Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Exp Physiol ; 109(10): 1782-1795, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39143855

ABSTRACT

The use of acute carbon monoxide inhalation (COi) and hot water immersion (HWI) are of growing interest as interventions to stimulate erythropoietin (EPO) production. However, whether EPO production is further augmented when combining these stressors and whether there are sex differences in this response are poorly understood. Therefore, we measured circulating EPO concentration in response to acute COi and HWI independently and in combination and determined whether the responses were altered by sex. Participants completed three study visits-COi, HWI, and combined COi and HWI-separated by 1 week in a randomized, balanced, crossover design. Renal blood velocity was measured during all interventions, and carboxyhaemoglobin was measured during and after COi. Serum samples were analysed every hour for 6 h post-intervention for EPO concentration. HWI decreased renal blood velocity (46.2 cm/s to 36.2 cm/s) (P < 0.0001), and COi increased carboxyhaemoglobin (1.5%-12.8%) (P < 0.0001) without changing renal blood velocity (46.4-45.2 cm/s) (P = 0.4456). All three interventions increased peak EPO concentration from baseline (COi: 6.02-9.74 mIU/mL; HWI: 6.80-11.10 mIU/mL; COi + HWI: 6.71-10.91 mIU/mL) (P = 0.0048) and to the same extent (P = 0.3505). On average, females increased EPO while males did not in response to COi (females: 6.17 mIU/mL; males: 1.27 mIU/mL) (P = 0.0010), HWI (females: 6.47 mIU/mL; males: 2.14 mIU/mL) (P = 0.0104), and COi and HWI (females: 6.65 mIU/mL; males: 1.76 mIU/mL) (P = 0.0256). These data emphasize that combining these interventions does not augment EPO secretion and that these interventions may work better in females.


Subject(s)
Carbon Monoxide , Cross-Over Studies , Erythropoietin , Humans , Male , Female , Erythropoietin/blood , Carbon Monoxide/metabolism , Adult , Young Adult , Carboxyhemoglobin/metabolism , Carboxyhemoglobin/analysis , Hot Temperature , Immersion , Sex Factors , Water/metabolism , Blood Flow Velocity/physiology
2.
Am J Physiol Renal Physiol ; 325(2): F199-F213, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37318992

ABSTRACT

The high prevalence of inadequate hydration (e.g., hypohydration and underhydration) is concerning given that extreme heat increases excess hospitalizations for fluid/electrolyte disorders and acute kidney injury (AKI). Inadequate hydration may also be related to renal and cardiometabolic disease development. This study tested the hypothesis that prolonged mild hypohydration increases the urinary AKI biomarker product of insulin-like growth factor-binding protein 7 and tissue inhibitor of metalloproteinase-2 ([IGFBP7·TIMP-2]) compared with euhydration. In addition, we determined the diagnostic accuracy and optimal cutoffs of hydration assessments for discriminating positive AKI risk ([IGFBP·TIMP-2] >0.3 (ng/mL)2/1,000). In a block-randomized crossover design, 22 healthy young adults (11 females and 11 males) completed 24 h of fluid deprivation (hypohydrated group) or 24 h of normal fluid consumption (euhydrated group) separated by ≥72 h. Urinary [IGFBP7·TIMP-2] and other AKI biomarkers were measured following the 24-h protocols. Diagnostic accuracy was assessed via receiver operating characteristic curve analysis. Urinary [IGFBP7·TIMP-2] [1.9 (95% confidence interval: 1.0-2.8) vs. 0.2 (95% confidence interval: 0.1-0.3) (ng/mL)2/1,000, P = 0.0011] was markedly increased in hypohydrated versus euhydrated groups. Urine osmolality (area under the curve: 0.91, P < 0.0001) and urine specific gravity (area under the curve: 0.89, P < 0.0001) had the highest overall performance for discriminating positive AKI risk. Optimal cutoffs with a positive likelihood ratio of 11.8 for both urine osmolality and specific gravity were 952 mosmol/kgH2O and 1.025 arbitrary units. In conclusion, prolonged mild hypohydration increased urinary [IGFBP7·TIMP-2] in males and females. Urinary [IGFBP7·TIMP-2] corrected to urine concentration was elevated in males only. Urine osmolality and urine specific gravity may have clinical utility for discriminating positive AKI risk following prolonged mild hypohydration.NEW & NOTEWORTHY This study found that prolonged mild hypohydration in healthy young adults increased the Food and Drug Administration approved acute kidney injury (AKI) biomarker urinary insulin-like growth factor-binding protein 7 and tissue inhibitor of metalloproteinase-2 [IGFBP7·TIMP-2]. Urine osmolality and specific gravity demonstrated an excellent ability to discriminate positive AKI risk. These findings emphasize the importance of hydration in protecting renal health and lend early support for hydration assessment as an accessible tool to assess AKI risk.


Subject(s)
Acute Kidney Injury , Somatomedins , Male , Female , Humans , Young Adult , Tissue Inhibitor of Metalloproteinase-2 , Biomarkers , Acute Kidney Injury/diagnosis , Kidney , Insulin-Like Growth Factor Binding Proteins
3.
J Therm Biol ; 118: 103727, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37866096

ABSTRACT

Cold water immersion (CWI) may provide benefits for physical and mental health. Our purpose was to investigate the effects of an acute bout of CWI on vascular shear stress and affect (positive and negative). Sixteen healthy adults (age: 23 ± 4 y; (9 self-reported men and 7 self-reported women) completed one 15-min bout of CWI (10 °C). Self-reported affect (positive and negative) was assessed at pre-CWI (Pre), 30-min post-immersion, and 180-min post-immersion in all participants. Brachial artery diameter and blood velocity were measured (Doppler ultrasound) at Pre, after 1-min and 15-min of CWI, and 30-min post-immersion (n = 8). Total, antegrade, and retrograde shear stress, oscillatory shear index (OSI), and forearm vascular conductance (FVC) were calculated. Venous blood samples were collected at Pre, after 1-min and 15-min of CWI, 30-min post-immersion, and 180-min post-immersion (n = 8) to quantify serum ß-endorphins and cortisol. Data were analyzed using a one-way ANOVA with Fisher's least significance difference and compared to Pre. Positive affect did not change (ANOVA p = 0.450) but negative affect was lower at 180-min post-immersion (p < 0.001). FVC was reduced at 15-min of CWI and 30-min post-immersion (p < 0.020). Total and antegrade shear and OSI were reduced at 30-min post-immersion (p < 0.040) but there were no differences in retrograde shear (ANOVA p = 0.134). ß-endorphins did not change throughout the trial (ANOVA p = 0.321). Cortisol was lower at 180-min post-immersion (p = 0.014). An acute bout of CWI minimally affects shear stress patterns but may benefit mental health by reducing negative feelings and cortisol levels.


