conclusion, patients with hematologic malignancies who have participated in early-phases clinical trials over the past 15 years have achieved variable therapeutic response rates, acceptable risk/benefit ratio and potentially significant therapeutic advantages. This study provides framework material for hematologists to further discuss clinical trial participation with their patients.

4.
Int J Gynecol Cancer ; 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39313297

ABSTRACT

There is a lack of biomarkers to predict outcome following initial treatment in patients with high-grade ovarian cancer. We hypothesized that monitoring TP53 mutation (TP53m) in circulating tumor DNA (ctDNA) could be a tumor-specific biomarker. Patients enrolled in a prospective study (NCT03010124) consented to analysis of biological samples through the disease course. ctDNA was extracted and analyzed to detect the presence of TP53m Next-generation sequencing was performed on tumor tissue to detect TP53m and on whole blood to detect clonal hematopoiesis of indeterminate potential (CHIP).A total of 102 samples were sequentially collected from 26 patients. ctDNA was detected in all patients at diagnosis. The same TP53m was found in ctDNA and tumor tissue in 77% of patients. TP53m in ctDNA was not CHIP related. During neoadjuvant chemotherapy, increasing ctDNA was associated with failure to achieve complete interval cytoreductive surgery in 60% of patients. Rising ctDNA or de novo TP53m seemed to be associated with a trend for worst survival compared with decrease or complete clearance: progression-free survival 10 versus 26.5 months, HR 3.2. Despite macroscopically complete surgery, 30% of patients had detectable ctDNA post-operatively and had worse survival than those with undetectable ctDNA. Monitoring TP53m in ctDNA during chemotherapy or after surgery could help guide the best adjuvant therapy.

5.
Blood ; 137(20): 2827-2837, 2021 05 20.
Article in English | MEDLINE | ID: mdl-33881523

ABSTRACT

In patients with isocitrate dehydrogenase (IDH)-mutated acute myeloid leukemia (AML) treated by intensive chemotherapy (IC), prognostic significance of co-occurring genetic alterations and allogeneic hematopoietic stem cell transplantation (HSCT) are of particular interest with the advent of IDH1/2 mutant inhibitors. We retrospectively analyzed 319 patients with newly diagnosed AML (127 with IDH1, 135 with IDH2R140, and 57 with IDH2R172 mutations) treated with IC in 3 Acute Leukemia French Association prospective trials. In each IDH subgroup, we analyzed the prognostic impact of clinical and genetic covariates, and the role of HSCT. In patients with IDH1 mutations, the presence of NPM1 mutations was the only variable predicting improved overall survival (OS) in multivariate analysis (P < .0001). In IDH2R140-mutated AML, normal karyotype (P = .008) and NPM1 mutations (P = .01) predicted better OS. NPM1 mutations were associated with better disease-free survival (DFS; P = .0009), whereas the presence of DNMT3A mutations was associated with shorter DFS (P = .0006). In IDH2R172-mutated AML, platelet count was the only variable retained in the multivariate model for OS (P = .002). Among nonfavorable European LeukemiaNet 2010-eligible patients, 71 (36%) underwent HSCT in first complete remission (CR1) and had longer OS (P = .03) and DFS (P = .02) than nontransplanted patients. Future clinical trials testing frontline IDH inhibitors combined with IC may consider stratification on NPM1 mutational status, the primary prognostic factor in IDH1- or IDH2R140-mutated AML. HSCT improve OS of nonfavorable IDH1/2-mutated AML and should be fully integrated into the treatment strategy.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Isocitrate Dehydrogenase/genetics , Leukemia, Myeloid, Acute/genetics , Neoplasm Proteins/genetics , Point Mutation , Abnormal Karyotype , Aged , Chromosome Aberrations , Clinical Trials as Topic/statistics & numerical data , DNA Methyltransferase 3A/genetics , Disease-Free Survival , Female , France/epidemiology , Humans , In Situ Hybridization, Fluorescence , Isocitrate Dehydrogenase/deficiency , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/mortality , Male , Middle Aged , Neoplasm Proteins/deficiency , Nucleophosmin/genetics , Proportional Hazards Models , Prospective Studies , Retrospective Studies
6.
Blood ; 138(7): 507-519, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34410352

