Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
New Phytol ; 243(1): 466-476, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38757753

ABSTRACT

Crops generally have seeds larger than their wild progenitors´ and with reduced dormancy. In wild plants, seed mass and allocation to the seed coat (a proxy for physical dormancy) scale allometrically so that larger seeds tend to allocate less to the coats. Larger seeds and lightweight coats might thus have evolved as correlated traits in crops. We tested whether 34 crops and 22 of their wild progenitors fit the allometry described in the literature, which would indicate co-selection of both traits during crop evolution. Deviations from the allometry would suggest that other evolutionary processes contribute to explain the emergence of larger, lightweight-coated seeds in crops. Crops fitted the scaling slope but deviated from its intercept in a consistent way: Seed coats of crops were lighter than expected by their seed size. The wild progenitors of crops displayed the same trend, indicating that deviations cannot be solely attributed to artificial selection during or after domestication. The evolution of seeds with small coats in crops likely resulted from a combination of various pressures, including the selection of wild progenitors with coats smaller than other wild plants, further decreases during early evolution under cultivation, and indirect selection due to the seed coat-seed size allometry.


Subject(s)
Biological Evolution , Biomass , Crops, Agricultural , Seeds , Crops, Agricultural/growth & development , Crops, Agricultural/anatomy & histology , Crops, Agricultural/physiology , Seeds/growth & development , Seeds/anatomy & histology , Seeds/physiology
2.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Article in English | MEDLINE | ID: mdl-33568533

ABSTRACT

The functional traits of organisms within multispecies assemblages regulate biodiversity effects on ecosystem functioning. Yet how traits should assemble to boost multiple ecosystem functions simultaneously (multifunctionality) remains poorly explored. In a multibiome litter experiment covering most of the global variation in leaf trait spectra, we showed that three dimensions of functional diversity (dispersion, rarity, and evenness) explained up to 66% of variations in multifunctionality, although the dominant species and their traits remained an important predictor. While high dispersion impeded multifunctionality, increasing the evenness among functionally dissimilar species was a key dimension to promote higher multifunctionality and to reduce the abundance of plant pathogens. Because too-dissimilar species could have negative effects on ecosystems, our results highlight the need for not only diverse but also functionally even assemblages to promote multifunctionality. The effect of functionally rare species strongly shifted from positive to negative depending on their trait differences with the dominant species. Simultaneously managing the dispersion, evenness, and rarity in multispecies assemblages could be used to design assemblages aimed at maximizing multifunctionality independently of the biome, the identity of dominant species, or the range of trait values considered. Functional evenness and rarity offer promise to improve the management of terrestrial ecosystems and to limit plant disease risks.


Subject(s)
Biodiversity , Plant Leaves/physiology , Biomass , Carbon Cycle , Plant Leaves/classification , Plant Physiological Phenomena
3.
Proc Biol Sci ; 289(1983): 20221542, 2022 09 28.
Article in English | MEDLINE | ID: mdl-36168758

ABSTRACT

Over the course of history, humans have moved crops from their regions of origin to new locations across the world. The social, cultural and economic drivers of these movements have generated differences not only between current distributions of crops and their climatic origins, but also between crop distributions and climate suitability for their production. Although these mismatches are particularly important to inform agricultural strategies on climate change adaptation, they have, to date, not been quantified consistently at the global level. Here, we show that the relationships between the distributions of 12 major food crops and climate suitability for their yields display strong variation globally. After investigating the role of biophysical, socio-economic and historical factors, we report that high-income world regions display a better match between crop distribution and climate suitability. In addition, although crops are farmed predominantly in the same climatic range as their wild progenitors, climate suitability is not necessarily higher there, a pattern that reflects the legacy of domestication history on current crop distribution. Our results reveal how far the global distribution of major crops diverges from their climatic optima and call for greater consideration of the multiple dimensions of the crop socio-ecological niche in climate change adaptive strategies.


