Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
J Cell Mol Med ; 28(8): e18301, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38652212

ABSTRACT

X-linked nephrogenic diabetes insipidus (X-NDI) is a rare congenital disease caused by inactivating mutations of the vasopressin type-2 receptor (AVPR2), characterized by impaired renal concentrating ability, dramatic polyuria, polydipsia and risk of dehydration. The disease, which still lacks a cure, could benefit from the pharmacologic stimulation of other GPCRs, activating the cAMP-intracellular pathway in the kidney cells expressing the AVPR2. On the basis of our previous studies, we here hypothesized that the ß3-adrenergic receptor could be such an ideal candidate. We evaluated the effect of continuous 24 h stimulation of the ß3-AR with the agonist BRL37344 and assessed the effects on urine output, urine osmolarity, water intake and the abundance and activation of the key renal water and electrolyte transporters, in the mouse model of X-NDI. Here we demonstrate that the ß3-AR agonism exhibits a potent antidiuretic effect. The strong improvement in symptoms of X-NDI produced by a single i.p. injection of BRL37344 (1 mg/kg) was limited to 3 h but repeated administrations in the 24 h, mimicking the effect of a slow-release preparation, promoted a sustained antidiuretic effect, reducing the 24 h urine output by 27%, increasing urine osmolarity by 25% and reducing the water intake by 20%. At the molecular level, we show that BRL37344 acted by increasing the phosphorylation of NKCC2, NCC and AQP2 in the renal cell membrane, thereby increasing electrolytes and water reabsorption in the kidney tubule of X-NDI mice. Taken together, these data suggest that human ß3-AR agonists might represent an effective possible treatment strategy for X-NDI.


Subject(s)
Adrenergic beta-3 Receptor Agonists , Male , Animals , Mice, Inbred C57BL , Disease Models, Animal , Adrenergic beta-3 Receptor Agonists/pharmacology , Adrenergic beta-3 Receptor Agonists/therapeutic use , Antidiuretic Agents/pharmacology , Antidiuretic Agents/therapeutic use , Kidney Concentrating Ability/drug effects , Polydipsia/drug therapy , Polydipsia/etiology
2.
Int J Mol Sci ; 24(2)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36674662

ABSTRACT

We previously reported the novel finding that ß3-AR is functionally expressed in the renal tubule and shares its cellular localization with the vasopressin receptor AVPR2, whose physiological stimulation triggers antidiuresis by increasing the plasma membrane expression of the water channel AQP2 and the NKCC2 symporter in renal cells. We also showed that pharmacologic stimulation of ß3-AR is capable of triggering antidiuresis and correcting polyuria, in the knockout mice for the AVPR2 receptor, the animal model of human X-linked nephrogenic diabetes insipidus (XNDI), a rare genetic disease still missing a cure. Here, to demonstrate that the same response can be evoked in humans, we evaluated the effect of treatment with the ß3-AR agonist mirabegron on AQP2 and NKCC2 trafficking, by evaluating their urinary excretion in a cohort of patients with overactive bladder syndrome, for the treatment of which the drug is already approved. Compared to baseline, treatment with mirabegron significantly increased AQP2 and NKCC2 excretion for the 12 weeks of treatment. This data is a step forward in corroborating the hypothesis that in patients with XNDI, treatment with mirabegron could bypass the inactivation of AVPR2, trigger antidiuresis and correct the dramatic polyuria which is the main hallmark of this disease.


Subject(s)
Diabetes Insipidus, Nephrogenic , Diabetes Mellitus , Mice , Animals , Humans , Diabetes Insipidus, Nephrogenic/drug therapy , Diabetes Insipidus, Nephrogenic/genetics , Diabetes Insipidus, Nephrogenic/metabolism , Aquaporin 2/genetics , Aquaporin 2/metabolism , Polyuria/drug therapy , Adrenergic beta-Agonists
3.
Int J Mol Sci ; 24(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36675161

ABSTRACT

Lysosomes are acidic Ca2+ storage organelles that actively generate local Ca2+ signaling events to regulate a plethora of cell functions. Here, we characterized lysosomal Ca2+ signals in mouse renal collecting duct (CD) cells and we assessed their putative role in aquaporin 2 (AQP2)-dependent water reabsorption. Bafilomycin A1 and ML-SA1 triggered similar Ca2+ oscillations, in the absence of extracellular Ca2+, by alkalizing the acidic lysosomal pH or activating the lysosomal cation channel mucolipin 1 (TRPML1), respectively. TRPML1-dependent Ca2+ signals were blocked either pharmacologically or by lysosomes' osmotic permeabilization, thus indicating these organelles as primary sources of Ca2+ release. Lysosome-induced Ca2+ oscillations were sustained by endoplasmic reticulum (ER) Ca2+ content, while bafilomycin A1 and ML-SA1 did not directly interfere with ER Ca2+ homeostasis per se. TRPML1 activation strongly increased AQP2 apical expression and depolymerized the actin cytoskeleton, thereby boosting water flux in response to an hypoosmotic stimulus. These effects were strictly dependent on the activation of the Ca2+/calcineurin pathway. Conversely, bafilomycin A1 led to perinuclear accumulation of AQP2 vesicles without affecting water permeability. Overall, lysosomal Ca2+ signaling events can be differently decoded to modulate Ca2+-dependent cellular functions related to the dock/fusion of AQP2-transporting vesicles in principal cells of the CD.