ABSTRACT

To design a simple and reproducible classifier predicting the overall survival (OS) of patients with acute myeloid leukemia (AML) ≥60 years of age treated with 7 + 3, we sequenced 37 genes in 471 patients from the ALFA1200 (Acute Leukemia French Association) study (median age, 68 years). Mutation patterns and OS differed between the 84 patients with poor-risk cytogenetics and the 387 patients with good (n = 13), intermediate (n = 339), or unmeasured (n = 35) cytogenetic risk. TP53 (hazards ratio [HR], 2.49; P = .0003) and KRAS (HR, 3.60; P = .001) mutations independently worsened the OS of patients with poor-risk cytogenetics. In those without poor-risk cytogenetics, NPM1 (HR, 0.57; P = .0004), FLT3 internal tandem duplications with low (HR, 1.85; P = .0005) or high (HR, 3.51; P < 10-4) allelic ratio, DNMT3A (HR, 1.86; P < 10-4), NRAS (HR, 1.54; P = .019), and ASXL1 (HR, 1.89; P = .0003) mutations independently predicted OS. Combining cytogenetic risk and mutations in these 7 genes, 39.1% of patients could be assigned to a "go-go" tier with a 2-year OS of 66.1%, 7.6% to the "no-go" group (2-year OS 2.8%), and 3.3% of to the "slow-go" group (2-year OS of 39.1%; P < 10-5). Across 3 independent validation cohorts, 31.2% to 37.7% and 11.2% to 13.5% of patients were assigned to the go-go and the no-go tiers, respectively, with significant differences in OS between tiers in all 3 trial cohorts (HDF [Hauts-de-France], n = 141, P = .003; and SAL [Study Alliance Leukemia], n = 46; AMLSG [AML Study Group], n = 223, both P < 10-5). The ALFA decision tool is a simple, robust, and discriminant prognostic model for AML patients ≥60 years of age treated with intensive chemotherapy. This model can instruct the design of trials comparing the 7 + 3 standard of care with less intensive regimens.


Subject(s)
Leukemia, Myeloid, Acute , Mutation , Neoplasm Proteins/genetics , Aged , Aged, 80 and over , Cytogenetics , Disease-Free Survival , Female , Follow-Up Studies , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/mortality , Male , Middle Aged , Survival Rate
7.
Blood ; 136(6): 698-714, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32350520

ABSTRACT

Acute erythroleukemia (AEL or acute myeloid leukemia [AML]-M6) is a rare but aggressive hematologic malignancy. Previous studies showed that AEL leukemic cells often carry complex karyotypes and mutations in known AML-associated oncogenes. To better define the underlying molecular mechanisms driving the erythroid phenotype, we studied a series of 33 AEL samples representing 3 genetic AEL subgroups including TP53-mutated, epigenetic regulator-mutated (eg, DNMT3A, TET2, or IDH2), and undefined cases with low mutational burden. We established an erythroid vs myeloid transcriptome-based space in which, independently of the molecular subgroup, the majority of the AEL samples exhibited a unique mapping different from both non-M6 AML and myelodysplastic syndrome samples. Notably, >25% of AEL patients, including in the genetically undefined subgroup, showed aberrant expression of key transcriptional regulators, including SKI, ERG, and ETO2. Ectopic expression of these factors in murine erythroid progenitors blocked in vitro erythroid differentiation and led to immortalization associated with decreased chromatin accessibility at GATA1-binding sites and functional interference with GATA1 activity. In vivo models showed development of lethal erythroid, mixed erythroid/myeloid, or other malignancies depending on the cell population in which AEL-associated alterations were expressed. Collectively, our data indicate that AEL is a molecularly heterogeneous disease with an erythroid identity that results in part from the aberrant activity of key erythroid transcription factors in hematopoietic stem or progenitor cells.


Subject(s)
Leukemia, Erythroblastic, Acute/genetics , Neoplasm Proteins/physiology , Transcription Factors/physiology , Transcriptome , Adult , Animals , Cell Transformation, Neoplastic/genetics , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , DNA-Binding Proteins/physiology , Dioxygenases , Erythroblasts/metabolism , Erythropoiesis/genetics , Female , GATA1 Transcription Factor/deficiency , GATA1 Transcription Factor/genetics , Gene Knock-In Techniques , Genetic Heterogeneity , Hematopoietic Stem Cells/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Transgenic , Middle Aged , Mutation , Neoplasm Proteins/genetics , Neoplastic Stem Cells/metabolism , Proto-Oncogene Proteins/deficiency , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/physiology , RNA-Seq , Radiation Chimera , Repressor Proteins/genetics , Repressor Proteins/physiology , Transcription Factors/genetics , Transcriptional Regulator ERG/genetics , Transcriptional Regulator ERG/physiology , Exome Sequencing , Young Adult
8.
World J Surg ; 46(10): 2389-2398, 2022 10.
Article in English | MEDLINE | ID: mdl-35816234

