Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Arch Biochem Biophys ; 751: 109825, 2024 01.
Article in English | MEDLINE | ID: mdl-37992885

ABSTRACT

Extracellular signal-regulated kinase 3 (ERK3 also designated MAPK6 - mitogen-activated protein kinase 6) is a ubiquitously expressed kinase participating in the regulation of a broad spectrum of physiological and pathological processes. Targeted inhibition of the kinase may allow the development of novel treatment strategies for a variety of types of cancer and somatic pathologies, as well as preserving metabolic health, combat obesity and diabetes. We chose and synthesized three triazolo [4,5-d]pyrimidin-5-amines proposed previously as putative ERK3 inhibitors to assess their selectivity and biological effects in terms of metabolic state impact in living cells. As it was previously shown that ERK3 is a major regulator of lipolysis in adipocytes, we focused on this process. Our new results indicate that in addition to the previously identified lipolytic enzyme ATGL, ERK3 also regulates hormone-sensitive lipase (HSL) and monoglyceride lipase (MGL). Moreover, this kinase also promotes the abundance of fatty acid synthase (FASN) as well as protein kinase cAMP-activated catalytic subunit alpha (PKACα). To investigate various effects of putative ERK3 inhibitors on lipolysis, we utilized different adipocyte models. We demonstrated that molecules exhibit lipolysis-modulating effects; however, the effects of triazolo [4,5-d]pyrimidin-5-amines based inhibitors on lipolysis are not dependent on ERK3. Subsequently, we revealed a wide range of the compounds' possible targets using a machine learning-based prediction. Therefore, the tested compounds inhibit ERK3 in vitro, but the biological effect of this inhibition is significantly overlapped and modified by some other molecular events related to the non-selective binding to other targets.


Subject(s)
Adipocytes , Lipolysis
2.
Mol Divers ; 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37889351

ABSTRACT

Cyclonucleosides are a group of nucleoside derivatives which, in addition to the classical N-glycosidic bond, have an additional covalent bond (linker, bridge) in their structure, which connects the heterocyclic base and sugar ring. The majority of them have been discovered in the laboratory; however, few such compounds have also been found in natural sources, including metabolites of sponges or radical damage occurring in nucleic acids. Due to their structural properties-rigid, fixed conformation-they have found wide applications in medicinal chemistry and biochemistry as biocides as well as enzyme inhibitors and molecular probes. They have also found use as convenient synthetic tools for the preparation of new nucleoside analogues, enabling structural modifications of both the sugar ring and heterocyclic base. This review summarizes the recent progress in the synthesis of various purine and pyrimidine cyclonucleosides using diverse chemical approaches based on radical, "click", metal-mediated, and other types of reactions. It also presents recent reports concerning possible applications in medicinal chemistry, as well as their applications as valuable key intermediates in the synthesis of sugar- and base-modified nucleoside analogues and heterocyclic compounds.