Subject(s)
Cold Temperature , Endorphins , Adult , Female , Humans , Male , Young Adult , Affect , Hydrocortisone , Immersion , Water
4.
Am J Physiol Regul Integr Comp Physiol ; 321(6): R823-R832, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34643115

ABSTRACT

This study sought to compare the brachial and carotid hemodynamic response to hot water immersion (HWI) between healthy young men and women. Ten women (W) and 11 men (M) (24 ± 4 yr) completed a 60-min HWI session immersed to the level of the sternum in 40°C water. Brachial and carotid artery hemodynamics (Doppler ultrasound) were measured at baseline (seated rest) and every 15 min throughout HWI. Within the brachial artery, total shear rate was elevated to a greater extent in women [+479 (+364, +594) s-1] than in men [+292 (+222, +361) s-1] during HWI (P = 0.005). As shear rate is inversely proportional to blood vessel diameter and directly proportional to blood flow velocity, the sex difference in brachial shear response to HWI was the result of a smaller brachial diameter among women at baseline (P < 0.0001) and throughout HWI (main effect of sex, P < 0.0001) and a greater increase in brachial velocity seen in women [+48 (+36, +61) cm/s] compared with men [+35 (+27, +43) cm/s] with HWI (P = 0.047) which allowed for a similar increase in brachial blood flow between sexes [M: +369 (+287, +451) mL/min, W: +364 (+243, +486) mL/min, P = 0.943]. In contrast, no differences were seen between sexes in carotid total shear rate, flow, velocity, or diameter at baseline or throughout HWI. These data indicate the presence of an artery-specific sex difference in the hemodynamic response to a single bout of HWI.


Subject(s)
Brachial Artery/physiology , Carotid Artery, Common/physiology , Hemodynamics , Hot Temperature , Hyperthermia, Induced , Immersion , Adult , Blood Flow Velocity , Brachial Artery/diagnostic imaging , Carotid Artery, Common/diagnostic imaging , Female , Humans , Male , Regional Blood Flow , Sex Factors , Time Factors , Ultrasonography, Doppler , Young Adult
5.
Am J Physiol Regul Integr Comp Physiol ; 321(2): R141-R151, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34161738

ABSTRACT

Occupational heat exposure is linked to the development of kidney injury and disease in individuals who frequently perform physically demanding work in the heat. For instance, in Central America, an epidemic of chronic kidney disease of nontraditional origin (CKDnt) is occurring among manual laborers, whereas potentially related epidemics have emerged in India and Sri Lanka. There is growing concern that workers in the United States suffer with CKDnt, but reports are limited. One of the leading hypotheses is that repetitive kidney injury caused by physical work in the heat can progress to CKDnt. Whether heat stress is the primary causal agent or accelerates existing underlying pathology remains contested. However, the current evidence supports that heat stress induces tubular kidney injury, which is worsened by higher core temperatures, dehydration, longer work durations, muscle damaging exercise, and consumption of beverages containing high levels of fructose. The purpose of this narrative review is to identify occupations that may place US workers at greater risk of kidney injury and CKDnt. Specifically, we reviewed the scientific literature to characterize the demographics, environmental conditions, physiological strain (i.e., core temperature increase, dehydration, heart rate), and work durations in sectors typically experiencing occupational heat exposure, including farming, wildland firefighting, landscaping, and utilities. Overall, the surprisingly limited available evidence characterizing occupational heat exposure in US workers supports the need for future investigations to understand this risk of CKDnt.


Subject(s)
Body Temperature Regulation , Heat Stress Disorders/epidemiology , Heat-Shock Response , Hot Temperature/adverse effects , Kidney/physiopathology , Occupational Exposure/adverse effects , Occupational Health , Renal Insufficiency, Chronic/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Female , Heat Stress Disorders/diagnosis , Heat Stress Disorders/physiopathology , Humans , Job Description , Male , Middle Aged , Organism Hydration Status , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/physiopathology , Risk Assessment , Risk Factors , United States/epidemiology , Water-Electrolyte Balance , Young Adult
6.
Am J Physiol Endocrinol Metab ; 317(1): E172-E182, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31136202

ABSTRACT

Polycystic ovary syndrome (PCOS) is associated with high rates of obesity and metabolic dysfunction. Repeated passive heat exposure (termed heat therapy) is a novel lifestyle intervention for improving health in obese women with PCOS. The purpose of this study was to examine changes in metabolic function in obese women with PCOS following heat therapy. Eighteen age- and BMI-matched obese women with PCOS (age: 27 ± 1 yr, BMI: 41.3 ± 1.1 kg/m-2) were assigned to heat therapy (HT) or time control (CON). HT participants underwent 30 one-hour hot tub sessions over 8-10 wk, while CON participants completed all testing but did not undergo heat therapy. Before (Pre), at the mid-point (Mid), and following (Post) 8-10 wk of heat therapy, metabolic health was assessed using a 2-h oral glucose tolerance test, a subcutaneous abdominal fat biopsy (Pre-Post only), and other blood markers relating to metabolic function. HT participants exhibited improved fasting glucose (Pre: 105 ± 3, Post: 89 ± 5mg/dl; P = 0.001), glucose area under the curve (AUC) (Pre: 18,698 ± 1,045, Post: 16,987 ± 1,017 mg·dl-1·min-1; P = 0.028) and insulin AUC (Pre: 126,924 ± 11,730, Post: 91,233 ± 14,429 IU l-1·min-1; P = 0.012). Adipocyte insulin signaling (p-AKT at Ser-473 with 1.2 nM insulin) increased in HT (Pre: 0.29 ± 0.14, Post: 0.93 ± 0.29 AU; P = 0.021). Additionally, serum testosterone declined in HT participants (Pre: 51 ± 7, Post: 34 ± 4 ng/dl; P = 0.033). No parameters changed over time in CON, and no change in BMI was observed in either group. HT substantially improved metabolic risk profile in obese women with PCOS. HT also reduced androgen excess and may improve PCOS symptomology.