ABSTRACT

BACKGROUND: Acute abdominal complications (AAC) in patients with deep neutropenia (DN) is challenging to manage because of the expected influence of AAC on oncological prognosis and higher surgical complication rate in a period of DN. In practice, these parameters are difficult to appreciate. This study reported our experience in managing these patients. METHODS: All consecutive patients treated in our tertiary care cancer center between 2010 and 2020 who developed AAC in the context of a DN were retrospectively analyzed. AAC was defined as an infection (intra-abdominal, perineal, or cutaneous), bowel obstruction, or intra-abdominal hemorrhage. FINDINGS: Among 105 patients, 18 (17%) required emergent surgery (group 1), 34 patients had a complication requiring surgical oversight (group 2), and 53 patients had a non-surgical etiology (group 3). Fifteen patients underwent surgery in the group 1, three in group 2, and one in group 3. Overall, 28 patients died during hospitalization. Mortality was statistically different between the groups (p = 0·01), with a higher rate in group 1 (n = 9/18, 50%) than in group 2 (n = 11/34, 32%) and group 3 (n = 8/53, 15%). All groups together had a median overall survival (OS) of 14 months and disease-free survival (DFS) of 10 months. OS was not comparable between the groups, and the median length of survival in group 1 was 6 months versus 8 months in group 2 and 23 months in group 3. In group 1, five patients (5/18, 28%) did not relapse at the end of the follow-up compared to 13 in group 2 (13/34, 38%) and 25 in group 3 (25/53, 47%). After discharge, OS and DFS were similar between the groups. INTERPRETATION: The advent of an AAC necessitating surgery in the context of DN is a deadly event associated with a 50% mortality; nonetheless, in case of unpostponable emergencies, surgery can provide long-term survival in selected patients.


Subject(s)
Hematology , Intestinal Obstruction , Disease-Free Survival , Humans , Intestinal Obstruction/etiology , Intestinal Obstruction/surgery , Prognosis , Retrospective Studies
9.
J Cell Mol Med ; 25(20): 9557-9566, 2021 10.
Article in English | MEDLINE | ID: mdl-34492730

ABSTRACT

Translocation t(4;12)(q11-13;p13) is a recurrent but very rare chromosomal aberration in acute myeloid leukaemia (AML) resulting in the non-constant expression of a CHIC2/ETV6 fusion transcript. We report clinico-biological features, molecular characteristics and outcomes of 21 cases of t(4;12) including 19 AML and two myelodysplastic syndromes (MDS). Median age at the time of t(4;12) was 78 years (range, 56-88). Multilineage dysplasia was described in 10 of 19 (53%) AML cases and CD7 and/or CD56 expression in 90%. FISH analyses identified ETV6 and CHIC2 region rearrangements in respectively 18 of 18 and 15 of 17 studied cases. The t(4;12) was the sole cytogenetic abnormality in 48% of cases. The most frequent associated mutated genes were ASXL1 (n = 8/16, 50%), IDH1/2 (n = 7/16, 44%), SRSF2 (n = 5/16, 31%) and RUNX1 (n = 4/16, 25%). Interestingly, concurrent FISH and molecular analyses showed that t(4;12) can be, but not always, a founding oncogenic event. Median OS was 7.8 months for the entire cohort. In the 16 of 21 patients (76%) who received antitumoral treatment, overall response and first complete remission rates were 37% and 31%, respectively. Median progression-free survival in responders was 13.7 months. Finally, t(4;12) cases harboured many characteristics of AML with myelodysplasia-related changes (multilineage dysplasia, MDS-related cytogenetic abnormalities, frequent ASXL1 mutations) and a poor prognosis.


Subject(s)
Chromosomes, Human, Pair 12 , Chromosomes, Human, Pair 4 , Genetic Predisposition to Disease , Myeloproliferative Disorders/diagnosis , Myeloproliferative Disorders/genetics , Translocation, Genetic , Aged , Aged, 80 and over , Biomarkers, Tumor , Chromosome Aberrations , Cytogenetic Analysis , Female , Genetic Association Studies , Humans , Immunohistochemistry , In Situ Hybridization, Fluorescence , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/etiology , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/therapy , Male , Middle Aged , Myelodysplastic Syndromes/diagnosis , Myelodysplastic Syndromes/etiology , Myelodysplastic Syndromes/mortality , Myelodysplastic Syndromes/therapy , Myeloproliferative Disorders/mortality , Myeloproliferative Disorders/therapy , Prognosis
10.
Blood ; 132(2): 187-196, 2018 07 12.
Article in English | MEDLINE | ID: mdl-29692343