3.
Chem Biodivers ; 18(1): e2000733, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33236468

ABSTRACT

Currently available chemotherapeutic treatments for blood cancers (leukemia) usually have strong side effects. More selective, efficient, and less toxic anticancer agents are needed. We synthesized seven, new, optically pure (12aS)-1,3,4,12a-tetrahydropyrazino[2,1-c][1,4],12(2H,11H)-dione derivatives and examined their cytotoxicity towards eight cancer cell lines, including urinary bladder (TCC-SUP, UM-UC-3, KU-19-9), colon (LoVo), and breast (MCF-7, MDA-MB-231) cancer representatives, as well as two leukemic cell lines (MV-4-11, CCRF-CEM) and normal murine fibroblasts (Balb/3T3) as reference cell line. Three of the seven newly-obtained compounds ((12aS)-8-bromo-2-(3-phenylbenzoyl)-1,3,4,12a-tetrahydropyrazino[2,1-c][1,4],12(2H,11H)-dione, (12aS)-8,9-dimethoxy-2-(4-phenylbenzoyl)-1,3,4,12a-tetrahydropyrazino[2,1-c][1,4],12(2H,11H)-dione and (12aS)-8-nitro-2-(4-phenylbenzoyl)-1,3,4,12a-tetrahydropyrazino[2,1-c][1,4],12(2H,11H)-dione, showed enhanced activity and selectivity toward the leukemic MV-4-11 cell lines when compared to our previously reported compounds, with IC50 values in the range of 2.9-5.6 µM. Additionally, (12aS)-9-nitro-2-(4-phenylbenzoyl)-1,3,4,12a-tetrahydropyrazino[2,1-c][1,4],12(2H,11H)-dione exhibited a strong cytotoxic effect against the leukemic CCRF-CEM (IC50 =6.1 µM) and MV-4-11 (IC50 =11.0 µM) cell lines, a moderate cytotoxic effect toward other tumor lines (IC50 =31.8-55.0 µM) and very weak cytotoxic effect toward the Balb/3T3 reference cell lines. Selected compounds were further evaluated for their potential to induce apoptotic cell death in MV-4-11 cells by measuring caspase-3 activity. We also established the crystal structure of three products and investigated the effect of 22 derivatives of 1,3,4,12a-tetrahydropyrazino[2,1-c][1,4],12(2H,11H)-dione on the activity of the cancer-associated enzyme autotaxin. All compounds proved to be weak inhibitors of autotaxin, although some (R) and (S) enantiomers had Ki values of 10-19 µM. The obtained results showed that the tested compounds exhibited a selective antileukemic effect, which appeared not to be related directly to autotaxin. Molecular targets responsible for this effect remain to be identified. The newly obtained compounds can be used in the search for new, selective anticancer therapies.


Subject(s)
Antineoplastic Agents/chemistry , Benzodiazepines/chemistry , Drug Design , Animals , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Benzodiazepines/metabolism , Benzodiazepines/pharmacology , Binding Sites , Catalytic Domain , Cell Line , Cell Proliferation/drug effects , Crystallography, X-Ray , Drug Screening Assays, Antitumor , Humans , Mice , Molecular Conformation , Phosphoric Diester Hydrolases/chemistry , Phosphoric Diester Hydrolases/metabolism , Stereoisomerism , Structure-Activity Relationship
4.
Molecules ; 26(4)2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33546456

ABSTRACT

Phosphodiesterase 5 (PDE5) is one of the most extensively studied phosphodiesterases that is highly specific for cyclic-GMP hydrolysis. PDE5 became a target for drug development based on its efficacy for treatment of erectile dysfunction. In the present study, we synthesized four novel analogues of the phosphodiesterase type 5 (PDE5) inhibitor-tadalafil, which differs in (i) ligand flexibility (rigid structure of tadalafil vs. conformational flexibility of newly synthesized compounds), (ii) stereochemistry associated with applied amino acid building blocks, and (iii) substitution with bromine atom in the piperonyl moiety. For both the intermediate and final compounds as well as for the parent molecule, we have established the crystal structures and performed a detailed analysis of their structural features. The initial screening of the cytotoxic effect on 16 different human cancer and non-cancer derived cell lines revealed that in most cases, the parent compound exhibited a stronger cytotoxic effect than new derivatives, except for two cell lines: HEK 293T (derived from a normal embryonic kidney, that expresses a mutant version of SV40 large T antigen) and MCF7 (breast adenocarcinoma). Two independent studies on the inhibition of PDE5 activity, based on both pure enzyme assay and modulation of the release of nitric oxide from platelets under the influence of tadalafil and its analogues revealed that, unlike a reference compound that showed strong PDE5 inhibitory activity, the newly obtained compounds did not have a noticeable effect on PDE5 activity in the range of concentrations tested. Finally, we performed an investigation of the toxicological effect of synthesized compounds on Caenorhabditis elegans in the highest applied concentration of 6a,b and 7a,b (160 µM) and did not find any effect that would suggest disturbance to the life cycle of Caenorhabditis elegans. The lack of toxicity observed in Caenorhabditis elegans and enhanced, strengthened selectivity and activity toward the MCF7 cell line made 7a,b good leading structures for further structure activity optimization and makes 7a,b a reasonable starting point for the search of new, selective cytotoxic agents.