Subject(s)
Adipose Tissue/metabolism , Blood Glucose/metabolism , Hot Temperature/therapeutic use , Insulin Resistance/physiology , Insulin/metabolism , Polycystic Ovary Syndrome/therapy , Adult , Body Mass Index , Female , Glucose Tolerance Test , Humans , Immersion , Middle Aged , Obesity/complications , Obesity/metabolism , Obesity/therapy , Polycystic Ovary Syndrome/complications , Polycystic Ovary Syndrome/metabolism
7.
Am J Physiol Regul Integr Comp Physiol ; 317(5): R630-R640, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31483156

ABSTRACT

Polycystic ovary syndrome (PCOS) affects up to 15% of women and is associated with increased risk of obesity and cardiovascular disease. Repeated passive heat exposure [termed "heat therapy" (HT)] is a lifestyle intervention with the potential to reduce cardiovascular risk in obesity and PCOS. Women with obesity (n = 18) with PCOS [age 27 ± 4 yr, body mass index (BMI) 41.3 ± 4.7 kg/m2] were matched for age and BMI, then assigned to HT (n = 9) or time control (CON; n = 9). HT subjects underwent 30 one-hour hot tub sessions over 8-10 wk, whereas CON subjects did not undergo HT. Muscle sympathetic nerve activity (MSNA), blood pressure, cholesterol, C-reactive protein, and markers of vascular function were assessed at the start (Pre) and end (Post) of 8-10 wk. These measures included carotid and femoral artery wall thickness and flow-mediated dilation (FMD), measured both before and after 20 min of ischemia-20 min of reperfusion (I/R) stress. HT subjects exhibited reduced MSNA burst frequency (Pre: 20 ± 8 bursts/min, Post: 13 ± 5 bursts/min, P = 0.012), systolic (Pre: 124 ± 5 mmHg, Post: 114 ± 6 mmHg; P < 0.001) and diastolic blood pressure (Pre: 77 ± 6 mmHg, Post: 68 ± 3 mmHg; P < 0.001), C-reactive protein (Pre: 19.4 ± 13.7 nmol/L, Post: 15.2 ± 12.3 nmol/L; P = 0.018), total cholesterol (Pre: 5.4 ± 1.1 mmol/L, Post: 5.0 ± 0.8 mmol/L; P = 0.028), carotid wall thickness (Pre: 0.054 ± 0.005 cm, Post: 0.044 ± 0.005 cm; P = 0.010), and femoral wall thickness (Pre: 0.056 ± 0.009 cm, Post: 0.042 ± 0.005 cm; P = 0.003). FMD significantly improved in HT subjects over time following I/R (Pre: 5.6 ± 2.5%, Post: 9.5 ± 1.7%; P < 0.001). No parameters changed over time in CON, and BMI did not change in either group. These findings indicate that HT reduces sympathetic nerve activity, provides protection from I/R stress, and substantially improves cardiovascular risk profiles in women who are obese with PCOS.


Subject(s)
Cardiovascular Diseases/therapy , Hot Temperature , Obesity/complications , Polycystic Ovary Syndrome/therapy , Blood Pressure/physiology , Cardiovascular Diseases/physiopathology , Cardiovascular System/metabolism , Female , Humans , Obesity/physiopathology , Obesity/therapy , Polycystic Ovary Syndrome/complications , Risk Factors , Sympathetic Nervous System/physiopathology
8.
J Physiol ; 596(20): 4831-4845, 2018 10.
Article in English | MEDLINE | ID: mdl-30118148

ABSTRACT

KEY POINTS: Accumulating evidence indicates that passive heat therapy (chronic use of hot tubs or saunas) has widespread physiological benefits, including enhanced resistance against novel stressors ('stress resistance'). Using a cell culture model to isolate the key stimuli that are likely to underlie physiological adaptation with heat therapy, we showed that both mild elevations in temperature (to 39°C) and exposure to serum from human subjects who have undergone 8 weeks of heat therapy (i.e. altered circulating factors) independently prevented oxidative and inflammatory stress associated with hypoxia-reoxygenation in cultured endothelial cells. Our results elucidate some of the mechanisms (i.e. direct effects of temperature vs. circulating factors) by which heat therapy seems to improve resistance against oxidative and inflammatory stress. Heat therapy may be a promising intervention for reducing cellular damage following ischaemic events, which has broad implications for patients with cardiovascular diseases and conditions characterized by 'chronic' ischaemia (e.g. peripheral artery disease, metabolic diseases, obesity). ABSTRACT: Repeated exposure to passive heat stress ('heat therapy') has widespread physiological benefits, including cellular protection against novel stressors. Increased heat shock protein (HSP) expression and upregulation of circulating factors may impart this protection. We tested the isolated abilities of mild heat pretreatment and serum from human subjects (n = 10) who had undergone 8 weeks of heat therapy to protect against cellular stress following hypoxia-reoxygenation (H/R), a model of ischaemic cardiovascular events. Cultured human umbilical vein endothelial cells were incubated for 24 h at 37°C (control), 39°C (heat pretreatment) or 37°C with 10% serum collected before and after 8 weeks of passive heat therapy (four to five times per week to increase rectal temperature to ≥ 38.5°C for 60 min). Cells were then collected before and after incubation at 1% O2 for 16 h (hypoxia; 37°C), followed by 20% O2 for 4 h (reoxygenation; 37°C) and assessed for markers of cell stress. In control cells, H/R increased nuclear NF-κB p65 protein (i.e. activation) by 106 ± 38%, increased IL-6 release by 37 ± 8% and increased superoxide production by 272 ± 45%. Both heat pretreatment and exposure to heat therapy serum prevented H/R-induced NF-κB activation and attenuated superoxide production; by contrast, only exposure to serum attenuated IL-6 release. H/R also decreased cytoplasmic haemeoxygenase-1 (HO-1) protein (known to suppress NF-κB), in control cells (-25 ± 8%), whereas HO-1 protein increased following H/R in cells pretreated with heat or serum-exposed, providing a possible mechanism of protection against H/R. These data indicate heat therapy is capable of imparting resistance against inflammatory and oxidative stress via direct heat and humoral factors.