ABSTRACT

Mutations in receptor tyrosine kinase/RAS signaling pathway genes are frequent in core-binding factor (CBF) acute myeloid leukemias (AMLs), but their prognostic relevance is debated. A subset of CBF AML patients harbors several signaling gene mutations. Genotyping of colonies and of relapse samples indicates that these arise in independent clones, thus defining a process of clonal interference (or parallel evolution). Clonal interference is pervasive in cancers, but the mechanisms underlying this process remain unclear, and its prognostic impact remains unknown. We analyzed a cohort of 445 adult and pediatric patients with CBF AML treated with intensive chemotherapy and with deep sequencing of 6 signaling genes (KIT, NRAS, KRAS, FLT3, JAK2, CBL). A total of 152 (34%), 167 (38%), and 126 (28%) patients harbored no, a single, and multiple signaling clones (clonal interference), respectively. Clonal interference of signaling mutations was associated with older age (P = .004) and inv(16) subtype (P = .025) but not with white blood cell count or mutations in chromatin or cohesin genes. The median allele frequency of signaling mutations was 31% in patients with a single clone or clonal interference (P = .14). The repertoire of KIT, FLT3, and NRAS/KRAS variants differed between groups. Clonal interference did not affect complete remission rate or minimal residual disease after 1-2 courses, but it did convey inferior event-free survival (P < 10-4), whereas the presence of a single signaling clone did not (P = .44). This inferior outcome was independent of clinical parameters and of the presence of specific signaling clones. Our results suggest that specific clonal architectures can herald distinct prognoses in AML.


Subject(s)
Clonal Evolution/genetics , Core Binding Factors/metabolism , Leukemia, Myeloid, Acute/etiology , Leukemia, Myeloid, Acute/metabolism , Mutation , Signal Transduction , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor , Child , Child, Preschool , Chromosome Aberrations , Female , Gene Expression Regulation, Leukemic , High-Throughput Nucleotide Sequencing , Humans , Infant , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/pathology , Male , Middle Aged , Prognosis , Retrospective Studies , Survival Analysis , Young Adult
11.
Blood ; 127(20): 2451-9, 2016 05 19.
Article in English | MEDLINE | ID: mdl-26980726

ABSTRACT

Acute myeloid leukemia (AML) with t(8;21) or inv(16) have been recognized as unique entities within AML and are usually reported together as core binding factor AML (CBF-AML). However, there is considerable clinical and biological heterogeneity within this group of diseases, and relapse incidence reaches up to 40%. Moreover, translocations involving CBFs are not sufficient to induce AML on its own and the full spectrum of mutations coexisting with CBF translocations has not been elucidated. To address these issues, we performed extensive mutational analysis by high-throughput sequencing in 215 patients with CBF-AML enrolled in the Phase 3 Trial of Systematic Versus Response-adapted Timed-Sequential Induction in Patients With Core Binding Factor Acute Myeloid Leukemia and Treating Patients with Childhood Acute Myeloid Leukemia with Interleukin-2 trials (age, 1-60 years). Mutations in genes activating tyrosine kinase signaling (including KIT, N/KRAS, and FLT3) were frequent in both subtypes of CBF-AML. In contrast, mutations in genes that regulate chromatin conformation or encode members of the cohesin complex were observed with high frequencies in t(8;21) AML (42% and 18%, respectively), whereas they were nearly absent in inv(16) AML. High KIT mutant allele ratios defined a group of t(8;21) AML patients with poor prognosis, whereas high N/KRAS mutant allele ratios were associated with the lack of KIT or FLT3 mutations and a favorable outcome. In addition, mutations in epigenetic modifying or cohesin genes were associated with a poor prognosis in patients with tyrosine kinase pathway mutations, suggesting synergic cooperation between these events. These data suggest that diverse cooperating mutations may influence CBF-AML pathophysiology as well as clinical behavior and point to potential unique pathogenesis of t(8;21) vs inv(16) AML.