Subject(s)
Aquaporin 2 , Kidney Tubules, Collecting , Lysosomes , Water , Animals , Mice , Aquaporin 2/genetics , Aquaporin 2/metabolism , Lysosomes/genetics , Lysosomes/metabolism , Macrolides/pharmacology , Macrolides/metabolism , Water/metabolism , Kidney Tubules, Collecting/cytology , Kidney Tubules, Collecting/metabolism
4.
J Cell Mol Med ; 25(23): 10902-10915, 2021 12.
Article in English | MEDLINE | ID: mdl-34773379

ABSTRACT

Mutations in Lamin A/C gene (lmna) cause a wide spectrum of cardiolaminopathies strictly associated with significant deterioration of the electrical and contractile function of the heart. Despite the continuous flow of biomedical evidence, linking cardiac inflammation to heart remodelling in patients harbouring lmna mutations is puzzling. Therefore, we profiled 30 serum cytokines/chemokines in patients belonging to four different families carrying pathogenic lmna mutations segregating with cardiac phenotypes at different stages of severity (n = 19) and in healthy subjects (n = 11). Regardless lmna mutation subtype, high levels of circulating granulocyte colony-stimulating factor (G-CSF) and interleukin 6 (IL-6) were found in all affected patients' sera. In addition, elevated levels of Interleukins (IL) IL-1Ra, IL-1ß IL-4, IL-5 and IL-8 and the granulocyte-macrophage colony-stimulating factor (GM-CSF) were measured in a large subset of patients associated with more aggressive clinical manifestations. Finally, the expression of the pro-inflammatory 70 kDa heat shock protein (Hsp70) was significantly increased in serum exosomes of patients harbouring the lmna mutation associated with the more severe phenotype. Overall, the identification of patient subsets with overactive or dysregulated myocardial inflammatory responses could represent an innovative diagnostic, prognostic and therapeutic tool against Lamin A/C cardiomyopathies.


Subject(s)
Cytokines/metabolism , Heart Diseases/metabolism , Inflammation/metabolism , Adult , Cardiolipins/metabolism , Cell Line , Female , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , HEK293 Cells , Humans , Male , Middle Aged , Recombinant Proteins/metabolism
5.
Int J Mol Sci ; 22(22)2021 Nov 21.
Article in English | MEDLINE | ID: mdl-34830416

ABSTRACT

We previously showed that mesothelial cells in human peritoneum express the water channel aquaporin 1 (AQP1) at the plasma membrane, suggesting that, although in a non-physiological context, it may facilitate osmotic water exchange during peritoneal dialysis (PD). According to the three-pore model that predicts the transport of water during PD, the endothelium of peritoneal capillaries is the major limiting barrier to water transport across peritoneum, assuming the functional role of the mesothelium, as a semipermeable barrier, to be negligible. We hypothesized that an intact mesothelial layer is poorly permeable to water unless AQP1 is expressed at the plasma membrane. To demonstrate that, we characterized an immortalized cell line of human mesothelium (HMC) and measured the osmotically-driven transmesothelial water flux in the absence or in the presence of AQP1. The presence of tight junctions between HMC was investigated by immunofluorescence. Bioelectrical parameters of HMC monolayers were studied by Ussing Chambers and transepithelial water transport was investigated by an electrophysiological approach based on measurements of TEA+ dilution in the apical bathing solution, through TEA+-sensitive microelectrodes. HMCs express Zo-1 and occludin at the tight junctions and a transepithelial vectorial Na+ transport. Real-time transmesothelial water flux, in response to an increase of osmolarity in the apical solution, indicated that, in the presence of AQP1, the rate of TEA+ dilution was up to four-fold higher than in its absence. Of note, we confirmed our data in isolated mouse mesentery patches, where we measured an AQP1-dependent transmesothelial osmotic water transport. These results suggest that the mesothelium may represent an additional selective barrier regulating water transport in PD through functional expression of the water channel AQP1.


Subject(s)
Aquaporin 1/genetics , Biological Transport/genetics , Epithelium/metabolism , Peritoneum/metabolism , Aquaporins/genetics , Cell Line , Gene Expression Regulation/genetics , Humans , Peritoneal Dialysis/standards , Peritoneum/pathology , Sodium/metabolism
6.
J Cell Mol Med ; 23(9): 6331-6342, 2019 09.
Article in English | MEDLINE | ID: mdl-31361068

ABSTRACT

The K+ voltage-gated channel subfamily H member 2 (KCNH2) transports the rapid component of the cardiac delayed rectifying K+ current. The aim of this study was to characterize the biophysical properties of a C-terminus-truncated KCNH2 channel, G1006fs/49 causing long QT syndrome type II in heterozygous members of an Italian family. Mutant carriers underwent clinical workup, including 12-lead electrocardiogram, transthoracic echocardiography and 24-hour ECG recording. Electrophysiological experiments compared the biophysical properties of G1006fs/49 with those of KCNH2 both expressed either as homotetramers or as heterotetramers in HEK293 cells. Major findings of this work are as follows: (a) G1006fs/49 is functional at the plasma membrane even when co-expressed with KCNH2, (b) G1006fs/49 exerts a dominant-negative effect on KCNH2 conferring specific biophysical properties to the heterotetrameric channel such as a significant delay in the voltage-sensitive transition to the open state, faster kinetics of both inactivation and recovery from the inactivation and (c) the activation kinetics of the G1006fs/49 heterotetrameric channels is partially restored by a specific KCNH2 activator. The functional characterization of G1006fs/49 homo/heterotetramers provided crucial findings about the pathogenesis of LQTS type II in the mutant carriers, thus providing a new and potential pharmacological strategy.


Subject(s)
ERG1 Potassium Channel/genetics , Long QT Syndrome/genetics , Long QT Syndrome/pathology , Mutation/genetics , Adolescent , Adult , Cell Line , Cell Membrane/genetics , Child , Electrocardiography/methods , Female , HEK293 Cells , Humans , Male , Phenotype , Protein Transport/genetics , Young Adult
7.
Cell Physiol Biochem ; 48(2): 847-862, 2018.
Article in English | MEDLINE | ID: mdl-30032151

ABSTRACT

BACKGROUND/AIMS: We recently showed that the ß3-adrenoreceptor (ß3AR) is expressed in mouse kidney collecting ducts (CD) cells along with the type-2 vasopressin receptor (AVPR2). Interestingly, a single injection of a ß3AR selective agonist promotes a potent antidiuretic effect in mice. Before considering the feasibility of chronic ß3AR agonism to induce antidiuresis in vivo, we aimed to evaluate in vitro the signaling and desensitization profiles of human ß3AR. METHODS: Human ß3AR desensitization was compared with that of human AVPR2 in cultured renal cells. Video imaging and FRET experiments were performed to dissect ß3AR signaling under acute and chronic stimulation. Plasma membrane localization of ß3AR, AVPR2 and AQP2 after agonist stimulation was studied by confocal microscopy. Receptors degradation was evaluated by Western blotting. RESULTS: In renal cells acute stimulation with the selective ß3AR agonist mirabegron, induced a dose-dependent increase in cAMP. Interestingly, chronic exposure to mirabegron promoted a significant increase of intracellular cAMP up to 12 hours. In addition, a slow and slight agonist-induced internalization and a delayed downregulation of ß3AR was observed under chronic stimulation. Furthermore, chronic exposure to mirabegron promoted apical expression of AQP2 also up to 12 hours. Conversely, long-term stimulation of AVPR2 with dDAVP showed short-lasting receptor signaling, rapid internalization and downregulation and apical AQP2 expression for no longer than 3 h. CONCLUSIONS: Overall, we conclude that ß3AR is less prone than AVPR2 to agonist-induced desensitization in renal collecting duct epithelial cells, showing sustained cAMP production, preserved membrane localization and delayed degradation after 12 hours agonist exposure. These results may be important for the potential use of chronic pharmacological stimulation of ß3AR to promote antidiuresis overcoming in vivo renal concentrating defects caused by inactivating mutations of the AVPR2.


Subject(s)
Acetanilides/pharmacology , Adrenergic beta-3 Receptor Agonists/pharmacology , Receptors, Adrenergic, beta-3/metabolism , Signal Transduction/drug effects , Thiazoles/pharmacology , Animals , Aquaporin 2/metabolism , Calcium/metabolism , Cell Line , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Down-Regulation/drug effects , Epithelial Cells/cytology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Fluorescence Resonance Energy Transfer , Humans , Kidney Tubules, Collecting/cytology , Mice , Microscopy, Confocal , Receptors, Adrenergic, beta-3/chemistry , Receptors, Vasopressin/metabolism
8.
Cell Physiol Biochem ; 44(4): 1559-1577, 2017.
Article in English | MEDLINE | ID: mdl-29197877

ABSTRACT

BACKGROUND/AIMS: Truncating LMNA gene mutations occur in many inherited cardiomyopathy cases, but the molecular mechanisms involved in the disease they cause have not yet been systematically investigated. Here, we studied a novel frameshift LMNA variant (p.D243Gfs*4) identified in three members of an Italian family co-segregating with a severe form of cardiomyopathy with conduction defects. METHODS: HEK293 cells and HL-1 cardiomyocytes were transiently transfected with either Lamin A or D243Gfs*4 tagged with GFP (or mCherry). D243Gfs*4 expression, cellular localization and its effects on diverse cellular mechanisms were evaluated with western blotting, laser-scanning confocal microscopy and video-imaging analysis in single cells. RESULTS: When expressed in HEK293 cells, GFP- (or mCherry)-tagged LMNA D243Gfs*4 colocalized with calnexin within the ER. ER mislocalization of LMNA D243Gfs*4 did not significantly induce ER stress response, abnormal Ca2+ handling and apoptosis when compared with HEK293 cells expressing another truncated mutant of LMNA (R321X) which similarly accumulates within the ER. Of note, HEK293-LMNA D243Gfs*4 cells showed a significant reduction of connexin 43 (CX43) expression level, which was completely rescued by activation of the WNT/ß-catenin signaling pathway. When expressed in HL-1 cardiomyocytes, D243Gfs*4 significantly impaired the spontaneous Ca2+ oscillations recorded in these cells as result of propagation of the depolarizing waves through the gap junctions between non-transfected cells surrounding a cell harboring the mutation. Furthermore, mCh-D243Gfs*4 HL-1 cardiomyocytes showed reduced CX43-dependent Lucifer Yellow (LY) loading and propagation. Of note, activation of ß-catenin rescued both LY loading and LMNA D243Gfs*4 -HL-1 cells spontaneous activity propagation. CONCLUSION: Overall, the present results clearly indicate the involvement of the aberrant CX43 expression/activity as a pathogenic mechanism for the conduction defects associated to this LMNA truncating alteration.


Subject(s)
Cardiac Conduction System Disease/genetics , Cardiomyopathies/genetics , Lamin Type A/genetics , Apoptosis , Base Sequence , Calcium/metabolism , Calnexin/metabolism , Cardiac Conduction System Disease/complications , Cardiac Conduction System Disease/pathology , Cardiomyopathies/complications , Cardiomyopathies/pathology , Cell Line , Connexin 43 , Endoplasmic Reticulum/metabolism , Female , Gap Junctions/metabolism , HEK293 Cells , Humans , Lamin Type A/metabolism , Microsatellite Repeats/genetics , Microscopy, Confocal , Middle Aged , Mutagenesis, Site-Directed , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Pedigree , Polymorphism, Single Nucleotide , Time-Lapse Imaging , Wnt Signaling Pathway
9.
Int J Mol Sci ; 18(11)2017 Nov 10.
Article in English | MEDLINE | ID: mdl-29125546

ABSTRACT

Under physiological conditions, excessive loss of water through the urine is prevented by the release of the antidiuretic hormone arginine-vasopressin (AVP) from the posterior pituitary. In the kidney, AVP elicits a number of cellular responses, which converge on increasing the osmotic reabsorption of water in the collecting duct. One of the key events triggered by the binding of AVP to its type-2 receptor (AVPR2) is the exocytosis of the water channel aquaporin 2 (AQP2) at the apical membrane the principal cells of the collecting duct. Mutations of either AVPR2 or AQP2 result in a genetic disease known as nephrogenic diabetes insipidus, which is characterized by the lack of responsiveness of the collecting duct to the antidiuretic action of AVP. The affected subject, being incapable of concentrating the urine, presents marked polyuria and compensatory polydipsia and is constantly at risk of severe dehydration. The molecular bases of the disease are fully uncovered, as well as the genetic or clinical tests for a prompt diagnosis of the disease in newborns. A real cure for nephrogenic diabetes insipidus (NDI) is still missing, and the main symptoms of the disease are handled with s continuous supply of water, a restrictive diet, and nonspecific drugs. Unfortunately, the current therapeutic options are limited and only partially beneficial. Further investigation in vitro or using the available animal models of the disease, combined with clinical trials, will eventually lead to the identification of one or more targeted strategies that will improve or replace the current conventional therapy and grant NDI patients a better quality of life. Here we provide an updated overview of the genetic defects causing NDI, the most recent strategies under investigation for rescuing the activity of mutated AVPR2 or AQP2, or for bypassing defective AVPR2 signaling and restoring AQP2 plasma membrane expression.


Subject(s)
Aquaporin 2/genetics , Arginine Vasopressin/genetics , Diabetes Insipidus, Nephrogenic/genetics , Receptors, Vasopressin/genetics , Diabetes Insipidus, Nephrogenic/physiopathology , Diabetes Insipidus, Nephrogenic/therapy , Exocytosis/genetics , Humans , Mutation
10.
Kidney Int ; 90(3): 555-67, 2016 09.
Article in English | MEDLINE | ID: mdl-27206969

ABSTRACT

To date, the study of the sympathetic regulation of renal function has been restricted to the important contribution of ß1- and ß2-adrenergic receptors (ARs). Here we investigate the expression and the possible physiologic role of ß3-adrenergic receptor (ß3-AR) in mouse kidney. The ß3-AR is expressed in most of the nephron segments that also express the type 2 vasopressin receptor (AVPR2), including the thick ascending limb and the cortical and outer medullary collecting duct. Ex vivo experiments in mouse kidney tubules showed that ß3-AR stimulation with the selective agonist BRL37344 increased intracellular cAMP levels and promoted 2 key processes in the urine concentrating mechanism. These are accumulation of the water channel aquaporin 2 at the apical plasma membrane in the collecting duct and activation of the Na-K-2Cl symporter in the thick ascending limb. Both effects were prevented by the ß3-AR antagonist L748,337 or by the protein kinase A inhibitor H89. Interestingly, genetic inactivation of ß3-AR in mice was associated with significantly increased urine excretion of water, sodium, potassium, and chloride. Stimulation of ß3-AR significantly reduced urine excretion of water and the same electrolytes. Moreover, BRL37344 promoted a potent antidiuretic effect in AVPR2-null mice. Thus, our findings are of potential physiologic importance as they uncover the antidiuretic effect of ß3-AR stimulation in the kidney. Hence, ß3-AR agonism might be useful to bypass AVPR2-inactivating mutations.


Subject(s)
Kidney Tubules/physiology , Receptors, Adrenergic, beta-3/physiology , Renal Elimination/physiology , Sympathetic Nervous System/physiology , Adrenergic beta-3 Receptor Agonists/pharmacology , Adrenergic beta-3 Receptor Antagonists/pharmacology , Aminophenols/pharmacology , Animals , Aquaporin 2/metabolism , Cyclic AMP/metabolism , Electrolytes/urine , Ethanolamines/pharmacology , Fluorescent Antibody Technique , Glomerular Filtration Rate/physiology , Isoquinolines/pharmacology , Kidney Tubules/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Adrenergic, beta-3/genetics , Receptors, Vasopressin/genetics , Receptors, Vasopressin/metabolism , Solute Carrier Family 12, Member 1/metabolism , Sulfonamides/pharmacology
11.
Cell Physiol Biochem ; 35(3): 1070-85, 2015.
Article in English | MEDLINE | ID: mdl-25662477

ABSTRACT

BACKGROUND/AIMS: Thiazolidinediones are highly beneficial in the treatment of type II diabetes. However, they are also associated with edema and increased risk of congestive heart failure. Several studies demonstrated that rosiglitazone (RGZ) increases the abundance of aquaporin-2 (AQP2) at the plasma membrane of renal cells. The aim of this study was to investigate whether RGZ might activate a transduction pathway facilitating AQP2 membrane accumulation in renal cells. METHODS: We analyzed the effect of RGZ on renal AQP2 intracellular trafficking in MCD4 renal cells by confocal microscopy and apical surface biotinylation. Cytosolic Ca(2+) dynamics were measured by a video-imaging approach in single cell. Transient Receptor Potential (TRP) channels expression was determined by RT-PCR. RESULTS: We showed that in MCD4 cells, short-term exposure to RGZ dramatically increases the amount of apically expressed AQP2 independently on cAMP production, PKA activation and AQP2 phosphorylation. RGZ elicited a cytosolic Ca(2+) transient due to Ca(2+) influx prevented by ruthenium red, suggesting the involvement of TRP plasma membrane channels. We identified TRPV6 as the possible candidate mediating this effect. CONCLUSIONS: Taken together these results provide a possible molecular mechanism explaining the increased AQP2 membrane expression under RGZ treatment: in renal cells RGZ elicits Ca(2+) transients facilitating AQP2 exposure at the apical plasma membrane, thus increasing collecting duct water permeability. Importantly, this effect suggests an unexplored application of RGZ in the treatment of pathological states characterized by impaired AQP2 trafficking at the plasma membrane.


Subject(s)
Aquaporin 2/biosynthesis , Calcium Signaling/drug effects , Cell Membrane/genetics , Thiazolidinediones/administration & dosage , Aquaporin 2/metabolism , Calcium Channels/metabolism , Cell Line , Cell Membrane/drug effects , Cyclic AMP/metabolism , Edema/chemically induced , Edema/pathology , Endocytosis/drug effects , Epithelial Cells/drug effects , Epithelial Cells/pathology , Gene Expression/drug effects , Heart Failure/chemically induced , Heart Failure/pathology , Humans , Kidney/drug effects , Kidney/pathology , Rosiglitazone , Signal Transduction/drug effects , TRPV Cation Channels/metabolism , Thiazolidinediones/adverse effects , Vasopressins/metabolism
12.
Kidney Int ; 86(1): 127-38, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24522493

ABSTRACT

X-linked nephrogenic diabetes insipidus (X-NDI) is a disease caused by inactivating mutations of the vasopressin (AVP) type 2 receptor (V2R) gene. Loss of V2R function prevents plasma membrane expression of the AQP2 water channel in the kidney collecting duct cells and impairs the kidney concentration ability. In an attempt to develop strategies to bypass V2R signaling in X-NDI, we evaluated the effects of secretin and fluvastatin, either alone or in combination, on kidney function in a mouse model of X-NDI. The secretin receptor was found to be functionally expressed in the kidney collecting duct cells. Based on this, X-NDI mice were infused with secretin for 14 days but urinary parameters were not altered by the infusion. Interestingly, secretin significantly increased AQP2 levels in the collecting duct but the protein primarily accumulated in the cytosol. Since we previously reported that fluvastatin treatment increased AQP2 plasma membrane expression in wild-type mice, secretin-infused X-NDI mice received a single injection of fluvastatin. Interestingly, urine production by X-NDI mice treated with secretin plus fluvastatin was reduced by nearly 90% and the urine osmolality was doubled. Immunostaining showed that secretin increased intracellular stores of AQP2 and the addition of fluvastatin promoted AQP2 trafficking to the plasma membrane. Taken together, these findings open new perspectives for the pharmacological treatment of X-NDI.


Subject(s)
Diabetes Insipidus, Nephrogenic/complications , Diabetes Insipidus, Nephrogenic/drug therapy , Fatty Acids, Monounsaturated/administration & dosage , Indoles/administration & dosage , Polyuria/drug therapy , Polyuria/etiology , Secretin/administration & dosage , Animals , Aquaporin 2/metabolism , Cyclic AMP/metabolism , Diabetes Insipidus, Nephrogenic/physiopathology , Disease Models, Animal , Exocytosis , Fluvastatin , Gene Expression , Humans , Kidney Tubules, Collecting/drug effects , Kidney Tubules, Collecting/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Polyuria/physiopathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, Gastrointestinal Hormone/genetics , Receptors, Gastrointestinal Hormone/metabolism , Receptors, Vasopressin/deficiency , Receptors, Vasopressin/genetics
13.
Fish Physiol Biochem ; 40(4): 997-1009, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24338156

ABSTRACT

In aquaculture, unfavourable conditions experienced during early development may have strong downstream effects on the adult phenotype and fitness. Sensitivity to stress, leading to disease, reduced growth and mortality, is higher in larvae than in adult fish. In this study, conducted on sea bream (Sparus aurata), we evidenced the presence of the mu opioid receptor in gametes and larvae at different developmental stages. Moreover, we evaluated the possibility of reducing the effects of artificially produced stress, altering temperature, salinity and pH, by naloxone (an opioid antagonist) and calcium. Results evidenced that mu opioid receptor is present in larvae and in gametes of both sexes and that, during larval growth, its expression level changes accordingly; furthermore, naloxone/calcium association is efficacious in increasing the survival period of treated larvae compared to controls. We conclude that in sea bream rearing, the use of naloxone/calcium against stress can improve fish farming techniques by reducing larval mortality and consequently increasing productivity.


Subject(s)
Gene Expression Regulation, Developmental/physiology , Ovum/metabolism , Receptors, Opioid, mu/metabolism , Sea Bream/metabolism , Spermatozoa/metabolism , Stress, Physiological/physiology , Animals , Aquaculture/methods , Blotting, Western , Calcium/pharmacology , Female , Fluorescent Antibody Technique , Hydrogen-Ion Concentration , Larva/metabolism , Male , Naloxone/pharmacology , Receptors, Opioid, mu/genetics , Salinity , Sea Bream/genetics , Statistics, Nonparametric , Stress, Physiological/drug effects , Temperature
14.
Front Physiol ; 15: 1304375, 2024.
Article in English | MEDLINE | ID: mdl-38455846

ABSTRACT

Efferent sympathetic nerve fibers regulate several renal functions activating norepinephrine receptors on tubular epithelial cells. Of the beta-adrenoceptors (ß-ARs), we previously demonstrated the renal expression of ß3-AR in the thick ascending limb (TAL), the distal convoluted tubule (DCT), and the collecting duct (CD), where it participates in salt and water reabsorption. Here, for the first time, we reported ß3-AR expression in the CD intercalated cells (ICCs), where it regulates acid-base homeostasis. Co-localization of ß3-AR with either proton pump H+-ATPase or Cl-/HCO3 - exchanger pendrin revealed ß3-AR expression in type A, type B, non-A, and non-B ICCs in the mouse kidney. We aimed to unveil the possible regulatory role of ß3-AR in renal acid-base homeostasis, in particular in modulating the expression, subcellular localization, and activity of the renal H+-ATPase, a key player in this process. The abundance of H+-ATPase was significantly decreased in the kidneys of ß3-AR-/- compared with those of ß3-AR+/+ mice. In particular, H+-ATPase reduction was observed not only in the CD but also in the TAL and DCT, which contribute to acid-base transport in the kidney. Interestingly, we found that in in vivo, the absence of ß3-AR reduced the kidneys' ability to excrete excess proton in the urine during an acid challenge. Using ex vivo stimulation of mouse kidney slices, we proved that the ß3-AR activation promoted H+-ATPase apical expression in the epithelial cells of ß3-AR-expressing nephron segments, and this was prevented by ß3-AR antagonism or PKA inhibition. Moreover, we assessed the effect of ß3-AR stimulation on H+-ATPase activity by measuring the intracellular pH recovery after an acid load in ß3-AR-expressing mouse renal cells. Importantly, ß3-AR agonism induced a 2.5-fold increase in H+-ATPase activity, and this effect was effectively prevented by ß3-AR antagonism or by inhibiting either H+-ATPase or PKA. Of note, in urine samples from patients treated with a ß3-AR agonist, we found that ß3-AR stimulation increased the urinary excretion of H+-ATPase, likely indicating its apical accumulation in tubular cells. These findings demonstrate that ß3-AR activity positively regulates the expression, plasma membrane localization, and activity of H+-ATPase, elucidating a novel physiological role of ß3-AR in the sympathetic control of renal acid-base homeostasis.

15.
Cell Physiol Biochem ; 32(7): 184-99, 2013.
Article in English | MEDLINE | ID: mdl-24429825

ABSTRACT

BACKGROUND: We recently reported that aquaporin 5 (AQP5), a water channel never identified in the kidney before, co-localizes with pendrin at the apical membrane of type-B intercalated cells in the kidney cortex. Since co-expression of AQP5 and pendrin in the apical membrane domain is a common feature of several other epithelia such as cochlear and bronchial epithelial cells, we evaluated here whether this strict membrane association may reflect a co-regulation of the two proteins. To investigate this possibility, we analyzed AQP5 and pendrin expression and trafficking in mice under chronic K(+) depletion, a condition that results in an increased ability of renal tubule to reabsorb bicarbonate, often leads to metabolic alkalosis and is known to strongly reduce pendrin expression. METHODS: Mice were housed in metabolic cages and pair-fed with either a standard laboratory chow or a K(+)-deficient diet. AQP5 abundance was assessed by western blot in whole kidney homogenates and AQP5 and pendrin were localized by confocal microscopy in kidney sections from those mice. In addition, the short-term effect of changes in external pH on pendrin trafficking was evaluated by fluorescence resonance energy transfer (FRET) in MDCK cells, and the functional activity of pendrin was tested in the presence and absence of AQP5 in HEK 293 Phoenix cells. RESULTS: Chronic K(+) depletion caused a strong reduction in pendrin and AQP5 expression. Moreover, both proteins shifted from the apical cell membrane to an intracellular compartment. An acute pH shift from 7.4 to 7.0 caused pendrin internalization from the plasma membrane. Conversely, a pH shift from 7.4 to 7.8 caused a significant increase in the cell surface expression of pendrin. Finally, pendrin ion transport activity was not affected by co-expression with AQP5. CONCLUSIONS: The co-regulation of pendrin and AQP5 membrane expression under chronic K(+)-deficiency indicates that these two molecules could cooperate as an osmosensor to rapidly detect and respond to alterations in luminal fluid osmolality.


Subject(s)
Anion Transport Proteins/biosynthesis , Aquaporin 5/biosynthesis , Kidney Cortex/metabolism , Potassium/metabolism , Animals , Anion Transport Proteins/metabolism , Aquaporin 5/metabolism , Bicarbonates/metabolism , Cell Membrane/metabolism , Epithelial Cells/metabolism , Gene Expression Regulation , HEK293 Cells , Humans , Ion Transport/genetics , Kidney Cortex/cytology , Mice , Microscopy, Immunoelectron , Sulfate Transporters
16.
Front Cell Dev Biol ; 10: 918760, 2022.
Article in English | MEDLINE | ID: mdl-35846372

ABSTRACT

In this work, we studied an lmna nonsense mutation encoding for the C-terminally truncated Lamin A/C (LMNA) variant Q517X, which was described in patients affected by a severe arrhythmogenic cardiomyopathy with history of sudden death. We found that LMNA Q517X stably expressed in HL-1 cardiomyocytes abnormally aggregates at the nuclear envelope and within the nucleoplasm. Whole-cell patch clamp experiments showed that LMNA Q517X-expressing cardiomyocytes generated action potentials with reduced amplitude, overshoot, upstroke velocity and diastolic potential compared with LMNA WT-expressing cardiomyocytes. Moreover, the unique features of these cardiomyocytes were 1) hyper-polymerized tubulin network, 2) upregulated acetylated α-tubulin, and 3) cell surface Nav1.5 downregulation. These findings pointed the light on the role of tubulin and Nav1.5 channel in the abnormal electrical properties of LMNA Q517X-expressing cardiomyocytes. When expressed in HEK293 with Nav1.5 and its ß1 subunit, LMNA Q517X reduced the peak Na+ current (INa) up to 63% with a shift toward positive potentials in the activation curve of the channel. Of note, both AP properties in cardiomyocytes and Nav1.5 kinetics in HEK293 cells were rescued in LMNA Q517X-expressing cells upon treatment with colchicine, an FDA-approved inhibitor of tubulin assembly. In conclusion, LMNA Q517X expression is associated with hyper-polymerization and hyper-acetylation of tubulin network with concomitant downregulation of Nav1.5 cell expression and activity, thus revealing 1) new mechanisms by which LMNA may regulate channels at the cell surface in cardiomyocytes and 2) new pathomechanisms and therapeutic targets in cardiac laminopathies.

17.
Pflugers Arch ; 462(5): 753-66, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21858457

ABSTRACT

X-linked nephrogenic diabetes insipidus (XNDI), a severe pathological condition characterized by greatly impaired urine-concentrating ability of the kidney, is caused by inactivating mutations in the V2 vasopressin receptor (V2R) gene. The lack of functional V2Rs prevents vasopressin-induced shuttling of aquaporin-2 (AQP2) water channels to the apical plasma membrane of kidney collecting duct principal cells, thus promoting water reabsorption from urine to the interstitium. At present, no specific pharmacological therapy exists for the treatment of XNDI. We have previously reported that the cholesterol-lowering drug lovastatin increases AQP2 membrane expression in renal cells in vitro. Here we report the novel finding that fluvastatin, another member of the statins family, greatly increases kidney water reabsorption in vivo in mice in a vasopressin-independent fashion. Consistent with this observation, fluvastatin is able to increase AQP2 membrane expression in the collecting duct of treated mice. Additional in vivo and in vitro experiments indicate that these effects of fluvastatin are most likely caused by fluvastatin-dependent changes in the prenylation status of key proteins regulating AQP2 trafficking in collecting duct cells. We identified members of the Rho and Rab families of proteins as possible candidates whose reduced prenylation might result in the accumulation of AQP2 at the plasma membrane. In conclusion, these results strongly suggest that fluvastatin, or other drugs of the statin family, may prove useful in the therapy of XNDI.


Subject(s)
Aquaporin 2/genetics , Diabetes Insipidus, Nephrogenic/physiopathology , Fatty Acids, Monounsaturated/pharmacology , Indoles/pharmacology , Kidney Tubules, Collecting/metabolism , Animals , Aquaporin 2/biosynthesis , Cell Membrane/metabolism , Diabetes Insipidus, Nephrogenic/drug therapy , Diabetes Insipidus, Nephrogenic/genetics , Fatty Acids, Monounsaturated/therapeutic use , Fluvastatin , Indoles/therapeutic use , Kidney Tubules, Collecting/drug effects , Male , Mice , Mice, Inbred C57BL , Prenylation/drug effects , rab GTP-Binding Proteins/drug effects , rab GTP-Binding Proteins/metabolism , rho-Associated Kinases/drug effects , rho-Associated Kinases/metabolism
18.
Front Physiol ; 12: 695824, 2021.
Article in English | MEDLINE | ID: mdl-34483955

ABSTRACT

We previously showed that the beta-3 adrenergic receptor (BAR3) is expressed in most segments of the nephron where its agonism promotes a potent antidiuretic effect. We localized BAR3 in distal convoluted tubule (DCT) cells expressing the thiazide-sensitive sodium-chloride cotransporter (NCC). Aim of this study is to investigate the possible functional role of BAR3 on NCC modulation in DCT cells. Here, we found that, in mice, the knockout of BAR3 was paralleled by a significant attenuation of NCC phosphorylation, paralleled by reduced expression and activation of STE-20/SPS1-related proline-alanine-rich kinase (SPAK) and WNKs the main kinases involved in NCC activation. Conversely, in BAR1/2 knockout mice, we found reduced NCC abundance with no changes in the phosphorylation state of NCC. Moreover, selective BAR3 agonism promotes both SPAK and NCC activation in wild-type mouse kidney slices. In conclusion, our findings suggest a novel role for BAR3 in the regulation of NCC in DCT.

20.
Sci Rep ; 10(1): 10268, 2020 06 24.
Article in English | MEDLINE | ID: mdl-32581267

ABSTRACT

The physiological role of the renal ClC-Ka/ClC-K1 channels is to confer a high Cl- permeability to the thin Ascending Limb of Henle (tAL), which in turn is essential for establishing the high osmolarity of the renal medulla that drives water reabsorption from collecting ducts. Here, we investigated by whole-cell patch-clamp measurements on HEK293 cells co-expressing ClC-Ka (tagged with GFP) and the accessory subunit barttin (tagged with m-Cherry) the effect of a natural diuretic extract from roots of Dandelion (DRE), and other compounds activating PKC, such as ATP, on ClC-Ka activity and its membrane localization. Treatment with 400 µg/ml DRE significantly inhibited Cl- currents time-dependently within several minutes. Of note, the same effect on Cl- currents was obtained upon treatment with 100 µM ATP. Pretreatment of cells with either the intracellular Ca2+ chelator BAPTA-AM (30 µM) or the PKC inhibitor Calphostin C (100 nM) reduced the inhibitory effect of DRE. Conversely, 1 µM of phorbol meristate acetate (PMA), a specific PKC activator, mimicked the inhibitory effect of DRE on ClC-Ka. Finally, we found that pretreatment with 30 µM Heclin, an E3 ubiquitin ligase inhibitor, did not revert DRE-induced Cl- current inhibition. In agreement with this, live-cell confocal analysis showed that DRE treatment did not induce ClC-Ka internalization. In conclusion, we demonstrate for the first time that the activity of ClC-Ka in renal cells could be significantly inhibited by the activation of PKC elicited by classical maneuvers, such as activation of purinergic receptors, or by exposure to herbal extracts that activates a PKC-dependent pathway. Overall, we provide both new information regarding the regulation of ClC-Ka and a proof-of-concept study for the use of DRE as new diuretic.


Subject(s)
Chloride Channels/metabolism , Diuretics/pharmacology , Loop of Henle/metabolism , Protein Kinase C/metabolism , Adenosine Triphosphate/pharmacology , Animals , Cell Membrane/drug effects , Cell Membrane/metabolism , HEK293 Cells , Humans , Intravital Microscopy , Loop of Henle/cytology , Male , Membrane Potentials/drug effects , Mice , Microscopy, Confocal , Naphthalenes/pharmacology , Patch-Clamp Techniques , Plant Extracts/pharmacology , Plant Roots/chemistry , Protein Kinase C/antagonists & inhibitors , Signal Transduction/drug effects , Taraxacum/chemistry , Tetradecanoylphorbol Acetate/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL