Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
Add more filters

Publication year range
1.
Stem Cells ; 41(5): 505-519, 2023 05 15.
Article in English | MEDLINE | ID: mdl-36945068

ABSTRACT

For adipose stromal/stem cell (ASCs)-based immunomodulatory therapies, it is important to study how donor characteristics, such as obesity and type 2 diabetes (T2D), influence ASCs efficacy. Here, ASCs were obtained from 2 groups, donors with T2D and obesity (dASCs) or nondiabetic donors with normal-weight (ndASCs), and then cultured with anti-CD3/CD28-stimulated allogeneic CD4 T cells. ASCs were studied for the expression of the immunomodulators CD54, CD274, and indoleamine 2, 3 dioxygenase 1 (IDO) in inflammatory conditions. CD4 T cells cultured alone or in cocultures were assessed to evaluate proliferation, activation marker surface expression, apoptosis, the regulatory T cells (Tregs; CD4+ CD25high FOXP3+) frequency, and intracellular cytokine expression using flow cytometry. Modulation of T-cell subset cytokines was explored via ELISA. In inflammatory conditions, the expression of CD54, CD274, and IDO was significantly upregulated in ASCs, with no significant differences between ndASCs and dASCs. dASCs retained the potential to significantly suppress CD4 T-cell proliferation, with a slightly weaker inhibitory effect than ndASCs, which was associated with significantly reduced abilities to decrease IL-2 production and increase IL-8 levels in cocultures. Such attenuated potentials were significantly correlated with increasing body mass index. dASCs and ndASCs comparably reduced CD4 T-cell viability, HLA-DR expression, and interferon-gamma production and conversely increased CD69 expression, the Tregs percentage, and IL-17A production. Considerable amounts of the immunomodulators prostaglandin E2 (PGE2) and IL-6 were detected in the conditioned medium of cocultures. These findings suggest that ASCs obtained from donors with T2D and obesity are receptive to the inflammatory environment and able to modulate CD4 T cells accordingly.


Subject(s)
Diabetes Mellitus, Type 2 , Mesenchymal Stem Cells , Humans , Adipose Tissue/metabolism , CD4-Positive T-Lymphocytes/metabolism , Diabetes Mellitus, Type 2/metabolism , Mesenchymal Stem Cells/metabolism , Cytokines/metabolism , Immunomodulation , Obesity/metabolism , Cell Proliferation
2.
J Mater Sci Mater Med ; 35(1): 17, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38507150

ABSTRACT

3D borosilicate bioactive glass (1393B20 and B12.5MgSr) scaffolds were prepared by robocasting, with and without a dense layer at the top. Pore graded scaffolds are promising as they allow for membrane deposition and could limit the risk of soft tissue infiltration. In vitro dissolution was studied in tris(hydroxymethyl)aminomethane (TRIS) and Simulated Body Fluid (SBF). 1393B20 scaffolds dissolved faster than B12.5MgSr in TRIS whereas they dissolved slower in SBF. The difference in dissolution profiles, as a function of the medium used, is assigned to the different rates of precipitation of hydroxyapatite (HA). While the precipitation of calcium phosphate (CaP) in the form of HA, first sign of bioactivity, was confirmed by ICP, FTIR-ATR and SEM-EDX analysis for both compositions, 1393B20 was found to precipitate HA at a faster rate. The presence of a dense top layer did not significantly impact the dissolution rate and CaP precipitation. In vitro cell culture was performed using human adipose-derived stem cells (hADSCs). Prior to cell plating, a preincubation of 3 days was found optimum to prevent burst ion release. In direct contact, cells proliferate and spread on the scaffolds while maintaining characteristic spindle morphology. Cell plated on 1393B20 scaffolds showed increased viability when compared to cell plated on B12.5MgSr. The lower cell viability, when testing B12.5MgSr, was assigned to the depletion of Ca2+ ions from culture medium and higher pH. Static cell culture leads to believe that the scaffold produced from the 1393B20 glass composition are promising in bone regeneration applications.