Subject(s)
Chromosome Inversion , Chromosomes, Human, Pair 16/genetics , Chromosomes, Human, Pair 21/genetics , Chromosomes, Human, Pair 8/genetics , Core Binding Factors/genetics , DNA, Neoplasm/genetics , Leukemia, Myeloid, Acute/genetics , Mutation , Translocation, Genetic , Adolescent , Adult , Alleles , Cell Cycle Proteins/genetics , Child , Child, Preschool , Chromatin/genetics , Chromatin/ultrastructure , Chromosomal Proteins, Non-Histone/genetics , Core Binding Factor Alpha 2 Subunit/genetics , DNA Mutational Analysis , Female , Genetic Association Studies , High-Throughput Nucleotide Sequencing , Humans , Infant , Male , Middle Aged , Oncogene Proteins, Fusion/genetics , Prognosis , RUNX1 Translocation Partner 1 Protein , Young Adult , Cohesins
14.
Blood ; 124(13): 2104-15, 2014 Sep 25.
Article in English | MEDLINE | ID: mdl-25143485

ABSTRACT

Megakaryopoiesis is a 2-step differentiation process, regulated by thrombopoietin (TPO), on binding to its cognate receptor myeloproliferative leukemia (MPL). This receptor associates with intracytoplasmic tyrosine kinases, essentially janus kinase 2 (JAK2), which regulates MPL stability and cell-surface expression, and mediates TPO-induced signal transduction. We demonstrate that JAK2 and MPL mediate TPO-induced proliferation arrest and megakaryocytic differentiation of the human megakaryoblastic leukemia cell line UT7-MPL. A decrease in JAK2 or MPL protein expression, and JAK2 chemical inhibition, suppress this antiproliferative action of TPO. The expression of JAK2 and MPL, which progressively increases along normal human megakaryopoiesis, is decreased in platelets of patients diagnosed with JAK2- or MPL-mutated essential thrombocytemia and primary myelofibrosis, 2 myeloproliferative neoplasms in which megakaryocytes (MKs) proliferate excessively. Finally, low doses of JAK2 chemical inhibitors are shown to induce a paradoxical increase in MK production, both in vitro and in vivo. We propose that JAK2 and MPL expression levels regulate megakaryocytic proliferation vs differentiation in both normal and pathological conditions, and that JAK2 chemical inhibitors could promote a paradoxical thrombocytosis when used at suboptimal doses.


Subject(s)
Autoantigens/metabolism , Cell Differentiation , Iodide Peroxidase/metabolism , Iron-Binding Proteins/metabolism , Janus Kinase 2/metabolism , Megakaryocytes/cytology , Megakaryocytes/metabolism , Receptors, Thrombopoietin/metabolism , Animals , Autoantigens/genetics , Blood Platelets/metabolism , Cell Cycle Checkpoints/genetics , Cell Differentiation/genetics , Cell Line , Cell Proliferation , Gene Expression , Humans , Iodide Peroxidase/genetics , Iron-Binding Proteins/genetics , Janus Kinase 2/genetics , Mice , Phenotype , Primary Myelofibrosis/genetics , Primary Myelofibrosis/metabolism , RNA, Small Interfering/genetics , Receptors, Thrombopoietin/genetics , Thrombocythemia, Essential/genetics , Thrombocythemia, Essential/metabolism
15.
Blood ; 124(9): 1445-9, 2014 Aug 28.
Article in English | MEDLINE | ID: mdl-24973361

ABSTRACT

Acute myeloid leukemia (AML) with t(8;21) (q22;q22) is considered to have favorable risk; however, nearly half of t(8;21) patients are not cured, and recent studies have highlighted remarkable genetic heterogeneity in this subset of AML. Here we identify somatic mutations in additional sex combs-like 2 (ASXL2) in 22.7% (25/110) of patients with t(8;21), but not in patients with inv(16)/t(16;16) (0/60) or RUNX1-mutated AML (0/26). ASXL2 mutations were similarly frequent in adults and children t(8;21) and were mutually exclusive with ASXL1 mutations. Although overall survival was similar between ASXL1 and ASXL2 mutant t(8;21) AML patients and their wild-type counterparts, patients with ASXL1 or ASXL2 mutations had a cumulative incidence of relapse of 54.6% and 36.0%, respectively, compared with 25% in ASXL1/2 wild-type counterparts (P = .226). These results identify a high-frequency mutation in t(8;21) AML and identify the need for future studies to investigate the clinical and biological relevance of ASXL2 mutations in this unique subset of AML.