Subject(s)
Hyperthermia, Induced/methods , Myocardial Ischemia/prevention & control , Blood Pressure , Cells, Cultured , Female , Heart Rate , Heme Oxygenase-1/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/physiology , Humans , Interleukin-6/metabolism , Male , Transcription Factor RelA/metabolism , Young Adult
9.
J Physiol ; 594(2): 241-3, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26668072

ABSTRACT

We believe available data support the thesis that HA can improve performance in cool conditions, and perhaps with less expense and fewer side-effects than hypoxia (Dempsey & Morgan, 2015), but its utility is unresolved and may be modest or absent in some settings and individuals. A few key issues are becoming clear, however. First, HA must be of sufficient stimulus and duration, with key evidence indicating longer is better. Second, individual variability in response to HA as an ergogenic aid needs to be considered. Third, key training aspects such as speed and intensity may need to be maintained, and ideally performed in a cooler environment to maximize gains and minimize fatigue (including the effects of matched absolute versus relative work rates on adaptations). Alternatively, passive heating should be considered (e.g. immediately after training). Fourth, there is no evidence that HA impairs cool weather performance, and thus HA is a useful strategy when the competitive environmental conditions are potentially hot or unknown. Fifth, much remains unknown about ideal timing for competition following HA and its decay. Lastly, an ergogenic effect of HA has yet to be studied in truly elite athletes.


Subject(s)
Acclimatization/physiology , Exercise/physiology , Athletic Performance , Body Temperature Regulation , Cardiovascular Physiological Phenomena , Hot Temperature , Humans , Physical Endurance
10.
J Physiol ; 594(21): 6419-6429, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27511105

ABSTRACT

KEY POINTS: In young adults, cyclooxygenase (COX) contributes to the heat loss responses of cutaneous vasodilatation and sweating, and this may be mediated by prostacyclin-induced activation of nitric oxide synthase (NOS) and calcium-activated potassium (KCa) channels. This prostacyclin-induced response may be diminished in older relative to young adults because ageing is known to attenuate COX-dependent heat loss responses. We observed that, although prostacyclin does not mediate sweating in young and older males, it does modulate cutaneous vasodilatation, although the magnitude of increase is similar between groups. We also found that, although NOS and KCa channels contribute to prostacyclin-induced cutaneous vasodilatation in young males, these contributions are diminished in older males. Our findings provide new insight into the mechanisms governing heat loss responses and suggest that the age-related diminished COX-dependent heat loss responses reported in previous studies may be a result of the reduced COX-derived production of prostanoids (e.g., prostacyclin) rather than the decreased sensitivity of prostanoid receptors. ABSTRACT: Cyclooxygenase (COX) contributes to the regulation of cutaneous vasodilatation and sweating; however, the mechanism(s) underpinning this response remain unresolved. We hypothesized that prostacyclin (a COX-derived product) may directly mediate cutaneous vasodilatation and sweating through nitric oxide synthase (NOS) and calcium-activated potassium (KCa) channels in young adults. However, these responses would be diminished in older adults because ageing attenuates COX-dependent cutaneous vasodilatation and sweating. In young (25 ± 4 years) and older (60 ± 6 years) males (nine per group), cutaneous vascular conductance (CVC) and sweat rate were evaluated at four intradermal forearm skin sites: (i) control; (ii) 10 mm NG -nitro-l-arginine (l-NNA), a non-specific NOS inhibitor; (iii) 50 mm tetraethylammonium (TEA), a non-specific KCa channel blocker; and (iv) 10 mm l-NNA + 50 mm TEA. All four sites were coadministered with prostacyclin in an incremental manner (0.04, 0.4, 4, 40 and 400 µm each for 25 min). Prostacyclin-induced increases in CVC were similar between groups (all concentrations, P > 0.05). l-NNA and TEA, as well as their combination, lowered CVC in young males at all prostacyclin concentrations (P ≤ 0.05), with the exception of l-NNA at 0.04 µm (P > 0.05). In older males, CVC during prostacyclin administration was not influenced by l-NNA (all concentrations), TEA (4-400 µm) or their combination (400 µm) (P > 0.05). No effect on sweat rate was observed in either group (all concentrations, P > 0.05). We conclude that, although prostacyclin does not mediate sweating, it modulates cutaneous vasodilatation to a similar extent in young and older males. Furthermore, although NOS and KCa channels contribute to the prostacyclin-induced cutaneous vasodilatation in young males, these contributions are diminished in older males.


Subject(s)
Antihypertensive Agents/pharmacology , Epoprostenol/pharmacology , Nitric Oxide/metabolism , Potassium Channels, Calcium-Activated/metabolism , Regional Blood Flow/drug effects , Skin/drug effects , Sweating/drug effects , Adult , Aged , Antihypertensive Agents/administration & dosage , Epoprostenol/administration & dosage , Humans , Male , Middle Aged , Nitric Oxide Synthase/antagonists & inhibitors , Nitroarginine/pharmacology , Potassium Channel Blockers/pharmacology , Potassium Channels, Calcium-Activated/antagonists & inhibitors , Skin/blood supply , Skin/metabolism , Vasodilation/drug effects
11.
J Physiol ; 594(18): 5329-42, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27270841