Subject(s)
Caenorhabditis elegans/enzymology , Cyclic Nucleotide Phosphodiesterases, Type 5/metabolism , Phosphodiesterase 5 Inhibitors , Piperazines , Tadalafil , Animals , Drug Evaluation, Preclinical , HEK293 Cells , Humans , MCF-7 Cells , Phosphodiesterase 5 Inhibitors/chemical synthesis , Phosphodiesterase 5 Inhibitors/chemistry , Phosphodiesterase 5 Inhibitors/pharmacology , Piperazines/chemical synthesis , Piperazines/chemistry , Piperazines/pharmacology , Tadalafil/analogs & derivatives , Tadalafil/chemical synthesis , Tadalafil/chemistry , Tadalafil/pharmacology
5.
IUBMB Life ; 72(6): 1250-1261, 2020 06.
Article in English | MEDLINE | ID: mdl-32364671

ABSTRACT

A series of halogenated derivatives of natural flavonoids: baicalein and chrysin were designed and investigated as possible ligands for the catalytic subunit of tumor-associated human kinase CK2. Thermal shift assay method, in silico modeling, and high-performance liquid chromatography-derived hydrophobicity together with IC50 values determined in biochemical assay were used to explain the ligand affinity to the catalytic subunit of human protein kinase CK2. Obtained results revealed that substitution of baicalein and chrysin with halogen atom increases their binding affinity to hCK2α, and for 8-chlorochrysin the observed effect is even stronger than for the reference CK2 inhibitor-4,5,6,7-tetrabromo-1H-benzotriazole. The cytotoxic activities of the baicalein and chrysin derivatives in the in vitro model have been evaluated for MV4-11 (human biphenotypic B myelomonocytic leukemia), A549 (human lung adenocarcinoma), LoVo (human colon cancer), and MCF-7 (human breast cancer) as well as on the nontumorigenic human breast epithelial MCF-10A cell lines. Among the baicalein derivatives, the strongest cytotoxic effect was observed for 8-bromobaicalein, which exhibited the highest activity against breast cancer cell line MCF-7 (IC50 10 ± 3 µM). In the chrysin series, the strongest cytotoxic effect was observed for unsubstituted chrysin, which exhibited the highest activity against leukemic cell line MV4-11 (IC50 10 ± 4 µM).


Subject(s)
Casein Kinase II/antagonists & inhibitors , Flavanones/chemistry , Flavonoids/chemistry , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Casein Kinase II/chemistry , Casein Kinase II/metabolism , Cell Line, Tumor , Drug Screening Assays, Antitumor , Flavanones/metabolism , Flavanones/pharmacology , Flavonoids/metabolism , Flavonoids/pharmacology , Halogenation , Humans , Magnetic Resonance Spectroscopy , Models, Molecular , Protein Kinase Inhibitors/metabolism , Structure-Activity Relationship
6.
Bioorg Med Chem Lett ; 30(21): 127493, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32798652

ABSTRACT

A series of fourteen novel, eight-membered lactam- and dilactam-based analogues of tricyclic drugs were obtained in a simple one-pot procedure. Crystal structures of two compounds were determined by single-crystal X-ray diffraction analysis and their selected structural features were discussed and compared with those of imipramine and dibenzepine. Affinity of developed molecules for histamine receptor H1, serotonin receptors 5-HT1A, 5-HT2A, 5-HT6, 5-HT7, serotonin transporter (SERT) and dopamine receptor D2 was determined. The commercial drug dibenzepine was also checked on these molecular targets, as its mechanism of action is largely unknown. Two derivatives of 11,12-dihydrodibenzo[b,f]azocin-6(5H)-one (7,8) and two of dibenzo[b,f]azocin-6(5H)-one (9,10) were found to be active toward the H1 receptor in sub-micromolar concentrations.


Subject(s)
Antidepressive Agents, Tricyclic/pharmacology , Lactams/pharmacology , Receptors, Dopamine/metabolism , Receptors, Histamine/metabolism , Receptors, Serotonin/metabolism , Antidepressive Agents, Tricyclic/chemical synthesis , Antidepressive Agents, Tricyclic/chemistry , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Lactams/chemical synthesis , Lactams/chemistry , Models, Molecular , Molecular Structure , Structure-Activity Relationship
7.
Int J Mol Sci ; 21(20)2020 Oct 19.
Article in English | MEDLINE | ID: mdl-33086570