Subject(s)
Glass , Tissue Scaffolds , Humans , Glass/chemistry , Tissue Scaffolds/chemistry , Durapatite/chemistry , Calcium Phosphates/chemistry
3.
Cell Commun Signal ; 21(1): 132, 2023 06 14.
Article in English | MEDLINE | ID: mdl-37316873

ABSTRACT

BACKGROUND: Neuronal networks receive and deliver information to regulate bodily functions while the vascular network provides oxygen, nutrients, and signaling molecules to tissues. Neurovascular interactions are vital for both tissue development and maintaining homeostasis in adulthood; these two network systems align and reciprocally communicate with one another. Although communication between network systems has been acknowledged, the lack of relevant in vitro models has hindered research at the mechanistic level. For example, the current used in vitro neurovascular models are typically established to be short-term (≤ 7 days) culture models, and they miss the supporting vascular mural cells. METHODS: In this study, we utilized human induced pluripotent stem cell (hiPSC) -derived neurons, fluorescence tagged human umbilical vein endothelial cells (HUVECs), and either human bone marrow or adipose stem/stromal cells (BMSCs or ASCs) as the mural cell types to create a novel 3D neurovascular network-on-a-chip model. Collagen 1-fibrin matrix was used to establish long-term (≥ 14 days) 3D cell culture in a perfusable microphysiological environment. RESULTS: Aprotinin-supplemented endothelial cell growth medium-2 (EGM-2) supported the simultaneous formation of neuronal networks, vascular structures, mural cell differentiation, and the stability of the 3D matrix. The formed neuronal and vascular networks were morphologically and functionally characterized. Neuronal networks supported vasculature formation based on direct cell contacts and by dramatically increasing the secretion of angiogenesis-related factors in multicultures in contrast to cocultures without neurons. Both utilized mural cell types supported the formation of neurovascular networks; however, the BMSCs seemed to boost neurovascular networks to greater extent. CONCLUSIONS: Overall, our study provides a novel human neurovascular network model that is applicable for creating in vivo-like tissue models with intrinsic neurovascular interactions. The 3D neurovascular network model on chip forms an initial platform for the development of vascularized and innervated organ-on-chip and further body-on-chip concepts and offers the possibility for mechanistic studies on neurovascular communication both under healthy and in disease conditions. Video Abstract.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Homeostasis , Cell Differentiation , Human Umbilical Vein Endothelial Cells , Lab-On-A-Chip Devices
4.
Biomacromolecules ; 22(5): 1980-1989, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33813822

ABSTRACT

Mesenchymal stem/stromal cells (MSCs) evoke great excitement for treating different human diseases due to their ability to home inflamed tissues, suppress inflammation, and promote tissue regeneration. Despite great promises, clinical trial results are disappointing as allotransplantation of MSCs trigger thrombotic activity and are damaged by the complement system, compromising their survival and function. To overcome this, a new strategy is presented by the silencing of tissue factor (TF), a transmembrane protein that mediates procoagulant activity. Novel Pluronic-based micelles are designed with the pendant pyridyl disulfide group, which are used to conjugate TF-targeting siRNA by the thiol-exchange reaction. This nanocarrier design effectively delivered the payload to MSCs resulting in ∼72% TF knockdown (KD) without significant cytotoxicity. Hematological evaluation of MSCs and TF-KD MSCs in an ex vivo human whole blood model revealed a significant reduction in an instant-blood-mediated-inflammatory reaction as evidenced by reduced platelet aggregation (93% of free platelets in the TF-KD group, compared to 22% in untreated bone marrow-derived MSCs) and thrombin-antithrombin complex formation. Effective TF silencing induced higher MSC differentiation in osteogenic and adipogenic media and showed stronger paracrine suppression of proinflammatory cytokines in macrophages and higher stimulation in the presence of endotoxins. Thus, TF silencing can produce functional cells with higher fidelity, efficacy, and functions.


Subject(s)
Mesenchymal Stem Cells , Cell Differentiation , Cells, Cultured , Humans , Micelles , Paracrine Communication , Poloxamer , Thromboplastin/genetics
5.
Int J Mol Sci ; 22(4)2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33546370

ABSTRACT

Microglia are involved in the post-stroke immunomodulation of brain plasticity, repair, and reorganization. Here, we evaluated whether adipose-tissue-derived mesenchymal stem cells (ADMSCs) and/or rehabilitation improve behavioral recovery by modulating long-term perilesional inflammation and creating a recovery-permissive environment in a rat model of ischemic stroke. METHODS: A two-way mixed lymphocyte reaction was used to assess the immunomodulatory capacity of ADMSCs in vitro. Two or 7 days after permanent middle cerebral artery occlusion (pMCAO), rats were intravenously administered ADMSCs or vehicle and housed in a standard or enriched environment (EE). Behavioral performance was assessed with a cylinder test, then we performed stereological and ImageJ/Fiji quantifications of ionized calcium-binding adaptor molecule 1 (Iba1) cells and blood-brain barrier (BBB) leakage. RESULTS: Human ADMSCs were immunosuppressive in vitro. The cylinder test showed partial spontaneous behavioral recovery of pMCAO rats, which was further improved by combined ADMSCs and housing in EE on days 21 and 42 (p < 0.05). We detected an ischemia-induced increase in numbers, staining intensity, and branch length of Iba1+ microglia/macrophages as well as BBB leakage in the perilesional cortex. However, these were not different among pMCAO groups. CONCLUSION: Combined cell therapy and rehabilitation additively improved behavioral outcome despite long-term perilesional microglia presence in stroke rats.