ABSTRACT

KEY POINTS: A recent 30 year prospective study showed that lifelong sauna use reduces cardiovascular-related and all-cause mortality; however, the specific cardiovascular adaptations that cause this chronic protection are currently unknown. We investigated the effects of 8 weeks of repeated hot water immersion ('heat therapy') on various biomarkers of cardiovascular health in young, sedentary humans. We showed that, relative to a sham group which participated in thermoneutral water immersion, heat therapy increased flow-mediated dilatation, reduced arterial stiffness, reduced mean arterial and diastolic blood pressure, and reduced carotid intima media thickness, with changes all on par or greater than what is typically observed in sedentary subjects with exercise training. Our results show for the first time that heat therapy has widespread and robust effects on vascular function, and as such, could be a viable treatment option for improving cardiovascular health in a variety of patient populations, particularly those with limited exercise tolerance and/or capabilities. ABSTRACT: The majority of cardiovascular diseases are characterized by disorders of the arteries, predominantly caused by endothelial dysfunction and arterial stiffening. Intermittent hot water immersion ('heat therapy') results in elevations in core temperature and changes in cardiovascular haemodynamics, such as cardiac output and vascular shear stress, that are similar to exercise, and thus may provide an alternative means of improving health which could be utilized by patients with low exercise tolerance and/or capabilities. We sought to comprehensively assess the effects of 8 weeks of heat therapy on biomarkers of vascular function in young, sedentary subjects. Twenty young, sedentary subjects were assigned to participate in 8 weeks (4-5 times per week) of heat therapy (n = 10; immersion in a 40.5°C bath sufficient to maintain rectal temperature ≥ 38.5°C for 60 min per session) or thermoneutral water immersion (n = 10; sham). Eight weeks of heat therapy increased flow-mediated dilatation from 5.6 ± 0.3 to 10.9 ± 1.0% (P < 0.01) and superficial femoral dynamic arterial compliance from 0.06 ± 0.01 to 0.09 ±0.01 mm(2)  mmHg(-1) (P = 0.03), and reduced (i.e. improved) aortic pulse wave velocity from 7.1 ± 0.3 to 6.1 ± 0.3 m s(-1) (P = 0.03), carotid intima media thickness from 0.43 ± 0.01 to 0.37 ± 0.01 mm (P < 0.001), and mean arterial blood pressure from 83 ± 1 to 78 ± 2 mmHg (P = 0.02). No changes were observed in the sham group or for carotid arterial compliance, superficial femoral intima media thickness or endothelium-independent dilatation. Heat therapy improved endothelium-dependent dilatation, arterial stiffness, intima media thickness and blood pressure, indicating improved cardiovascular health. These data suggest heat therapy may provide a simple and effective tool for improving cardiovascular health in various populations.


Subject(s)
Endothelium, Vascular/physiology , Hot Temperature/therapeutic use , Adult , Blood Pressure , Brachial Artery/diagnostic imaging , Brachial Artery/physiology , Cardiovascular Diseases/prevention & control , Carotid Arteries/diagnostic imaging , Carotid Arteries/physiology , Carotid Intima-Media Thickness , Endothelium, Vascular/diagnostic imaging , Female , Femoral Artery/diagnostic imaging , Femoral Artery/physiology , Humans , Male , Sedentary Behavior , Ultrasonography, Doppler , Vascular Stiffness , Vasodilation , Young Adult
12.
Am J Physiol Regul Integr Comp Physiol ; 310(11): R1081-7, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27053645

ABSTRACT

Nitric oxide (NO) increases cutaneous blood flow; however, the underpinning mechanism(s) remains to be elucidated. We hypothesized that the cutaneous blood flow response during intradermal administration of sodium nitroprusside (SNP, a NO donor) is regulated by calcium-activated potassium (KCa) channels and cyclooxygenase (COX) in young adults. We also hypothesized that these contributions are diminished in older adults given that aging can downregulate KCa channels and reduce COX-derived vasodilator prostanoids. In 10 young (23 ± 5 yr) and 10 older (54 ± 4 yr) adults, cutaneous vascular conductance (CVC) was measured at four forearm skin sites infused with 1) Ringer (Control), 2) 50 mM tetraethylammonium (TEA), a nonspecific KCa channel blocker, 3) 10 mM ketorolac, a nonspecific COX inhibitor, or 4) 50 mM TEA + 10 mM ketorolac via intradermal microdialysis. All skin sites were coinfused with incremental doses of SNP (0.005, 0.05, 0.5, 5, and 50 mM each for 25 min). During SNP administration, CVC was similar at the ketorolac site (0.005-50 mM, all P > 0.05) relative to Control, but lower at the TEA and TEA + ketorolac sites (0.005-0.05 mM, all P < 0.05) in young adults. In older adults, ketorolac increased CVC relative to Control during 0.005-0.05 mM SNP administration (all P < 0.05), but this increase was not observed when TEA was coadministered (all P > 0.05). Furthermore, TEA alone did not modulate CVC during any concentration of SNP administration in older adults (all P > 0.05). We show that during low-dose NO administration (e.g., 0.005-0.05 mM), KCa channels contribute to cutaneous blood flow regulation in young adults; however, in older adults, COX inhibition increases cutaneous blood flow through a KCa channel-dependent mechanism.


Subject(s)
Aging/physiology , Blood Flow Velocity/physiology , Nitric Oxide/administration & dosage , Potassium Channels, Calcium-Activated/physiology , Prostaglandin-Endoperoxide Synthases/metabolism , Skin Physiological Phenomena/drug effects , Adult , Aging/drug effects , Blood Flow Velocity/drug effects , Dose-Response Relationship, Drug , Female , Humans , Male , Middle Aged , Potassium Channels, Calcium-Activated/drug effects , Prostaglandin-Endoperoxide Synthases/drug effects , Vasodilation/drug effects , Vasodilation/physiology , Vasodilator Agents/administration & dosage
13.
Am J Physiol Regul Integr Comp Physiol ; 311(6): R1060-R1067, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27707723