ABSTRACT

The astA gene encoding an alternative sulfate transporter was originally cloned from the genome of the Japanese Aspergillus nidulans isolate as a suppressor of sulfate permease-deficient strains. Expression of the astA gene is under the control of the sulfur metabolite repression system. The encoded protein transports sulfate across the cell membrane. In this study we show that AstA, having orthologs in numerous pathogenic or endophytic fungi, has a second function and, depending on growth conditions, can be translocated into mitochondria. This effect is especially pronounced when an astA-overexpressing strain grows on solid medium at 37 °C. AstA is also recruited to the mitochondria in the presence of mitochondria-affecting compounds such as menadione or antimycin A, which are also detrimental to the growth of the astA-overexpressing strain. Disruption of the Hsp70-Porin1 mitochondrial import system either by methylene blue, an Hsp70 inhibitor, or by deletion of the porin1-encoding gene abolishes AstA translocation into the mitochondria. Furthermore, we observed altered ATP levels and sulfite oxidase activity in the astA-overexpressing strain in a manner dependent on sulfur sources. The presented data indicate that AstA is also involved in the mitochondrial sulfur metabolism in some fungi, and thereby indirectly manages redox potential and energy state.


Subject(s)
Adenosine Triphosphate/metabolism , Aspergillus nidulans/growth & development , Aspergillus nidulans/metabolism , Fungal Proteins/metabolism , Mitochondria/metabolism , Sulfite Oxidase/metabolism , Endocytosis , Endophytes/metabolism , Green Fluorescent Proteins/metabolism , Models, Biological , Oxidation-Reduction , Phenotype , Phylogeny , Sulfur/metabolism
8.
Molecules ; 25(3)2020 Jan 28.
Article in English | MEDLINE | ID: mdl-32012929

ABSTRACT

Antibiotic resistance is an escalating, worldwide problem. Due to excessive use of antibiotics, multidrug-resistant bacteria have become a serious threat and a major global healthcare problem of the 21st century. This fact creates an urgent need for new and effective antimicrobials. The common strategies for antibiotic discovery are based on either modifying existing antibiotics or screening compound libraries, but these strategies have not been successful in recent decades. An alternative approach could be to use gene-specific oligonucleotides, such as peptide nucleic acid (PNA) oligomers, that can specifically target any single pathogen. This approach broadens the range of potential targets to any gene with a known sequence in any bacterium, and could significantly reduce the time required to discover new antimicrobials or their redesign, if resistance arises. We review the potential of PNA as an antibacterial molecule. First, we describe the physicochemical properties of PNA and modifications of the PNA backbone and nucleobases. Second, we review the carriers used to transport PNA to bacterial cells. Furthermore, we discuss the PNA targets in antibacterial studies focusing on antisense PNA targeting bacterial mRNA and rRNA.


Subject(s)
Anti-Bacterial Agents/pharmacology , Peptide Nucleic Acids/pharmacology , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/chemistry , Bacteria/drug effects , Drug Resistance, Neoplasm , Humans , Microbial Sensitivity Tests , Nucleic Acid Conformation , Nucleic Acids/chemistry , Peptide Nucleic Acids/administration & dosage , Peptide Nucleic Acids/chemistry
9.
Molecules ; 25(4)2020 Feb 18.
Article in English | MEDLINE | ID: mdl-32085499

ABSTRACT

A novel approach for the synthesis of unsymmetrically substituted dibenzo[b,f][1,5]diazocine-6,12(5H,11H)diones has been developed. This facile three-step method uses variously substituted 1H-benzo[d][1,3]oxazine-2,4-diones (isatoic anhydrides) and 2-aminobenzoic acids as a starting materials. The obtained products were further transformed into N-alkyl-, N-acetyl- and dithio analogues. Developed procedures allowed the synthesis of unsymmetrical dibenzo[b,f][1,5]diazocine-6,12(5H,11H)diones and three novel heterocyclic scaffolds: benzo[b]naphtho[2,3-f][1,5]diazocine-6,14(5H,13H)dione, pyrido[3,2-c][1,5]benzodiazocine-5,11(6H,12H)-dione and pyrazino[3,2-c][1,5]benzodiazocine-6,12(5H,11H)dione. For 11 of the compounds crystal structures were obtained. The preliminary cytotoxic effect against two cancer (HeLa, U87) and two normal lines (HEK293, EUFA30) as well as antibacterial activity were determined. The obtained dibenzo[b,f][1,5]diazocine(5H,11H)6,12-dione framework could serve as a privileged structure for the drug design and development.