Subject(s)
Climate Change , Crops, Agricultural , Agriculture/methods , Ecosystem , Farms , Humans
4.
New Phytol ; 233(2): 995-1010, 2022 01.
Article in English | MEDLINE | ID: mdl-34726792

ABSTRACT

Growth rates vary widely among plants with different strategies. For crops, evolution under predictable and high-resource environments might favour rapid resource acquisition and growth, but whether this strategy has consistently evolved during domestication and improvement remains unclear. Here we report a comprehensive study of the evolution of growth rates based on comparisons among wild, landrace, and improved accessions of 19 herbaceous crops grown under common conditions. We also examined the underlying growth components and the influence of crop origin and history on growth evolution. Domestication and improvement did not affect growth consistently, that is growth rates increased or decreased or remained unchanged in different crops. Crops selected for fruits increased the physiological component of growth (net assimilation rate), whereas leaf and seed crops showed larger domestication effects on morphology (leaf mass ratio and specific leaf area). Moreover, climate and phylogeny contributed to explaining the effects of domestication and changes in growth. Crop-specific responses to domestication and improvement suggest that selection for high yield has not consistently changed growth rates. The trade-offs between morpho-physiological traits and the distinct origins and histories of crops accounted for the variability in growth changes. These findings have far-reaching implications for our understanding of crop performance and adaptation.


Subject(s)
Crops, Agricultural , Domestication , Crops, Agricultural/physiology , Fruit , Phenotype , Phylogeny
5.
Ecol Lett ; 22(9): 1472-1482, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31270929

ABSTRACT

Plant diversity fosters productivity in natural ecosystems. Biodiversity effects might increase agricultural yields at no cost in additional inputs. However, the effects of diversity on crop assemblages are inconsistent, probably because crops and wild plants differ in a range of traits relevant to plant-plant interactions. We tested whether domestication has changed the potential of crop mixtures to over-yield by comparing the performance and traits of major crop species and those of their wild progenitors under varying levels of diversity. We found stronger biodiversity effects in mixtures of wild progenitors, due to larger selection effects. Variation in selection effects was partly explained by within-mixture differences in leaf size. Our results indicate that domestication might disrupt the ability of crops to benefit from diverse neighbourhoods via reduced trait variance. These results highlight potential limitations of current crop mixtures to over-yield and the potential of breeding to re-establish variance and increase mixture performance.


Subject(s)
Biodiversity , Crops, Agricultural/genetics , Domestication , Crops, Agricultural/growth & development , Phenotype , Plant Breeding
6.
New Phytol ; 218(1): 322-334, 2018 04.
Article in English | MEDLINE | ID: mdl-29281758

ABSTRACT

The arbuscular mycorrhizal (AM) symbiosis is key to plant nutrition, and hence is potentially key in sustainable agriculture. Fertilization and other agricultural practices reduce soil AM fungi and root colonization. Such conditions might promote the evolution of low mycorrhizal responsive crops. Therefore, we ask if and how evolution under domestication has altered AM symbioses of crops. We measured the effect of domestication on mycorrhizal responsiveness across 27 crop species and their wild progenitors. Additionally, in a subset of 14 crops, we tested if domestication effects differed under contrasting phosphorus (P) availabilities. The response of AM symbiosis to domestication varied with P availability. On average, wild progenitors benefited from the AM symbiosis irrespective of P availability, while domesticated crops only profited under P-limited conditions. Magnitudes and directions of response were diverse among the 27 crops, and were unrelated to phylogenetic affinities or to the coordinated evolution with fine root traits. Our results indicate disruptions in the efficiency of the AM symbiosis linked to domestication. Under high fertilization, domestication could have altered the regulation of resource trafficking between AM fungi and associated plant hosts. Provided that crops are commonly raised under high fertilization, this result has important implications for sustainable agriculture.


Subject(s)
Crops, Agricultural/microbiology , Domestication , Mycorrhizae/physiology , Symbiosis , Crops, Agricultural/drug effects , Least-Squares Analysis , Mycorrhizae/drug effects , Mycorrhizae/growth & development , Phosphorus/pharmacology , Phylogeny , Symbiosis/drug effects
7.
Ecol Lett ; 19(5): 564-75, 2016 May.
Article in English | MEDLINE | ID: mdl-26991808

ABSTRACT

We lack both a theoretical framework and solid empirical data to understand domestication impacts on plant chemistry. We hypothesised that domestication increased leaf N and P to support high plant production rates, but biogeographic and climate patterns further influenced the magnitude and direction of changes in specific aspects of chemistry and stoichiometry. To test these hypotheses, we used a data set of leaf C, N and P from 21 herbaceous crops and their wild progenitors. Domestication increased leaf N and/or P for 57% of the crops. Moreover, the latitude of the domestication sites (negatively related to temperature) modulated the domestication effects on P (+), C (-), N : P (-) and C : P (-) ratios. Further results from a litter decomposition assay showed that domestication effects on litter chemistry affected the availability of soil N and P. Our findings draw attention to evolutionary effects of domestication legacies on plant and soil stoichiometry and related ecosystem services (e.g. plant yield and soil fertility).