ABSTRACT

Ischemia-reperfusion (I/R) injury is a primary cause of poor outcomes following ischemic cardiovascular events. We tested whether acute hot water immersion protects against forearm vascular I/R. Ten (5 male, 5 female) young (23 ± 2 yr), healthy subjects participated in two trials in random order 7-21 days apart, involving: 1) 60 min of seated rest (control), or 2) 60 min of immersion in 40.5°C water (peak rectal temperature: 38.9 ± 0.2°C). I/R was achieved 70 min following each intervention by inflating an upper arm cuff to 250 mmHg for 20 min followed by 20 min of reperfusion. Brachial artery flow-mediated dilation (FMD) and forearm postocclusive reactive hyperemia (RH) were measured as markers of macrovascular and microvascular function at three time points: 1) preintervention, 2) 60 min postintervention, and 3) post-I/R. Neither time control nor hot water immersion alone affected FMD (both, P > 0.99). I/R reduced FMD from 7.4 ± 0.7 to 5.4 ± 0.6% (P = 0.03), and this reduction was prevented following hot water immersion (7.0 ± 0.7 to 7.7 ± 1.0%; P > 0.99). I/R also impaired RH (peak vascular conductance: 2.6 ± 0.5 to 2.0 ± 0.4 ml·min-1·mmHg-1, P = 0.003), resulting in a reduced shear stimulus (SRAUC·10-3: 22.5 ± 2.4 to 16.9 ± 2.4, P = 0.04). The post-I/R reduction in peak RH was prevented by hot water immersion (2.5 ± 0.4 to 2.3 ± 0.4 ml·min-1·mmHg-1; P = 0.33). We observed a decline in brachial artery dilator function post-I/R, which may be (partly) related to damage incurred downstream in the microvasculature, as indicated by impaired RH and shear stimulus. Hot water immersion was protective against reductions in FMD and RH post-I/R, suggesting heat stress induces vascular changes consistent with reducing I/R injury following ischemic events.


Subject(s)
Blood Flow Velocity , Brachial Artery/physiopathology , Hyperthermia, Induced/methods , Immersion/physiopathology , Reperfusion Injury/prevention & control , Reperfusion Injury/physiopathology , Female , Forearm/blood supply , Forearm/physiopathology , Heat-Shock Response , Hot Temperature , Humans , Male , Shear Strength , Treatment Outcome , Vascular Resistance , Young Adult
14.
Am J Physiol Heart Circ Physiol ; 306(11): H1507-11, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24682395

ABSTRACT

We recently found that young cigarette smokers display cutaneous vascular dysfunction relative to nonsmokers, which is partially due to reduced nitric oxide (NO) synthase (NOS)-dependent vasodilation. In this study, we tested the hypothesis that reducing oxidative stress improves NO bioavailability, enhancing cutaneous vascular function in young smokers. Ten healthy young male smokers, who had smoked for 6.3 ± 0.7 yr with an average daily consumption of 9.1 ± 0.7 cigarettes, were tested. Cutaneous vascular conductance (CVC) during local heating to 42°C at a rate of 0.1°C/s was evaluated as laser-Doppler flux divided by mean arterial blood pressure and normalized to maximal CVC, induced by local heating to 44°C plus sodium nitroprusside administration. We evaluated plateau CVC during local heating, which is known to be highly dependent on NO, at four intradermal microdialysis sites with 1) Ringer solution (control); 2) 10 µM 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (tempol), a superoxide dismutase mimetic; 3) 10 mM N(ω)-nitro-l-arginine (l-NNA), a nonspecific NOS inhibitor; and 4) a combination of 10 µM tempol and 10 mM l-NNA. Tempol increased plateau CVC compared with the Ringer solution site (90.0 ± 2.3 vs. 77.6 ± 3.9%maximum, P = 0.028). Plateau CVC at the combination site (56.8 ± 4.5%maximum) was lower than the Ringer solution site (P < 0.001) and was not different from the l-NNA site (55.1 ± 4.6%maximum, P = 0.978), indicating the tempol effect was exclusively NO dependent. These data suggest that in young smokers, reducing oxidative stress improves cutaneous thermal hyperemia to local heating by enhancing NO production.


Subject(s)
Antioxidants/therapeutic use , Cyclic N-Oxides/therapeutic use , Hyperemia/drug therapy , Nitric Oxide/metabolism , Skin/drug effects , Smoking/adverse effects , Adult , Antioxidants/pharmacology , Blood Flow Velocity/drug effects , Cyclic N-Oxides/pharmacology , Humans , Hyperemia/etiology , Hyperemia/metabolism , Male , Regional Blood Flow/drug effects , Skin/blood supply , Skin/metabolism , Spin Labels , Treatment Outcome
15.
Physiol Rep ; 12(3): e15936, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38307711

ABSTRACT

The purpose of this study was to gain insight into histamine's role in the exercise inflammatory response and recovery from exercise. To explore this, young healthy participants (n = 12) performed 300 eccentric leg extensions under control (Placebo) versus histamine H1 and H2 receptor antagonism (Blockade) in a randomized cross-over study. Circulating leukocytes and cytokines were measured for 72 h after exercise. Circulating leukocytes were elevated at 6 and 12 h after exercise (p < 0.05) with the peak response being a 44.1 ± 11.7% increase with Blockade versus 13.7 ± 6.6% with Placebo (both p < 0.05 vs. baseline, but also p < 0.05 between Blockade and Placebo). Of the cytokines that were measured, only MCP-1 was elevated following exercise. The response at 6 h post-exercise was a 104.0 ± 72.5% increase with Blockade versus 93.1 ± 41.9% with Placebo (both p < 0.05 vs. baseline, p = 0.82 between Blockade and Placebo). The main findings of the present investigation were that taking combined histamine H1 and H2 receptor antagonists augmented the magnitude but not the duration of the increase of circulating immune cells following exercise. This suggests histamine is not only exerting a local influence within the skeletal muscle but that it may influence the systemic inflammatory patterns.


Subject(s)
Cytokines , Histamine , Humans , Pilot Projects , Exercise/physiology , Histamine H2 Antagonists/pharmacology
16.
J Appl Physiol (1985) ; 136(3): 492-508, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38205553

ABSTRACT

Insufficient hydration is prevalent among free living adults. This study investigated whether hypohydration alters 1) renal functional reserve, 2) the renal hemodynamic response to the exercise pressor reflex, and 3) urine-concentrating ability during oral protein loading. In a block-randomized crossover design, 22 healthy young adults (11 females and 11 males) underwent 24-h fluid deprivation (Hypohydrated) or 24-h normal fluid consumption (Euhydrated). Renal functional reserve was assessed by oral protein loading. Renal hemodynamics during the exercise pressor reflex were assessed via Doppler ultrasound. Urine-concentrating ability was assessed via free water clearance. Creatinine clearance did not differ at 150 min postprotein consumption between conditions [Hypohydrated: 246 mL/min, 95% confidence interval (CI): 212-280; Euhydrated: 231 mL/min, 95% CI: 196-265, P = 0.2691] despite an elevated baseline in Hypohydrated (261 mL/min, 95% CI: 218-303 vs. 143 mL/min, 95% CI: 118-168, P < 0.0001). Renal artery vascular resistance was not different at baseline (P = 0.9290), but increases were attenuated in Hypohydrated versus Euhydrated at the end of handgrip (0.5 mmHg/cm/s, 95% CI: 0.4-0.7 vs. 0.8 mmHg/cm/s 95% CI: 0.6-1.1, P = 0.0203) and end occlusion (0.2 mmHg/cm/s, 95% CI: 0.1-0.3 vs. 0.4 mmHg/cm/s 95% CI: 0.3-0.6, P = 0.0127). There were no differences between conditions in free water clearance at 150 min postprotein (P = 0.3489). These data indicate that hypohydration 1) engages renal functional reserve and attenuates the ability to further increase creatinine clearance, 2) attenuates increases in renal artery vascular resistance to the exercise pressor reflex, and 3) does not further enhance nor impair urine-concentrating ability during oral protein loading.NEW & NOTEWORTHY Insufficient hydration is prevalent among free living adults. This study found that hypohydration induced by 24-h fluid deprivation engaged renal functional reserve and that oral protein loading did not further increase creatinine clearance. Hypohydration also attenuated the ability to increase renal vascular resistance during the exercise pressor reflex. In addition, hypohydration neither enhanced nor impaired urine-concentrating ability during oral protein loading. These data support the importance of mitigating hypohydration in free living adults.


Subject(s)
Hand Strength , Reflex , Female , Male , Young Adult , Humans , Creatinine , Hemodynamics , Water
17.
Am J Physiol Heart Circ Physiol ; 304(5): H667-73, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23316063

ABSTRACT

Cigarette smoking attenuates acetylcholine (ACh)-induced cutaneous vasodilation in humans, but the underlying mechanisms are unknown. We tested the hypothesis that smokers have impaired nitric oxide (NO)- and cyclooxygenase (COX)-dependent cutaneous vasodilation to ACh infusion. Twelve young smokers, who have smoked more than 5.2 ± 0.7 yr with an average daily consumption of 11.4 ± 1.2 cigarettes, and 12 nonsmokers were tested. Age, body mass index, and resting mean arterial pressure were similar between the groups. Cutaneous vascular conductance (CVC) was evaluated as laser-Doppler flux divided by mean arterial pressure, normalized to maximal CVC (local heating to 43.0°C plus sodium nitroprusside administration). We evaluated the increase in CVC from baseline to peak (CVCΔpeak) and area under the curve of CVC (CVCAUC) during a bolus infusion (1 min) of 137.5 µM ACh at four intradermal microdialysis sites: 1) Ringer (control), 2) 10 mM N(G)-nitro-l-arginine methyl ester (l-NAME; NO synthase inhibitor), 3) 10 mM ketorolac (COX inhibitor), and 4) combination of l-NAME + ketorolac. CVCΔpeak and CVCAUC at the Ringer site in nonsmokers were greater than in smokers (CVCΔpeak, 42.9 ± 5.1 vs. 22.3 ± 3.5%max, P < 0.05; and CVCAUC, 8,085 ± 1,055 vs. 3,145 ± 539%max·s, P < 0.05). In nonsmokers, CVCΔpeak and CVCAUC at the l-NAME site were lower than the Ringer site (CVCΔpeak, 29.5 ± 6.2%max, P < 0.05; and CVCAUC, 5,377 ± 1,109%max·s, P < 0.05), but in smokers, there were no differences between the Ringer and l-NAME sites (CVCΔpeak, 16.8 ± 4.3%max, P = 0.11; and CVCAUC, 2,679 ± 785%max·s, P = 0.30). CVCΔpeak and CVCAUC were reduced with ketorolac in nonsmokers (CVCΔpeak, 13.3 ± 3.6%max, P < 0.05; and CVCAUC, 1,967 ± 527%max·s, P < 0.05) and smokers (CVCΔpeak, 7.8 ± 1.8%max, P < 0.05; and CVCAUC, 1,246 ± 305%max·s, P < 0.05) and at the combination site in nonsmokers (CVCΔpeak, 15.9 ± 3.1%max, P < 0.05; and CVCAUC, 2,660 ± 512%max·s, P < 0.05) and smokers (CVCΔpeak, 11.5 ± 2.6%max, P < 0.05; and CVCAUC, 1,693 ± 409%max·s, P < 0.05), but the magnitudes were greater in nonsmokers (P < 0.05). These results suggest that impaired ACh-induced skin vasodilation in young smokers is related to diminished NO- and COX-dependent vasodilation.


Subject(s)
Acetylcholine/administration & dosage , Nitric Oxide/blood , Prostaglandins/blood , Smoking/adverse effects , Smoking/physiopathology , Vasodilation/physiology , Cyclooxygenase Inhibitors/administration & dosage , Enzyme Inhibitors/administration & dosage , Female , Humans , Ketorolac/administration & dosage , Laser-Doppler Flowmetry , Male , Microcirculation/drug effects , Microcirculation/physiology , Microdialysis , NG-Nitroarginine Methyl Ester/administration & dosage , Prostaglandin-Endoperoxide Synthases/metabolism , Skin/blood supply , Skin Aging/physiology , Vasodilation/drug effects , Vasodilator Agents/administration & dosage , Young Adult
18.
Am J Physiol Heart Circ Physiol ; 305(7): H1041-9, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-23873800