Subject(s)
Azocines/chemistry , Benzene/chemistry , Drug Design , Anti-Bacterial Agents/pharmacology , Azocines/chemical synthesis , Benzene/chemical synthesis , Cell Death , Crystallography, X-Ray , Cyclization , Flow Cytometry , HEK293 Cells , HeLa Cells , Humans
10.
Molecules ; 25(12)2020 Jun 20.
Article in English | MEDLINE | ID: mdl-32575784

ABSTRACT

Unsymmetrically N-substituted and N,N'-disubstituted 5,12-dihydrodibenzo [b,f][1,4]diazocine-6,11-diones were synthesized in the new protocol. The desired modifications of the dibenzodiazocine scaffold were introduced at the stages of proper selection of building blocks as well as post-cyclization modifications with alkylation or acylation agents, expanding the structural diversity and possible applications of synthesized molecules. The extension of developed method resulted in the synthesis of novel: tricyclic 5,10-dihydrobenzo[b]thieno[3,4-f][1,4]diazocine-4,11-dione scaffold and fused pentacyclic framework possessing two benzodiazocine rings within its structure. Additionally, the unprecedented rearrangement of 5,12-dihydrodibenzo[b,f][1,4]diazocine-6,11-diones to 2-(2-aminophenyl)isoindoline-1,3-diones was observed under the basic conditions in the presence of sodium hydride for secondary dilactams. The structures of nine synthesized products have been established by single-crystal X-ray diffraction analysis. Detailed crystallographic analysis of the investigated tri- and pentacyclic systems has shed more light on their structural features. One cell line derived from non-cancerous cells (EUFA30-human fibroblasts) and three tumor cells (U87-human primary glioblastoma, HeLa-cervix adenocarcinoma, BICR18-laryngeal squamous cell carcinoma) were used to determine the cytotoxic effect of the newly synthesized compounds. Although these compounds showed a relatively weak cytotoxic effect, the framework obtained for 5,12-dihydrodibenzo[b,f][1,4]diazocine-6,11-dione could serve as a convenient privilege structure for the design and development of novel bioactive molecules suitable for drug design, development and optimization programs.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Cell Line, Tumor , Crystallography, X-Ray , Cyclization , Drug Design , Heterocyclic Compounds/chemistry , Humans , Inhibitory Concentration 50 , Molecular Structure
11.
Bioorg Med Chem Lett ; 28(4): 618-625, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29395971

ABSTRACT

A series of optically pure (R)- and (S)-1,3,4,12a-tetrahydropyrazino[2,1-c][1,4]benzodiazepine-6,12(2H,11H)-dione derivatives was designed and synthesized as novel anthramycin analogues in a three-step, one-pot procedure, and tested for their antiproliferative activity on nine following cell lines: MV-4-11, UMUC-3, MDA-MB-231, MCF7, LoVo, HT-29, A-549, A2780 and BALB/3T3. The key structural features responsible for exhibition of cytotoxic effect were determined: the (S)-configuration of chiral center and the presence of hydrophobic 4-biphenyl substituent in the side chain. Introduction of bromine atom into the 8 position (8g) or substitution of dilactam ring with benzyl group (8m) further improved the activity and selectivity of investigated compounds. Among others, compound 8g exhibited selective cytotoxic effect against MV-4-11 (IC50 = 8.7 µM) and HT-29 (IC50 = 17.8 µM) cell lines, while 8m showed noticeable anticancer activity against MV-4-11 (IC50 = 10.8 µM) and LoVo (IC50 = 11.0 µM) cell lines. The cell cycle arrest in G1/S checkpoint and apoptosis associated with overproduction of reactive oxygen species was also observed for 8e and 8m.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Benzodiazepinones/pharmacology , Pyrazines/pharmacology , Reactive Oxygen Species/metabolism , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/toxicity , Benzodiazepinones/chemical synthesis , Benzodiazepinones/chemistry , Benzodiazepinones/toxicity , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , G1 Phase Cell Cycle Checkpoints/drug effects , Humans , Leukemia/drug therapy , Mice , Pyrazines/chemical synthesis , Pyrazines/chemistry , Pyrazines/toxicity , S Phase Cell Cycle Checkpoints/drug effects , Stereoisomerism , Structure-Activity Relationship
12.
Bioorg Med Chem ; 24(21): 5076-5087, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27600403