Subject(s)
Core Binding Factor Alpha 2 Subunit/genetics , Leukemia, Myeloid, Acute/genetics , Mutation , Oncogene Proteins, Fusion/genetics , Repressor Proteins/genetics , Adolescent , Adult , Child , Child, Preschool , Chromosomes, Human, Pair 21/genetics , Chromosomes, Human, Pair 8/genetics , Female , Gene Frequency , Humans , Leukemia, Myeloid, Acute/classification , Leukemia, Myeloid, Acute/drug therapy , Male , Middle Aged , Neoplasm, Residual/genetics , RUNX1 Translocation Partner 1 Protein , Translocation, Genetic , Young Adult
17.
Am J Hematol ; 90(10): 859-63, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26113240

ABSTRACT

Acute Myeloid Leukemia (AML) and myelodysplasia (MDS) with chromosome 3q abnormalities have a dismal outcome either untreated or with conventional treatments. Azacitidine (AZA) is now considered as the standard of care in high-risk MDS and oligoblastic AML patients. The objective of this study was to evaluate the impact of azacitine treatment in this cytogenetic subgroup. We report here a multicentre retrospective study of 157 patients treated with AZA for AML/MDS with chromosome 3q abnormalities and 27 patients with isolated EVI-1 overexpression. Median age was 65 years, 40 patients (25%) had inv(3)(q21q26.2) or t(3;3)(q21;q26.2), 36 patients (23%) had other balanced 3q26 rearrangements, 8 patients (5%) had balanced 3q21 rearrangements and 73 patients (46%) had other 3q abnormalities. The overall response rate was 50% (29% CR). Median overall survival was 10.6 months. By multivariate analysis, patients with lower bone marrow blast counts, higher platelet counts, non-complex cytogenetics, and absence of prior treatment with intensive chemotherapy had a better outcome. 27 patients were allo-transplanted and achieved a 21-month median OS. Balanced 3q21 translocations were associated with a better response rate and overall survival. Outcome of patients with isolated EVI-1 overexpression was comparable to that of patients with chromosome 3q lesions. Thus, AML/MDS patients with 3q abnormalities appear to be a heterogeneous group in their response to AZA, and AZA may represent a suitable option in particular as a bridge to allogeneic transplantation.


Subject(s)
Antimetabolites, Antineoplastic/administration & dosage , Azacitidine/administration & dosage , Blast Crisis , Chromosome Aberrations , Chromosomes, Human, Pair 3/genetics , Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Adult , Aged , Aged, 80 and over , Allografts , Blast Crisis/genetics , Blast Crisis/mortality , Blast Crisis/therapy , Disease-Free Survival , Female , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/therapy , Male , Middle Aged , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/mortality , Myelodysplastic Syndromes/therapy , Retrospective Studies , Stem Cell Transplantation , Survival Rate
20.
Blood Cancer J ; 14(1): 97, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38871702

ABSTRACT

The evaluation of measurable residual disease (MRD) in acute myeloid leukemia (AML) using comprehensive mutation analysis by next-generation sequencing (NGS) has been investigated in several studies. However controversial results exist regarding the detection of persisting mutations in DNMT3A, TET2, and ASXL1 (DTA). Benchmarking of NGS-MRD taking into account other molecular MRD strategies has to be done. Here, we performed error-corrected-NGS-MRD in 189 patients homogeneously treated in the ALFA-0702 study (NCT00932412). Persistence of non-DTA mutations (HR = 2.23 for RFS and 2.26 for OS), and DTA mutations (HR = 2.16 for OS) were associated with poorer prognosis in multivariate analysis. Persistence of at least two mutations in complete remission (CR) was associated with a higher cumulative incidence of relapse (CIR) (HR = 3.71, p < 0.0001), lower RFS (HR = 3.36, p < 0.0001) and OS (HR = 3.81, p = 0.00023) whereas persistence of only one mutation was not. In 100 analyzable patients, WT1-MRD, but not NGS-MRD, was an independent factor for RFS and OS. In the subset of 67 NPM1 mutated patients, both NPM1 mutation detection (p = 0.0059) and NGS-MRD (p = 0.035) status were associated with CIR. We conclude that detectable NGS-MRD including DTA mutations correlates with unfavorable prognosis in AML. Its integration with alternative MRD strategies in AML management warrants further investigations.


Subject(s)
High-Throughput Nucleotide Sequencing , Leukemia, Myeloid, Acute , Mutation , Neoplasm, Residual , Nucleophosmin , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/therapy , Female , Male , Middle Aged , Adult , Aged , Young Adult , Prognosis , DNA Methyltransferase 3A , Aged, 80 and over , DNA (Cytosine-5-)-Methyltransferases/genetics , Adolescent , Repressor Proteins/genetics , DNA Mutational Analysis
SELECTION OF CITATIONS
SEARCH DETAIL