Subject(s)
Blood-Brain Barrier , Inflammation , Mesenchymal Stem Cell Transplantation , Microglia , Stroke/therapy , Animals , Brain Ischemia/etiology , Infarction, Middle Cerebral Artery/complications , Macrophages , Male , Mesenchymal Stem Cells , Rats , Rats, Sprague-Dawley , Stroke/etiology , Stroke/physiopathology , Stroke Rehabilitation
6.
Childs Nerv Syst ; 32(4): 681-8, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26782995

ABSTRACT

PURPOSE: In pediatric neurosurgery, decompressive craniectomy and correction of congenital cranial anomalies can result in major cranial defects. Corrective cranioplasty for the repair of these critical-sized defects is not only a cosmetic issue. The limited availability of suitable autogenous bone and the morbidity of donor site harvesting have driven the search for new approaches with biodegradable and bioactive materials. This study aimed to assess the healing of rabbit calvarial critical-sized defects filled with osteogenic material, either with bioactive glass scaffolds or tricalcium phosphate granules in various combinations with adipose stem cells or bone marrow stem cells, BMP-2, BMP-7, or VEGF to enhance osteogenesis. METHODS: Eighty-two bicortical full thickness critical-sized calvarial defects were operated. Five defects were left empty as negative control defects. The remaining 77 defects were filled with solid bioactive glass scaffolds or tricalcium phosphate granules seeded with adipose or bone marrow derived stem cells in combination with BMP-2, BMP-7, or VEGF. The defects were allowed to heal for 6 weeks before histologic and micro-CT analyses. RESULTS: Micro-CT examination at the 6-week post-operative time point revealed that defects filled with stem cell-seeded tricalcium phosphate granules resulted in new bone formation of 6.0 %, whereas defects with bioactive glass scaffolds with stem cells showed new bone formation of 0.5 to 1.7 %, depending on the growth factor used. CONCLUSIONS: This study suggests that tricalcium phosphate granules combined with stem cells have osteogenic potential superior to solid bioactive glass scaffolds with stem cells and growth factors.


Subject(s)
Bone Diseases/therapy , Hydroxyapatites/therapeutic use , Intercellular Signaling Peptides and Proteins/therapeutic use , Stem Cells/physiology , Tissue Scaffolds , Wound Healing/drug effects , Animals , Bone Diseases/diagnostic imaging , Bone Morphogenetic Protein 2/administration & dosage , Bone Morphogenetic Protein 7 , Disease Models, Animal , Humans , Male , Rabbits , Tomography Scanners, X-Ray Computed , Treatment Outcome , Vascular Endothelial Growth Factor A/administration & dosage
7.
Duodecim ; 130(19): 2009-16, 2014.
Article in Fi | MEDLINE | ID: mdl-25558622

ABSTRACT

Adipose-derived stem cells have already proven their effectivity, for instance in the experimental treatment of bone defects. Bone defects in the facial and cranial region are complicated, and finding a suitable autologous bone transplant for them is difficult. Stem cell treatments have already been carried out successfully, and preclinical experiments have aroused no concerns about safety. We describe means to prepare so-called personal replacements for bone defects from the patient's own stem cells isolated from the adipose tissue, and the course of experimental therapy of two stem cell patients.


Subject(s)
Adipocytes/cytology , Bone Diseases/therapy , Chin , Stem Cell Transplantation/methods , Bone Regeneration/physiology , Bone and Bones/physiology , Humans , Transplantation, Autologous
8.
Mater Today Bio ; 24: 100924, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38226015

ABSTRACT

Three-dimensional (3D) bioprinting offers an automated, customizable solution to manufacture highly detailed 3D tissue constructs and holds great promise for regenerative medicine to solve the severe global shortage of donor tissues and organs. However, uni-material 3D bioprinting is not sufficient for manufacturing heterogenous 3D constructs with native-like microstructures and thus, innovative multi-material solutions are required. Here, we developed a novel multi-material 3D bioprinting strategy for bioprinting human corneal stroma. The human cornea is the transparent outer layer of your eye, and vision loss due to corneal blindness has serious effects on the quality of life of individuals. One of the main reasons for corneal blindness is the damage in the detailed organization of the corneal stroma where collagen fibrils are arranged in layers perpendicular to each other and the corneal stromal cells grow along the fibrils. Donor corneas for treating corneal blindness are scarce, and the current tissue engineering (TE) technologies cannot produce artificial corneas with the complex microstructure of native corneal stroma. To address this, we developed a novel multi-material 3D bioprinting strategy to mimic detailed organization of corneal stroma. These multi-material 3D structures with heterogenous design were bioprinted by using human adipose tissue -derived stem cells (hASCs) and hyaluronic acid (HA) -based bioinks with varying stiffnesses. In our novel design of 3D models, acellular stiffer HA-bioink and cell-laden softer HA-bioink were printed in alternating filaments, and the filaments were printed perpendicularly in alternating layers. The multi-material bioprinting strategy was applied for the first time in corneal stroma 3D bioprinting to mimic the native microstructure. As a result, the soft bioink promoted cellular growth and tissue formation of hASCs in the multi-material 3D bioprinted composites, whereas the stiff bioink provided mechanical support as well as guidance of cellular organization upon culture. Interestingly, cellular growth and tissue formation altered the mechanical properties of the bioprinted composite constructs significantly. Importantly, the bioprinted composite structures showed good integration to the host tissue in ex vivo cornea organ culture model. As a conclusion, the developed multi-material bioprinting strategy provides great potential as a biofabrication solution for manufacturing organized, heterogenous microstructures of native tissues. To the best of our knowledge, this multi-material bioprinting strategy has never been applied in corneal bioprinting. Therefore, our work advances the technological achievements in additive manufacturing and brings the field of corneal TE to a new level.

9.
Tissue Eng Regen Med ; 21(1): 81-96, 2024 01.
Article in English | MEDLINE | ID: mdl-37907765

ABSTRACT

BACKGROUND: The reconstructive surgery of vaginal defects is highly demanding and susceptible to complications, especially in larger defects requiring nonvaginal tissue grafts. Thus, tissue engineering-based solutions could provide a potential approach to the reconstruction of vaginal defects. METHODS: Here, we evaluated a novel porous ascorbic acid 2-phosphate (A2P)-releasing supercritical carbon dioxide foamed poly-L-lactide-co-ε-caprolactone (scPLCLA2P) scaffold for vaginal reconstruction with vaginal epithelial (EC) and stromal (SC) cells. The viability, proliferation, and phenotype of ECs and SCs were evaluated in monocultures and in cocultures on d 1, d 7 and d 14. Furthermore, the collagen production of SCs on scPLCLA2P was compared to that on scPLCL without A2P on d 14. RESULTS: Both ECs and SCs maintained their viability on the scPLCLA2P scaffold in mono- and coculture conditions, and the cells maintained their typical morphology during the 14-d culture period. Most importantly, the scPLCLA2P scaffolds supported the collagen production of SCs superior to plain scPLCL based on total collagen amount, collagen I and III gene expression results and collagen immunostaining results. CONCLUSION: This is the first study evaluating the effect of A2P on vaginal tissue engineering, and the results are highly encouraging, indicating that scPLCLA2P has potential as a scaffold for vaginal tissue engineering.


Subject(s)
Tissue Engineering , Tissue Scaffolds , Female , Humans , Tissue Engineering/methods , Porosity , Collagen/metabolism , Stromal Cells/metabolism
10.
ACS Appl Mater Interfaces ; 16(13): 15761-15772, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38513048

ABSTRACT

Utilizing tissue-specific extracellular matrices (ECMs) is vital for replicating the composition of native tissues and developing biologically relevant biomaterials. Human- or animal-derived donor tissues and organs are the current gold standard for the source of these ECMs. To overcome the several limitations related to these ECM sources, including the highly limited availability of donor tissues, cell-derived ECM offers an alternative approach for engineering tissue-specific biomaterials, such as bioinks for three-dimensional (3D) bioprinting. 3D bioprinting is a state-of-the-art biofabrication technology that addresses the global need for donor tissues and organs. In fact, there is a vast global demand for human donor corneas that are used for treating corneal blindness, often resulting from damage in the corneal stromal microstructure. Human adipose tissue is one of the most abundant tissues and easy to access, and adipose tissue-derived stem cells (hASCs) are a highly advantageous cell type for tissue engineering. Furthermore, hASCs have already been studied in clinical trials for treating corneal stromal pathologies. In this study, a corneal stroma-specific ECM was engineered without the need for donor corneas by differentiating hASCs toward corneal stromal keratocytes (hASC-CSKs). Furthermore, this ECM was utilized as a component for corneal stroma-specific bioink where hASC-CSKs were printed to produce corneal stroma structures. This cost-effective approach combined with a clinically relevant cell type provides valuable information on developing more sustainable tissue-specific solutions and advances the field of corneal tissue engineering.


Subject(s)
Bioprinting , Tissue Engineering , Animals , Humans , Tissue Engineering/methods , Corneal Stroma/metabolism , Cornea , Extracellular Matrix/chemistry , Biocompatible Materials/metabolism , Adipose Tissue , Stem Cells , Tissue Scaffolds , Bioprinting/methods
11.
Regen Biomater ; 11: rbae060, 2024.
Article in English | MEDLINE | ID: mdl-38903561

ABSTRACT

Pelvic organ prolapse (POP) afflicts millions of women globally. In POP, the weakened support of the pelvic floor results in the descent of pelvic organs into the vagina, causing a feeling of bulging, problems in urination, defaecation and/or sexual function. However, the existing surgical repair methods for relapsed POP remain insufficient, highlighting the urgent need for more effective alternatives. Collagen is an essential component in pelvic floor tissues, providing structural support, and its production is controlled by ascorbic acid. Therefore, we investigated novel ascorbic acid 2-phosphate (A2P)-releasing poly(l-lactide-co-ε-caprolactone) (PLCLA2P) membranes in vitro to promote cell proliferation and extracellular matrix protein production to strengthen the natural support of the pelvic fascia for POP applications. We analysed the mechanical properties and the impact of PLCLA2P on cellular responses through cell culture analysis using human vaginal fibroblasts (hVFs) and human adipose-derived stem/stromal cells (hASCs) compared to PLCL. In addition, the A2P release from PLCLA2P membranes was assessed in vitro. The PLCLA2P demonstrated slightly lower tensile strength (2.2 ± 0.4 MPa) compared to PLCL (3.7 ± 0.6 MPa) for the first 4 weeks in vitro. The A2P was most rapidly released during the first 48 h of in vitro incubation. Our findings demonstrated significantly increased proliferation and collagen production of both hVFs and hASCs on A2P-releasing PLCLA2P compared to PLCL. In addition, extracellular collagen Type I fibres were detected in hVFs, suggesting enhanced collagen maturation on PLCLA2P. Moreover, increased extracellular matrix protein expression was detected on PLCLA2P in both hVFs and hASCs compared to plain PLCL. In conclusion, these findings highlight the potential of PLCLA2P as a promising candidate for promoting tissue regeneration in applications aimed for POP tissue engineering applications.

12.
Oncogenesis ; 13(1): 11, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429288

ABSTRACT

Acute myeloid leukemia (AML), a heterogeneous and aggressive blood cancer, does not respond well to single-drug therapy. A combination of drugs is required to effectively treat this disease. Computational models are critical for combination therapy discovery due to the tens of thousands of two-drug combinations, even with approved drugs. While predicting synergistic drugs is the focus of current methods, few consider drug efficacy and potential toxicity, which are crucial for treatment success. To find effective new drug candidates, we constructed a bipartite network using patient-derived tumor samples and drugs. The network is based on drug-response screening and summarizes all treatment response heterogeneity as drug response weights. This bipartite network is then projected onto the drug part, resulting in the drug similarity network. Distinct drug clusters were identified using community detection methods, each targeting different biological processes and pathways as revealed by enrichment and pathway analysis of the drugs' protein targets. Four drugs with the highest efficacy and lowest toxicity from each cluster were selected and tested for drug sensitivity using cell viability assays on various samples. Results show that ruxolitinib-ulixertinib and sapanisertib-LY3009120 are the most effective combinations with the least toxicity and the best synergistic effect on blast cells. These findings lay the foundation for personalized and successful AML therapies, ultimately leading to the development of drug combinations that can be used alongside standard first-line AML treatment.

13.
Nat Protoc ; 19(1): 60-82, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37996540

ABSTRACT

Most patients with advanced malignancies are treated with severely toxic, first-line chemotherapies. Personalized treatment strategies have led to improved patient outcomes and could replace one-size-fits-all therapies, yet they need to be tailored by testing of a range of targeted drugs in primary patient cells. Most functional precision medicine studies use simple drug-response metrics, which cannot quantify the selective effects of drugs (i.e., the differential responses of cancer cells and normal cells). We developed a computational method for selective drug-sensitivity scoring (DSS), which enables normalization of the individual patient's responses against normal cell responses. The selective response scoring uses the inhibition of noncancerous cells as a proxy for potential drug toxicity, which can in turn be used to identify effective and safer treatment options. Here, we explain how to apply the selective DSS calculation for guiding precision medicine in patients with leukemia treated across three cancer centers in Europe and the USA; the generic methods are also widely applicable to other malignancies that are amenable to drug testing. The open-source and extendable R-codes provide a robust means to tailor personalized treatment strategies on the basis of increasingly available ex vivo drug-testing data from patients in real-world and clinical trial settings. We also make available drug-response profiles to 527 anticancer compounds tested in 10 healthy bone marrow samples as reference data for selective scoring and de-prioritization of drugs that show broadly toxic effects. The procedure takes <60 min and requires basic skills in R.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Precision Medicine/methods
14.
Cytotechnology ; 76(4): 483-502, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38933872

ABSTRACT

Cardiovascular diseases remain as the most common cause of death worldwide. To reveal the underlying mechanisms in varying cardiovascular diseases, in vitro models with cells and supportive biomaterial can be designed to recapitulate the essential components of human heart. In this study, we analyzed whether 3D co-culture of cardiomyocytes (CM) with vascular network and with adipose tissue-derived mesenchymal stem/stromal cells (ASC) can support CM functionality. CM were cultured with either endothelial cells (EC) and ASC or with only ASC in hydrazide-modified gelatin and oxidized gellan gum hybrid hydrogel to form cardiovascular multiculture and myocardial co-culture, respectively. We studied functional characteristics of CM in two different cellular set-ups and analyzed vascular network formation, cellular morphology and orientation. The results showed that gellan gum-gelatin hydrogel supports formation of two different cellular networks and functional CM. We detected formation of a modest vascular network in cardiovascular multiculture and extensive ASC-derived alpha smooth muscle actin -positive cellular network in multi- and co-culture. iPSC-CM showed elongated morphology, partly aligned orientation with the formed networks and presented normal calcium transients, beating rates, and contraction and relaxation behavior in both setups. These 3D cardiac models provide promising platforms to study (patho) physiological mechanisms of cardiovascular diseases. Supplementary Information: The online version contains supplementary material available at 10.1007/s10616-024-00630-5.

15.
Growth Factors ; 31(5): 141-53, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23879371

ABSTRACT

In the present study bone morphogenetic protein (BMP)-6 alone or in synergy with BMP-7 and vascular endothelial growth factor (VEGF) were tested with human adipose stem cells (hASCs) seeded on cell culture plastic or 3D bioactive glass. Osteogenic medium (OM) was used as a positive control for osteogenic differentiation. The same growth factor groups were also tested combined with OM. None of the growth factor treatments could enhance the osteogenic differentiation of hASCs in 3D- or 2D-culture compared to control or OM. In 3D-culture OM promoted significantly total collagen production, whereas in 2D-culture OM induced high total ALP activity and mineralization compared to control and growth factors groups, but also high cell proliferation. In this study, hASCs did not respond to exogenously added growth although various parameters of the study set-up may have affected these findings contradictory to the previous literature.


Subject(s)
Adipocytes/cytology , Adult Stem Cells/cytology , Bone Morphogenetic Protein 6/pharmacology , Bone Morphogenetic Protein 7/pharmacology , Osteogenesis/drug effects , Vascular Endothelial Growth Factor A/pharmacology , Adipocytes/drug effects , Adult Stem Cells/drug effects , Biocompatible Materials/pharmacology , Cells, Cultured , Glass , Humans , Plastics/pharmacology , Tissue Scaffolds
16.
Langmuir ; 29(20): 6099-108, 2013 May 21.
Article in English | MEDLINE | ID: mdl-23621360

ABSTRACT

Surface properties and electrical charges are critical factors elucidating cell interactions on biomaterial surfaces. The surface potential distribution and the nanoscopic and microscopic surface elasticity of organic polypyrrole-hyaluronic acid (PPy-HA) were studied by atomic force microscopy (AFM) in a fluid environment in order to explain the observed enhancement in the attachment of human adipose stem cells on positively charged PPy-HA films. The electrostatic force between the AFM tip and a charged PPy-HA surface, the tip-sample adhesion force, and elastic moduli were estimated from the AFM force curves, and the data were fitted to electrostatic double-layer and elastic contact models. The surface potential of the charged and dried PPy-HA films was assessed with Kelvin probe force microscopy (KPFM), and the KPFM data were correlated to the fluid AFM data. The surface charge distribution and elasticity were both found to correlate well with the nodular morphology of PPy-HA and to be sensitive to the electrochemical charging conditions. Furthermore, a significant change in the adhesion was detected when the surface was electrochemically charged positive. The results highlight the potential of positively charged PPy-HA as a coating material to enhance the stem cell response in tissue-engineering scaffolds.


Subject(s)
Adipose Tissue/cytology , Hyaluronic Acid/chemistry , Polymers/chemistry , Pyrroles/chemistry , Stem Cells/cytology , Cell Adhesion , Cell Survival , Cells, Cultured , Electrochemical Techniques , Humans , Microscopy, Scanning Probe , Surface Properties
17.
J Oral Maxillofac Surg ; 71(5): 938-50, 2013 May.
Article in English | MEDLINE | ID: mdl-23375899

ABSTRACT

PURPOSE: Large mandibular resection defects historically have been treated using autogenous bone grafts and reconstruction plates. However, a major drawback of large autogenous bone grafts is donor-site morbidity. PATIENTS AND METHODS: This report describes the replacement of a 10-cm anterior mandibular ameloblastoma resection defect, reproducing the original anatomy of the chin, using a tissue-engineered construct consisting of ß-tricalcium phosphate (ß-TCP) granules, recombinant human bone morphogenetic protein-2 (BMP-2), and Good Manufacturing Practice-level autologous adipose stem cells (ASCs). Unlike prior reports, 1-step in situ bone formation was used without the need for an ectopic bone-formation step. The reconstructed defect was rehabilitated with a dental implant-supported overdenture. An additive manufactured medical skull model was used preoperatively to guide the prebending of patient-specific hardware, including a reconstruction plate and titanium mesh. A subcutaneous adipose tissue sample was harvested from the anterior abdominal wall of the patient before resection and simultaneous reconstruction of the parasymphysis. ASCs were isolated and expanded ex vivo over the next 3 weeks. The cell surface marker expression profile of ASCs was similar to previously reported results and ASCs were analyzed for osteogenic differentiation potential in vitro. The expanded cells were seeded onto a scaffold consisting of ß-TCP and BMP-2 and the cell viability was evaluated. The construct was implanted into the parasymphyseal defect. RESULTS: Ten months after reconstruction, dental implants were inserted into the grafted site, allowing harvesting of bone cores. Histologic examination and in vitro analysis of cell viability and cell surface markers were performed and prosthodontic rehabilitation was completed. CONCLUSION: ASCs in combination with ß-TCP and BMP-2 offer a promising construct for the treatment of large, challenging mandibular defects without the need for ectopic bone formation and allowing rehabilitation with dental implants.


Subject(s)
Adipose Tissue/cytology , Ameloblastoma/surgery , Mandibular Neoplasms/surgery , Plastic Surgery Procedures/methods , Stem Cells/physiology , Tissue Engineering/instrumentation , Tissue Scaffolds , Bone Morphogenetic Protein 2/therapeutic use , Bone Plates , Bone Regeneration/physiology , Bone Substitutes/therapeutic use , Calcium Phosphates/therapeutic use , Cell Culture Techniques , Cell Differentiation/physiology , Cell Survival/physiology , Dental Implants , Dental Prosthesis, Implant-Supported , Denture, Overlay , Denture, Partial , Follow-Up Studies , Humans , Male , Middle Aged , Neoplasm Recurrence, Local/surgery , Osseointegration/physiology , Osteogenesis/physiology , Recombinant Proteins/therapeutic use , Subcutaneous Fat, Abdominal/cytology , Surgical Mesh , Tissue Engineering/standards , Transforming Growth Factor beta/therapeutic use
18.
Cells ; 12(2)2023 01 05.
Article in English | MEDLINE | ID: mdl-36672159

ABSTRACT

Bioactive glass (BaG) materials are increasingly used in clinics, but their regulatory mechanisms on osteogenic differentiation remain understudied. In this study, we elucidated the currently unknown role of the p38 MAPK downstream target heat shock protein 27 (HSP27), in the osteogenic commitment of human mesenchymal stem cells (hMSCs), derived from adipose tissue (hASCs) and bone marrow (hBMSCs). Osteogenesis was induced with ionic extract of an experimental BaG in osteogenic medium (OM). Our results showed that BaG OM induced fast osteogenesis of hASCs and hBMSCs, demonstrated by enhanced alkaline phosphatase (ALP) activity, production of extracellular matrix protein collagen type I, and matrix mineralization. BaG OM stimulated early and transient activation of p38/HSP27 signaling by phosphorylation in hMSCs. Inhibition of HSP27 phosphorylation with SB202190 reduced the ALP activity, mineralization, and collagen type I production induced by BaG OM. Furthermore, the reduced pHSP27 protein by SB202190 corresponded to a reduced F-actin intensity of hMSCs. The phosphorylation of HSP27 allowed its co-localization with the cytoskeleton. In terminally differentiated cells, however, pHSP27 was found diffusely in the cytoplasm. This study provides the first evidence that HSP27 is involved in hMSC osteogenesis induced with the ionic dissolution products of BaG. Our results indicate that HSP27 phosphorylation plays a role in the osteogenic commitment of hMSCs, possibly through the interaction with the cytoskeleton.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Humans , Osteogenesis/physiology , HSP27 Heat-Shock Proteins/metabolism , Collagen Type I/metabolism , Cell Differentiation/physiology , Mesenchymal Stem Cells/metabolism
19.
J Biomed Mater Res B Appl Biomater ; 111(10): 1728-1740, 2023 10.
Article in English | MEDLINE | ID: mdl-37199480

ABSTRACT

Surgical treatment of urothelial defects with autologous genital or extragenital tissue grafts is susceptible to complications. Tissue engineering utilizing novel biomaterials and cells such as human urothelial cells (hUC) for epithelial regeneration and adipose stromal cells (hASC) for smooth muscle restoration might offer new treatment options for urothelial defects. Previously, polylactide (PLA) has been studied for urethral tissue engineering, however, as such, it is too stiff and rigid for the application. Blending it with ductile polybutylene succinate (PBSu) could provide suitable mechanical properties for the application. Our aim was to study the morphology, viability and proliferation of hUC and hASC when cultured on 100/0 PLA/PBSu, 75/25 PLA/PBSu blend, 50/50 PLA/PBSu blend, and 0/100 PLA/PBSu discs. The results showed that the hUCs were viable and proliferated on all the studied materials. The hUCs stained pancytokeratin at 7 and 14 days, suggesting maintenance of the urothelial phenotype. The hASCs retained their viability and morphology and proliferated on all the other discs, except on PLA. On the PLA, the hASCs formed large aggregates with each other rather than attached to the material. The early smooth muscle cell markers SM22α and α-SMA were stained in hASC at 7 and 14 day time points on all PBSu-containing materials, indicating that hASCs maintain their smooth muscle differentiation potential also on PBSu. As a conclusion, PBSu is a highly potential biomaterial for urothelial tissue engineering since it supports growth and phenotypic maintenance of hUC and smooth muscle differentiation of hASC.


Subject(s)
Polymers , Tissue Engineering , Humans , Tissue Engineering/methods , Polyesters/pharmacology , Biocompatible Materials/pharmacology
20.
Cells ; 12(19)2023 09 27.
Article in English | MEDLINE | ID: mdl-37830581

ABSTRACT

Induced pluripotent stem cell (iPSC) technology enables differentiation of human hepatocytes or hepatocyte-like cells (iPSC-HLCs). Advances in 3D culturing platforms enable the development of more in vivo-like liver models that recapitulate the complex liver architecture and functionality better than traditional 2D monocultures. Moreover, within the liver, non-parenchymal cells (NPCs) are critically involved in the regulation and maintenance of hepatocyte metabolic function. Thus, models combining 3D culture and co-culturing of various cell types potentially create more functional in vitro liver models than 2D monocultures. Here, we report the establishment of 3D cultures of iPSC-HLCs alone and in co-culture with human umbilical vein endothelial cells (HUVECs) and adipose tissue-derived mesenchymal stem/stromal cells (hASCs). The 3D cultures were performed as spheroids or on microfluidic chips utilizing various biomaterials. Our results show that both 3D spheroid and on-chip culture enhance the expression of mature liver marker genes and proteins compared to 2D. Among the spheroid models, we saw the best functionality in iPSC-HLC monoculture spheroids. On the contrary, in the chip system, the multilineage model outperformed the monoculture chip model. Additionally, the optical projection tomography (OPT) and electrical impedance tomography (EIT) system revealed changes in spheroid size and electrical conductivity during spheroid culture, suggesting changes in cell-cell connections. Altogether, the present study demonstrates that iPSC-HLCs can successfully be cultured in 3D as spheroids and on microfluidic chips, and co-culturing iPSC-HLCs with NPCs enhances their functionality. These 3D in vitro liver systems are promising human-derived platforms usable in various liver-related studies, specifically when using patient-specific iPSCs.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Endothelial Cells , Hepatocytes/metabolism , Liver , Cell Culture Techniques/methods
SELECTION OF CITATIONS
SEARCH DETAIL