ABSTRACT

A series of adenosine derivatives bearing a boron cluster were synthesized and evaluated for their cytotoxicity against primary peripheral mononuclear cells from the blood of 17 patients with leukemias (16 CLL and 1 very rare PLL), as well as from 5 healthy donors used as a control. Among the tested agents, two, i.e., compounds 1 and 2, displayed high in vitro cytotoxicity and proapoptotic potential on leukemic cells, with only scarce activity being seen against control cells. Biological tests related to apoptosis revealed the activation of the main execution apoptotic enzyme, procaspase-3, in CLL and PLL cells exposed to compounds 1 and 2. Moreover, the above compounds indicated high activity in the proteolysis of the apoptotic markers PARP-1 and lamin B1, fragmentation of DNA, and the induction of some changes in the expression of the Mcl-1, protein apoptosis regulator in comparison with control cells.


Subject(s)
Adenosine/pharmacology , Antineoplastic Agents/pharmacology , Boron/pharmacology , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Prolymphocytic, B-Cell/drug therapy , Adenosine/chemical synthesis , Adenosine/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Boron/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Leukemia, Prolymphocytic, B-Cell/pathology , Structure-Activity Relationship
13.
Biomolecules ; 13(2)2023 02 03.
Article in English | MEDLINE | ID: mdl-36830660

ABSTRACT

Benzodiazepines that consist of one α- and one ß-amino acid residues linked together in a seven-membered heterocyclic ring could be treated as small, rigid, cyclic dipeptides capable of exhibiting a wide range of biological activities. During our research on novel analogues of anthramycin, a tricyclic antibiotic benzodiazepine, we developed the synthesis of two benzodiazepine dimers, obtained through the cyclization of appropriate linear tripeptides. The synthesized compounds were tested on a panel of seven cancer and normal cell lines. The developed molecules exhibited promising cytotoxic activity against the lung cancer cell lines A549 and NCI-H1299 and the epidermoid carcinoma cell line A-431. Moreover, they showed significant selectivity compared to the reference cell lines (BJ-human normal skin fibroblasts and MRC-5-human normal lung cell line). When tested on two isogenic cell lines, HCT116 and HCT116p53-/- (colon cancer), contrary to cisplatin being used as a positive control, the obtained compounds showed a cytotoxic effect independent of the p53 protein status. For the above reasons, the obtained compounds can be considered a new group of promising anticancer agents, useful in the fight against p53-dependent drug resistance in cancers. They can also be treated as convenient, leading structures suitable for further optimization and searching for more active and selective molecules.


Subject(s)
Antineoplastic Agents , Lung Neoplasms , Humans , Tumor Suppressor Protein p53 , Benzodiazepines , Antineoplastic Agents/pharmacology , Drug Resistance , Peptides/pharmacology , Cell Line, Tumor , Cell Proliferation
14.
ACS Omega ; 8(21): 19047-19056, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37273645

ABSTRACT

The misuse and overuse of antibiotics led to the development of bacterial resistance to existing aminoglycoside (AMG) antibiotics and limited their use. Consequently, there is a growing need to develop effective antimicrobials against multidrug-resistant bacteria. To target resistant strains, we propose to combine 2-deoxystreptamine AMGs, neomycin (NEO) and amikacin (AMK), with a membrane-active antimicrobial peptide anoplin and its hydrocarbon stapled derivative. The AMG-peptide hybrids were conjugated using the click chemistry reaction in solution to obtain a non-cleavable triazole linker and by disulfide bridge formation on the resin to obtain a linker cleavable in the bacterial cytoplasm. Homo-dimers connected via disulfide bridges between the N-terminus thiol analogues of anoplin and hydrocarbon stapled anoplin were also synthesized. These hybrid compounds show a notable increase in antibacterial and bactericidal activity, as compared to the unconjugated ones or their combinations, against Gram-positive and Gram-negative bacteria, especially for the strains resistant to AMK or NEO. The conjugates and disulfide peptide dimers exhibit low hemolytic activity on sheep red blood erythrocytes.