Subject(s)
Carbon/metabolism , Crops, Agricultural/chemistry , Crops, Agricultural/metabolism , Domestication , Nitrogen/metabolism , Carbon/analysis , Ecosystem , Nitrogen/analysis , Phosphorus/analysis , Phosphorus/metabolism , Plant Leaves/chemistry , Plant Leaves/metabolism , Soil/chemistry
8.
Ann Bot ; 115(4): 555-65, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25538116

ABSTRACT

BACKGROUND AND AIMS: Leaf gas exchange is influenced by stomatal size, density, distribution between the leaf adaxial and abaxial sides, as well as by pore dimensions. This study aims to quantify which of these traits mainly underlie genetic differences in operating stomatal conductance (gs) and addresses possible links between anatomical traits and regulation of pore width. METHODS: Stomatal responsiveness to desiccation, gs-related anatomical traits of each leaf side and estimated gs (based on these traits) were determined for 54 introgression lines (ILs) generated by introgressing segments of Solanum pennelli into the S. lycopersicum 'M82'. A quantitative trait locus (QTL) analysis for stomatal traits was also performed. KEY RESULTS: A wide genetic variation in stomatal responsiveness to desiccation was observed, a large part of which was explained by stomatal length. Operating gs ranged over a factor of five between ILs. The pore area per stomatal area varied 8-fold among ILs (2-16 %), and was the main determinant of differences in operating gs between ILs. Operating gs was primarily positioned on the abaxial surface (60-83 %), due to higher abaxial stomatal density and, secondarily, to larger abaxial pore area. An analysis revealed 64 QTLs for stomatal traits in the ILs, most of which were in the direction of S. pennellii. CONCLUSIONS: The data indicate that operating and maximum gs of non-stressed leaves maintained under stable conditions deviate considerably (by 45-91 %), because stomatal size inadequately reflects operating pore area (R(2) = 0·46). Furthermore, it was found that variation between ILs in both stomatal sensitivity to desiccation and operating gs is associated with features of individual stoma. In contrast, genotypic variation in gs partitioning depends on the distribution of stomata between the leaf adaxial and abaxial epidermis.


Subject(s)
Plant Leaves/physiology , Plant Stomata/physiology , Solanum/physiology , Desiccation , Genetic Variation , Hybridization, Genetic , Solanum lycopersicum/anatomy & histology , Solanum lycopersicum/genetics , Solanum lycopersicum/physiology , Models, Biological , Phenotype , Plant Leaves/anatomy & histology , Plant Stomata/anatomy & histology , Solanum/anatomy & histology , Solanum/genetics
9.
BMC Plant Biol ; 14: 1599, 2014 Dec 20.
Article in English | MEDLINE | ID: mdl-25526984

ABSTRACT

BACKGROUND: Lipophilic antioxidants play dual key roles in edible seeds (i) as preservatives of cell integrity and seed viability by preventing the oxidation of fats, and (ii) as essential nutrients for human and animal life stock. It has been well documented that plant domestication and post-domestication evolution frequently resulted in increased seed size and palatability, and reduced seed dormancy. Nevertheless, and surprisingly, it is poorly understood how agricultural selection and cultivation affected the physiological fitness and the nutritional quality of seeds. Fabaceae have the greatest number of crop species of all plant families, and most of them are cultivated for their highly nutritious edible seeds. Here, we evaluate whether evolution of plants under cultivation has altered the integrated system formed by membranes (fatty acids) and lipophilic antioxidants (carotenoids and tocopherols), in the ten most economically important grain legumes and their closest wild relatives, i.e.: Arachis (peanut), Cicer (chickpea), Glycine (soybean), Lathyrus(vetch), Lens (lentil), Lupinus (lupin), Phaseolus (bean), Pisum (pea), Vicia (faba bean) and Vigna (cowpea). RESULTS: Unexpectedly, we found that following domestication, the contents of carotenoids, including lutein and zeaxanthin, decreased in all ten species (total carotenoid content decreased 48% in average). Furthermore, the composition of carotenoids changed, whereby some carotenoids were lost in most of the crops. An undirected change in the contents of tocopherols and fatty acids was found, with contents increasing in some species and decreasing in others, independently of the changes in carotenoids. In some species, polyunsaturated fatty acids (linolenic acid especially), α-tocopherol and γ-tocopherol decreased following domestication. CONCLUSIONS: The changes in carotenoids, tocopherols and fatty acids are likely side-effects of the selection for other desired traits such as the loss of seed dormancy and dispersal mechanisms, and selection for seed storability and taste. This work may serve as baseline to broaden our knowledge on the integrated changes on crop fitness and nutritional quality following domestication.