ABSTRACT

The individual effects of estrogen and progesterone on baroreflex function remain poorly understood. We sought to determine how estradiol (E2) and progesterone (P4) independently alter the carotid-cardiac and carotid-vasomotor baroreflexes in young women by using a hormone suppression and exogenous add-back design. Thirty-two young women were divided into two groups and studied under three conditions: 1) after 4 days of endogenous hormone suppression with a gonadotropin releasing hormone antagonist (control condition), 2) after continued suppression and 3 to 4 days of supplementation with either 200 mg/day oral progesterone (N = 16) or 0.1 to 0.2 mg/day transdermal 17ß-estradiol (N = 16), and 3) after continued suppression and 3 to 4 days of supplementation with both hormones. Changes in heart rate (HR), mean arterial pressure (MAP), and femoral vascular conductance (FVC) were measured in response to 5 s of +50 mmHg external neck pressure to unload the carotid baroreceptors. Significant hormone effects on the change in HR, MAP, and FVC from baseline at the onset of neck pressure were determined using mixed model covariate analyses accounting for P4 and E2 plasma concentrations. Neither P4 (P = 0.95) nor E2 (P = 0.95) affected the HR response to neck pressure. Higher P4 concentrations were associated with an attenuated fall in FVC (P = 0.01), whereas higher E2 concentrations were associated with an augmented fall in FVC (P = 0.02). Higher E2 was also associated with an augmented rise in MAP (P = 0.01). We conclude that progesterone blunts whereas estradiol enhances carotid-vasomotor baroreflex sensitivity, perhaps explaining why no differences in sympathetic baroreflex sensitivity are commonly reported between low and high combined hormone phases of the menstrual cycle.


Subject(s)
Baroreflex/drug effects , Carotid Arteries/innervation , Estradiol/administration & dosage , Heart/innervation , Hemodynamics/drug effects , Pressoreceptors/drug effects , Progesterone/administration & dosage , Vasomotor System/drug effects , Administration, Cutaneous , Administration, Oral , Age Factors , Analysis of Variance , Arterial Pressure/drug effects , Drug Administration Schedule , Estradiol/blood , Female , Gonadotropin-Releasing Hormone/administration & dosage , Gonadotropin-Releasing Hormone/analogs & derivatives , Heart Rate/drug effects , Hormone Antagonists/administration & dosage , Humans , Linear Models , Pressoreceptors/metabolism , Progesterone/blood , Sex Factors , Time Factors , Transdermal Patch , Young Adult
19.
J Appl Physiol (1985) ; 134(4): 933-940, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36825647

ABSTRACT

Sympathetic cholinergic nerve cotransmission is widely accepted as the mechanism of cutaneous active vasodilation (CAVD) during whole body passive heating (passive heating). However, recent research suggests that there may be mechanistic differences in CAVD to heating, depending on the modality of thermal loading. It is unknown whether sympathetic cholinergic cotransmission explains CAVD during exercise. This study sought to confirm the role of cholinergic nerves in CAVD during passive heating and expand these findings to exercise. It was hypothesized that CAVD during both exercise and passive heating would be abolished by cholinergic nerve blockade. Eight young (18-30 yr) recreationally active individuals exercised (1 h seated cycling at 60% V̇o2peak) and were passively heated (∼1 h seated passive heating with mean skin temperature clamped at 39°C by water-perfused suit), in randomized order on separate days. Cholinergic nerves were blocked via Botox ∼2 wk prior to the study. Skin blood flow was assessed using laser Doppler flowmetry and expressed as percent of maximum cutaneous vascular conductance (%CVCmax). At the end of exercise/passive heating, internal temperature had increased by ∼0.7°C. The %CVCmax at the Botox-treated sites (exercise: 19 ± 6 and passive heating: 15 ± 14%CVCmax) was significantly less (P < 0.001) than at the untreated sites (exercise: 35 ± 11 and passive heating: 38 ± 6%CVCmax), but there were no differences between exercise and passive heating (modality, P = 0.909; modality-Botox interaction, P = 0.230). We conclude that CAVD during both exercise and passive heating is mediated by sympathetic cholinergic nerves, a critical thermoregulatory mechanism that appears to be independent of the thermal loading modality.NEW & NOTEWORTHY Our study establishes the primacy of cholinergic nerves to cutaneous active vasodilation during exercise and confirms this model during passive heating using a crossover study design. In addition, the mode of heating, whether passive or exercise induced, did not change the sensitivity of the cholinergic component of the thermoeffector response to increased internal temperature. Thus, cutaneous active vasodilator nerves are responsible for similar skin blood flow responses regardless of how thermal loading is accomplished.


Subject(s)
Botulinum Toxins, Type A , Vasodilation , Humans , Cholinergic Agents , Cross-Over Studies , Fever , Heating , Regional Blood Flow/physiology , Skin/blood supply , Vasodilation/physiology
20.
Front Physiol ; 14: 1142567, 2023.
Article in English | MEDLINE | ID: mdl-36960159

ABSTRACT

Introduction: Oral bicarbonate loading improves the buffering of metabolic acidosis and may improve exercise performance but can also result in gastric distress. Momentous' PR Lotion contains a novel composition intended to provide a transdermal delivery vehicle for sodium bicarbonate which could allow the same ergogenic effect without the gastric distress. The present study explored the effect of transdermal delivery of sodium bicarbonate in a resting condition. Methods: We measured the pH from intramuscular dialysate, via microdialysis, of the vastus lateralis during a 2 h application of PR Lotion (40 g of lotion per leg) in 9 subjects (3 women, 6 men). Venous blood samples were obtained for serum pH before and after application. A placebo time control was also performed in 4 subjects (2 women, 2 men). We hypothesized that PR Lotion application would increase pH of intramuscular dialysate. Results: PR Lotion resulted in a rise in pH of 0.13 ± 0.04 units (p < 0.05), which translates to a 28% reduction in [H+]. Increases in serum pH were smaller (∼9%) yet consistent (p < 0.05). In contrast, placebo time control pH tended to decrease (p = 0.08). The effect of PR Lotion on pH tended to correlate with the dose per kg body weight of each individual (r = 0.70, p = 0.08). Conclusion: These observations support the idea of transdermal bicarbonate delivery impacting pH buffering both systemically and intramuscularly. Further work investigating these potential benefits in an exercising model would be critical to establishing PR Lotion's utility as an ergogenic aid.

SELECTION OF CITATIONS
SEARCH DETAIL