15.
Chem Sci ; 14(35): 9293-9305, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37712013

ABSTRACT

The underlying causes of Alzheimer's disease (AD) remain a mystery, with multiple pathological components, including oxidative stress, acetylcholinesterase, amyloid-ß, and metal ions, all playing a role. Here we report a strategic approach to designing flavonoids that can effectively tackle multiple pathological elements involved in AD. Our systematic investigations revealed key structural features for flavonoids to simultaneously target and regulate pathogenic targets. Our findings led to the development of a highly promising flavonoid that exhibits a range of functions, based on a complete structure-activity relationship analysis. Furthermore, our mechanistic studies confirmed that this flavonoid's versatile reactivities are driven by its redox potential and direct interactions with pathogenic factors. This work highlights the potential of multi-target-directed flavonoids as a novel solution in the fight against AD.

16.
Pharmaceuticals (Basel) ; 14(9)2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34577551

ABSTRACT

Histone deacetylase (HDAC) inhibitors are a class of drugs used in the cancer treatment. Here, we developed a library of 19 analogues of Vorinostat, an HDAC inhibitor used in lymphomas treatment. In Vorinostat, we replaced the hydrophobic phenyl group with various tricyclic 'caps' possessing a central, eight-membered, heterocyclic ring, and investigated the HDAC activity and cytotoxic effect on the cancer and normal cell lines. We found that 3 out of the 19 compounds, based on dibenzo[b,f]azocin-6(5H)-one, 11,12-dihydrodibenzo[b,f]azocin-6(5H)-one, and benzo[b]naphtho[2,3-f][1,5]diazocine-6,14(5H,13H)-dione scaffolds, showed better HDACs inhibition than the referenced Vorinostat. In leukemic cell line MV4-11 and in the lymphoma cell line Daudi, three compounds showed lower IC50 values than Vorinostat. These compounds had higher activity and selectivity against MV4-11 and Daudi cell lines than reference Vorinostat. We also observed a strong correlation between HDACs inhibition and the cytotoxic effect. Cell lines derived from solid tumours: A549 (lung carcinoma) and MCF-7 (breast adenocarcinoma) as well as reference BALB/3T3 (normal murine fibroblasts) were less susceptible to compounds tested. Developed derivatives show improved properties than Vorinostat, thus they could be considered as possible agents for leukemia and lymphoma treatment.

17.
Biomolecules ; 11(10)2021 10 14.
Article in English | MEDLINE | ID: mdl-34680148

ABSTRACT

Cyclic dipeptides, also know as diketopiperazines (DKP), the simplest cyclic forms of peptides widespread in nature, are unsurpassed in their structural and bio-functional diversity. DKPs, especially those containing proline, due to their unique features such as, inter alia, extra-rigid conformation, high resistance to enzyme degradation, increased cell permeability, and expandable ability to bind a diverse of targets with better affinity, have emerged in the last years as biologically pre-validated platforms for the drug discovery. Recent advances have revealed their enormous potential in the development of next-generation theranostics, smart delivery systems, and biomaterials. Here, we present an updated review on the biological and structural profile of these appealing biomolecules, with a particular emphasis on those with anticancer properties, since cancers are the main cause of death all over the world. Additionally, we provide a consideration on supramolecular structuring and synthons, based on the proline-based DKP privileged scaffold, for inspiration in the design of compound libraries in search of ideal ligands, innovative self-assembled nanomaterials, and bio-functional architectures.


Subject(s)
Diketopiperazines/chemistry , Dipeptides/chemistry , Neoplasms/drug therapy , Proline/chemistry , Diketopiperazines/therapeutic use , Dipeptides/genetics , Dipeptides/therapeutic use , Drug Discovery , Humans , Neoplasms/genetics , Peptides, Cyclic/chemistry , Peptides, Cyclic/genetics , Peptides, Cyclic/therapeutic use , Proline/genetics , Proline/therapeutic use
18.
Eur J Med Chem ; 223: 113607, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34171656