Subject(s)
Carotenoids/metabolism , Crops, Agricultural/metabolism , Fabaceae/metabolism , Fatty Acids/metabolism , Tocopherols/metabolism , Antioxidants/metabolism , Seeds/metabolism
10.
Proc Biol Sci ; 281(1793)2014 10 22.
Article in English | MEDLINE | ID: mdl-25185998

ABSTRACT

Trait-based ecology predicts that evolution in high-resource agricultural environments should select for suites of traits that enable fast resource acquisition and rapid canopy closure. However, crop breeding targets specific agronomic attributes rather than broad trait syndromes. Breeding for specific traits, together with evolution in high-resource environments, might lead to reduced phenotypic integration, according to predictions from the ecological literature. We provide the first comprehensive test of these hypotheses, based on a trait-screening programme of 30 herbaceous crops and their wild progenitors. During crop evolution plants became larger, which enabled them to compete more effectively for light, but they had poorly integrated phenotypes. In a subset of six herbaceous crop species investigated in greater depth, competitiveness for light increased during early plant domestication, whereas diminished phenotypic integration occurred later during crop improvement. Mass-specific leaf and root traits relevant to resource-use strategies (e.g. specific leaf area or tissue density of fine roots) changed during crop evolution, but in diverse and contrasting directions and magnitudes, depending on the crop species. Reductions in phenotypic integration and overinvestment in traits involved in competition for light may affect the chances of upgrading modern herbaceous crops to face current climatic and food security challenges.


Subject(s)
Biological Evolution , Crops, Agricultural/physiology , Breeding , Crops, Agricultural/genetics , Phenotype , Plant Leaves/physiology , Plant Roots/physiology
11.
Nat Plants ; 10(1): 25-36, 2024 01.
Article in English | MEDLINE | ID: mdl-38172574

ABSTRACT

Crops have resource-acquisitive leaf traits, which are usually attributed to the process of domestication. However, early choices of wild plants amenable for domestication may also have played a key role in the evolution of crops' physiological traits. Here we compiled data on 1,034 annual herbs to place the ecophysiological traits of 69 crops' wild progenitors in the context of global botanical variation, and we conducted a common-garden experiment to measure the effects of domestication on crop ecophysiology. Our study found that crops' wild progenitors already had high leaf nitrogen, photosynthesis, conductance and transpiration and soft leaves. After domestication, ecophysiological traits varied little and in idiosyncratic ways. Crops did not surpass the trait boundaries of wild species. Overall, the resource-acquisitive strategy of crops is largely due to the inheritance from their wild progenitors rather than to further breeding improvements. Our study concurs with recent literature highlighting constraints of crop breeding for faster ecophysiological traits.


Subject(s)
Crops, Agricultural , Plant Breeding , Humans , Crops, Agricultural/physiology , Phenotype , Photosynthesis , Domestication
12.
New Phytol ; 198(2): 504-513, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23356416

ABSTRACT

Domestication took plants from natural environments to agro-ecosystems, where resources are generally plentiful and plant life is better buffered against environmental risks such as drought or pathogens. We hypothesized that predictions derived from the comparison of low vs high resource ecosystems (faster-growing plants promoting faster nutrient cycling in the latter) extrapolate to the process of domestication. We conducted the first comprehensive assessment of the consequences of domestication on litter quality and key biogeochemical processes by comparing 24 domesticated crops against their closest wild ancestors. Twelve litter chemistry traits, litter decomposability and indicators of soil carbon (C) and nitrogen (N) cycling were assessed in each domesticated vs wild ancestor pair. These assessments were done in microbial-poor and microbial-rich soils to exemplify intensively and extensively managed agricultural soils, respectively. Plant domestication has increased litter quality, encouraging litter decomposability (36% and 44% increase in the microbial-rich and microbial-poor soils, respectively), higher soil NO3 - availability and lower soil C : N ratios. These effects held true for the majority of the crops surveyed and for soils with different microbial communities. Our results support ecological theory predictions derived from the comparison of low- and high-resource ecosystems, suggesting a parallelism between ecosystem-level impacts of natural and artificial selection.


Subject(s)
Agriculture , Ecosystem , Plant Leaves/physiology , Carbon/metabolism , Crops, Agricultural/classification , Models, Biological , Nitrogen/metabolism , Principal Component Analysis , Soil Microbiology
13.
J Exp Bot ; 64(11): 3137-46, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23918960

ABSTRACT

Stomata are the major gates regulating substrate availability for photosynthesis and water loss. Although both processes are critical to yield and to resource-use efficiency, we lack a comprehensive picture on how domestication and further breeding have impacted on leaf stomata. To fill this gap, stomatal sizes and densities were screened in cultivated and wild ancestor representatives of a uniquely large group of 24 herbaceous crops. Anatomical data and gas-exchange models were combined to compute maximum potential conductance to water, separately for upper and lower leaf sides. The evolution of maximum conductance under domestication was diverse. Several crops increased, others decreased (noticeably high-conductance species), and others kept a similar potential conductance following domestication. It was found that the contribution of upper leaf sides to maximum conductance was statistically higher in cultivated than in wild ancestors. For crops showing this response, reduced stomatal density in the lower side of domesticated leaves was responsible for the observed 'adaxialization' of conductance. Increases in the size of stomata at the upper epidermis played a comparatively minor role. Nevertheless, this overall response was varied in magnitude and direction, signalling crop-wise specificities. Observed patterns reflect only potential conductances based on anatomical traits and should be used with care until actual physiological outcomes are measured. Together with advancements in the developmental genetics of stomata, our findings might hint at new breeding avenues, focused on stomata distribution. Provided urgent needs for increasing yields, the opportunities of enhancing traits of the physiological relevance of stomata should not be ignored.


Subject(s)
Plant Stomata/physiology , Breeding , Models, Theoretical
14.
Ann Bot ; 110(1): 165-75, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22562807

ABSTRACT

BACKGROUND AND AIMS: Research on the ability of plants to recognize kin and modify plant development to ameliorate competition with coexisting relatives is an area of very active current exploration. Empirical evidence, however, is insufficient to provide a sound picture of this phenomenon. METHODS: An experiment was designed to assess multi-trait phenotypic expression in response to competition with conspecifics of varied degrees of genealogical relatedness. Groups of siblings, cousins and strangers of Lupinus angustifolius were set in competition in a pots assay. Several whole-plant and organ-level traits, directly related to competition for above- and below-ground resources, were measured. In addition, group-level root proliferation was measured as a key response trait to relatedness to neighbours, as identified in previous work. KEY RESULTS: No major significant phenotypic differences were found between individuals and groups that could be assigned to the gradient of relatedness used here. This occurred in univariate models, and also when multi-trait interactions were evaluated through multi-group comparisons of Structural Equation Models. Root proliferation was higher in phenotypically more heterogeneous groups, but phenotypic heterogeneity was independent of the relatedness treatments of the experiment, and root proliferation was alike in the neighbourhoods of siblings, cousins and strangers. CONCLUSIONS: In contrast to recent findings in other species, genealogical relatedness to competing neighbours has a negligible impact on the phenotypic expression of individuals and groups of L. angustifolius. This suggests that kin recognition needs further exploration to assess its generality, the ecological scenarios where it might have been favoured or penalized by natural selection, and its preponderance in different plant lineages.


Subject(s)
Lupinus/physiology , Phenotype , Selection, Genetic/physiology
15.
Ann Bot ; 107(3): 455-65, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21199835

ABSTRACT

BACKGROUND AND AIMS: Despite long-held interest, knowledge on why leaf size varies widely among species is still incomplete. This study was conducted to assess whether abiotic factors, phylogenetic histories and multi-trait interactions act together to shape leaf size. METHODS: Fifty-seven pairs of altitudinal vicariant species were selected in northern Spain, and leaf area and a number of functionally related leaf, shoot and whole plant traits were measured for each pair. Structural equation modelling helped unravel trait interactions affecting leaf size, and Mantel tests weighed the relative relevance of phylogeny, environment and trait interactions to explain leaf size reduction with altitude. KEY RESULTS: Leaves of highland vicariants were generally smaller than those of lowlands. However, the extent of leaf size reduction with increasing altitude was widely variable among genera: from approx. 700 cm(2) reduction (96 % in Polystichum) to approx. 30 cm(2) increase (37 % in Sorbus). This was partially explained by shifts in leaf, shoot and whole plant traits (35-64 % of explained variance, depending on models), with size/number trade-offs more influential than shifts in leaf form and leaf economics. Shifts in traits were more important than phylogenetic distances or site-specific environmental variation in explaining the degree of leaf size reduction with altitude. CONCLUSIONS: Ecological filters, constraints due to phylogenetic history (albeit modest in the study system), and phenotypic integration contribute jointly to shape single-trait evolution. Here, it was found that phenotypic change was far more important than shared ancestry to explain leaf size differences of closely related species segregated along altitudes.


Subject(s)
Magnoliopsida/anatomy & histology , Magnoliopsida/genetics , Selection, Genetic , Adaptation, Physiological , Altitude , Biological Evolution , Environment , Magnoliopsida/classification , Magnoliopsida/physiology , Phenotype , Phylogeny , Plant Leaves/physiology , Plant Shoots/physiology , Spain , Species Specificity
16.
Am J Bot ; 98(9): 1456-64, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21875973

ABSTRACT

PREMISE OF THE STUDY: In spite of its relevance, we lack rigorous evidence on whether widespread species are superior local competitors compared with coexisting narrowly distributed congeners. We ran a competition experiment between two lupins that coexist at their shared geographic range: Lupinus angustifolius L. (widespread) and L. gredensis Gandoger (narrow endemic). • METHODS: We set up mixed and monospecific populations of the two species, monitored survival and fecundity until the death of the whole cohorts, and measured variables of putative relevance to the competition process. We used aster modeling to address lifetime individual fitness and generalized linear models to assess the effect of species, type of competition, and competition environment on a suite of competition indices. • KEY RESULTS: Lupinus angustifolius showed higher fitness and exerted a stronger competitive effect on its heterospecific neighbors. This occurred through higher fecundity late in the season rather than through differential survival at earlier stages. • CONCLUSIONS: This is the first evidence of lifetime superior competitive potential of a widespread species over a narrow endemic congener. This competitive response might scale up to the geographic distribution range and may partially explain the limited distribution of the narrow endemic. Extension to other carefully selected study cases and more in-depth field experiments may help to assess the generality of this pattern and understand how local processes translate into geographic patterns.


Subject(s)
Geography , Lupinus/physiology , Lupinus/classification , Species Specificity
17.
Nat Plants ; 7(5): 598-607, 2021 05.
Article in English | MEDLINE | ID: mdl-33986525

ABSTRACT

Human food production is dominated globally by a small number of crops. Why certain crops have attained high agricultural relevance while others have remained minor might partially stem from their different origins. Here, we analyse a dataset of 866 crops to show that seed crops and species originating from seasonally dry environments tend to have the greatest agricultural relevance, while phylogenetic affinities play a minor role. These patterns are nuanced by root and leaf crops and herbaceous fruit crops having older origins in the aseasonal tropics. Interestingly, after accounting for these effects, we find that older crops are more likely to be globally important and are cultivated over larger geographical areas than crops of recent origin. Historical processes have therefore left a pervasive global legacy on the food we eat today.


Subject(s)
Crop Production/statistics & numerical data , Crops, Agricultural , Climate , Crops, Agricultural/genetics , Fruit , Phylogeny , Plant Leaves , Plant Roots , Seeds
18.
Proc Biol Sci ; 276(1667): 2531-40, 2009 Jul 22.
Article in English | MEDLINE | ID: mdl-19403541

ABSTRACT

Recent work has shown that certain plants can identify their kin in competitive settings through root recognition, and react by decreasing root growth when competing with relatives. Although this may be a necessary step in kin selection, no clear associated improvement in individual or group fitness has been reported to qualify as such. We designed an experiment to address whether genetic relatedness between neighbouring plants affects individual or group fitness in artificial populations. Seeds of Lupinus angustifolius were sown in groups of siblings, groups of different genotypes from the same population and groups of genotypes from different populations. Both plants surrounded by siblings and by genotypes from the same population had lower individual fitness and produced fewer flowers and less vegetative biomass as a group. We conclude that genetic relatedness entails decreased individual and group fitness in L. angustifolius. This, together with earlier work, precludes the generalization that kin recognition may act as a widespread, major microevolutionary mechanism in plants.


Subject(s)
Lupinus/growth & development , Lupinus/genetics , Demography , Plant Roots/genetics , Reproduction
19.
Ann Bot ; 103(8): 1279-89, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19318383

ABSTRACT

BACKGROUND AND AIMS: Variation in fitness depends on corresponding variation in multiple traits which have both genetically controlled and plastic components. These traits are subjected to varying degrees of local adaptation in specific populations and, consequently, are genetically controlled to different extents. In this study it is hypothesized that modulation of different traits would have contrasting relevance for the fitness of populations of diverse origins. Specifically, assuming that environmental pressures vary across a latitudinal gradient, it is suggested that inherited variation in traits differentially determines fitness in annual Lupinus angustifolius populations from contrasting latitudinal origins in western Spain. METHODS: Seeds of L. angustifolius from three contrasting origins were grown in a common garden. Traits related to more plastic vegetative growth and more genetically conserved phenology were measured, together with estimates of reproductive success. Fitness was estimated by the number of viable seeds per plant. Structural Equation Models were used to infer causal relationships among multiple traits and fitness, separating the direct and indirect effects of morphological, phenological and reproductive traits. KEY RESULTS: Phenological, vegetative and reproductive traits accounted for most of the fitness variation. Fitness was highest in plants of southernmost origin, mainly due to earlier flowering. Fitness within each seed origin was controlled by variation in different traits. Southern origin plants that grew to a larger size achieved higher fitness. However, plant size in plants of northernmost origin was irrelevant, but early flowering promoted higher fitness. Variation in fruit and seed set had a greater effect on the fitness of plants of central origin than phenological and size variation. CONCLUSIONS: It is concluded that modulation of a functional trait can be relevant to fitness in a given population (i.e. affecting intensity and direction), but irrelevant in other populations. This points to the need to consider integrated phenotypes when trying to unravel local adaptation effects over single traits.


Subject(s)
Lupinus/physiology , Lupinus/embryology , Lupinus/genetics , Reproduction , Seeds
20.
PLoS One ; 14(2): e0209788, 2019.
Article in English | MEDLINE | ID: mdl-30726231

ABSTRACT

The Anthropocene epoch is partly defined by anthropogenic spread of crops beyond their centres of origin. At global scales, evidence indicates that species-level taxonomic diversity of crops being cultivated on large-scale agricultural lands has increased linearly over the past 50 years. Yet environmental and socio-economic differences support expectations that temporal changes in crop diversity vary across regions. Ecological theory also suggests that changes in crop taxonomic diversity may not necessarily reflect changes in the evolutionary diversity of crops. We used data from the Food and Agricultural Organization (FAO) of the United Nations to assess changes in crop taxonomic- and phylogenetic diversity across 22 subcontinental-scale regions from 1961-2014. We document certain broad consistencies across nearly all regions: i) little change in crop diversity from 1961 through to the late 1970s; followed by ii) a 10-year period of sharp diversification through the early 1980s; followed by iii) a "levelling-off" of crop diversification beginning in the early 1990s. However, the specific onset and duration of these distinct periods differs significantly across regions and are unrelated to agricultural expansion, indicating that unique policy or environmental conditions influence the crops being grown within a given region. Additionally, while the 1970s and 1980s are defined by region-scale increases in crop diversity this period marks the increasing dominance of a small number of crop species and lineages; a trend resulting in detectable increases in the similarity of crops being grown across regions. Broad similarities in the species-level taxonomic and phylogenetic diversity of crops being grown across regions, primarily at large industrial scales captured by FAO data, represent a unique feature of the Anthropocene epoch. Yet nuanced asymmetries in regional-scale trends suggest that environmental and socio-economic factors play a key role in shaping observed macro-ecological changes in the plant diversity on agricultural lands.


Subject(s)
Biodiversity , Crop Production , Crops, Agricultural , Crops, Agricultural/classification , Crops, Agricultural/growth & development , Humans
SELECTION OF CITATIONS
SEARCH DETAIL