ABSTRACT

A series of adenosine and 2'-deoxyadenosine pairs modified with a 1,12-dicarba-closo-dodecaborane cluster or alternatively with a phenyl group at the same position was synthesized, and their affinity was determined at A1, A2A, A2B and A3 adenosine receptors (ARs). While AR affinity differences were noted, a general tendency to preferentially bind A3 AR over other ARs was observed for most tested ligands. In particular, 5'-ethylcarbamoyl-N6-(3-phenylpropyl)adenosine (18), N6-(3-phenylpropyl)-2-chloroadenosine (24) and N6-(3-phenylpropyl)adenosine (40) showed nanomolar A3 affinity (Ki 4.5, 6.4 and 7.5 nM, respectively). Among the boron cluster-containing compounds, the highest A3 affinity (Ki 206 nM) was for adenosine derivative 41 modified at C2. In the matched molecular pairs, analogs bearing boron clusters were found to show lower binding affinity for adenosine receptors than the corresponding phenyl analogs. Nevertheless, interestingly, several boron cluster modified adenosine ligands showed significantly higher A3 receptor selectivity than the corresponding phenyl analogs: 7vs. 8, 15vs. 16, 17vs. 18.


Subject(s)
Adenosine A3 Receptor Agonists/pharmacology , Adenosine/analogs & derivatives , Adenosine/pharmacology , Receptor, Adenosine A3/metabolism , Adenosine/metabolism , Adenosine A3 Receptor Agonists/chemical synthesis , Adenosine A3 Receptor Agonists/metabolism , Animals , Boron Compounds/chemical synthesis , Boron Compounds/metabolism , Boron Compounds/pharmacology , CHO Cells , Cricetulus , HEK293 Cells , Humans , Ligands , Molecular Structure , Platelet Aggregation Inhibitors/chemical synthesis , Platelet Aggregation Inhibitors/metabolism , Platelet Aggregation Inhibitors/pharmacology , Structure-Activity Relationship
19.
J Am Chem Soc ; 132(16): 5568-9, 2010 Apr 28.
Article in English | MEDLINE | ID: mdl-20361736

ABSTRACT

C-C bond formation reactions that take place through organoiron species sometimes exhibit radical-like character. The reaction of N-(2-iodophenylmethyl)dialkylamine with a Grignard or diorganozinc reagent in the presence of a catalytic amount of Fe(acac)(3) gives the product resulting from arylation, alkenylation, or alkylation of the sp(3) C-H bond next to the amine group in good to excellent yield. Mechanistic studies including labeling experiments indicate that the reaction involves radical translocation triggered by the formation of a radical-like species by removal of the iodide group.

20.
Sci Rep ; 9(1): 13249, 2019 09 13.
Article in English | MEDLINE | ID: mdl-31519943

ABSTRACT

The nine identified human homologues of E. coli AlkB 2-oxoglutarate (2OG) and Fe(II)-dependent dioxygenase, ALKBH1-8 and FTO, display different substrate specificities and diverse biological functions. Here we discovered the combined overexpression of members of the ALKBH family in head and neck squamous cell carcinomas (HNSCC). We found direct correlation of ALKBH3 and FTO expression with primary HNSCC tumor size. We observed unidentified thus far cytoplasmic localization of ALKBH2 and 5 in HNSCC, suggesting abnormal role(s) of ALKBH proteins in cancer. Further, high expression of ALKBHs was observed not only in HNSCC, but also in several cancerous cell lines and silencing ALKBH expression in HeLa cancer cells resulted in dramatically decreased survival. Considering the discovered impact of high expression of ALKBH proteins on HNSCC development, we screened for ALKBH blockers among newly synthetized anthraquinone derivatives and demonstrated their potential to support standard anticancer therapy.


Subject(s)
AlkB Homolog 3, Alpha-Ketoglutarate-Dependent Dioxygenase/metabolism , Anthraquinones/pharmacology , Biomarkers, Tumor/metabolism , Head and Neck Neoplasms/metabolism , Squamous Cell Carcinoma of Head and Neck/metabolism , Aged , AlkB Homolog 3, Alpha-Ketoglutarate-Dependent Dioxygenase/antagonists & inhibitors , AlkB Homolog 3, Alpha-Ketoglutarate-Dependent Dioxygenase/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Biomarkers, Tumor/genetics , Female , Follow-Up Studies , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/pathology , Humans , Ketoglutaric Acids/metabolism , Male , Middle Aged , Prognosis , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/pathology , Substrate Specificity , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL