Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
BMC Complement Altern Med ; 16: 114, 2016 Mar 31.
Article in English | MEDLINE | ID: mdl-27036961

ABSTRACT

BACKGROUND: Malassezia commensal yeasts along with multitude of antigens have been found to be associated with various skin disorders including Pityriasis versicolor (PV). Amongst them Mala s1, a 37 kDa protein has been proved to be a major allergen reacting with a large panel of sera. However, there exists no therapeutic alternative to combat such problems in form of plant based natural compounds. The purpose of this study is in the first place, to determine the anti-Malassezia activity of Nyctanthes arbor-tristis L. (NAT) ethanolic leaf extract through turbidimetric growth curves, disruption of plasma membrane and secondly, it aims to present in silico validation of its active constituents over Mala s1a novel allergen. METHODS: The antifungal susceptibility 50 % ethanolic extract of NAT was determined by broth microdilution method according to CLSI guidelines. Further MICs and IC50 were determined spectrophotometrically using the software SoftMax® Pro-5 (Molecular Devices, USA). Active constituents mediated disruption of plasma membrane was studied through flowcytometry by permeabilization of fluorescent dye Propidium Iodide (PI). Antioxidant activity of the extract was determined using the DPPH stable radical. Molecular validation of fungal DNA from the extract was observed using PCR amplification. In silico analysis of its active constituents over Mala s1 was performed using HEX software and visualized through Pymol. RESULTS: The anti-Malassezia potential of NAT leaf extracts reflected moderate MIC 1.05 µg/µl against M. globosa, while least effective against M. restricta with MIC 1.47 µg/µl. A linear correlation coefficient R (2) = 0.866 was obtained in case of M. globosa while minimum was observed in M. restricta with R (2) = 0.732. The flow cytometric data reveal ~ 75 % cell death when treated with active constituents ß-Sitosterol and Calceolarioside A. The docking confirmations and the interaction energies between Mala s1 and the active constituents (ß-Sitosterol and Calceolarioside A) from extracts showed an effective binding which suggests Mala s1 as efficient allergen for site specific targeting. CONCLUSIONS: This study revealed that Nyctanthes arbor-tristis L. (NAT) extracts possess high anti-Malassezia potential which is driven mainly by disruption of plasma membrane. Also in silico validation and molecular modeling studies establishes Mala s1 as a novel allergen that could be a potential target in disease treatment. Our results would also provide a foundation for the development of new therapeutic approach using NAT extract as lead compound with high antioxidant property as an added trait for skin care.


Subject(s)
Allergens/immunology , Antifungal Agents/therapeutic use , Antigens, Fungal/immunology , Dermatomycoses/drug therapy , Malassezia/immunology , Oleaceae/chemistry , Plant Extracts/therapeutic use , Allergens/metabolism , Antifungal Agents/metabolism , Antigens, Fungal/metabolism , Antioxidants/therapeutic use , Caffeic Acids/metabolism , Cell Membrane/drug effects , Glucosides/metabolism , India , Microbial Sensitivity Tests , Plant Extracts/metabolism , Sitosterols/metabolism
2.
Front Plant Sci ; 14: 1122347, 2023.
Article in English | MEDLINE | ID: mdl-37152133

ABSTRACT

Halotolerant plant growth promoting rhizobacteria (PGPR) are beneficial microorganisms utilized to mitigate the biotic and abiotic stresses in plants. The areas of Sundarban mangroves of West Bengal, India have been reported to be rich in halotolerant microflora, yet major area remains unexplored. The present study, therefore, aims to map down the region-specific native microbial community potent of salt tolerance, plant growth promoting (PGP) activity and antagonistic activity against fungal pathogens. Bacterial samples were isolated from the saline soil of the Sundarban mangroves. A total of 156 bacterial samples were isolated and 20 were screened for their salt tolerance potential. These isolates were characterised using morphological, biochemical, and molecular approaches. Based on 16s rRNA sequencing, they were classified into 4 different genera, including Arthrobacter sp. (01 isolate), Pseudomonas plecoglossicida (01 isolate), Kocuria rosea (01 isolate), and Bacillus (17 isolates). The halotolerant isolates which possessed plant growth promoting traits including phosphate, and zinc solubilization, indole acetic acid production, siderophore, and ammonia generation were selected. Further, the effect of two halotolerant isolates GN-5 and JR-12 which showed most prominent PGP activities was evaluated in pea plant under high salinity conditions. The isolates improved survival by promoting germination (36 to 43%) and root-shoot growth and weight of pea plant in comparison to non-inoculated control plants. In a subsequent dual culture confrontation experiment, both these halo-tolerant isolates showed antagonistic activities against the aggressive root rot disease-causing Macrophomina phaseolina (Tassi) Goid NAIMCC-F-02902. The identified isolates could be used as potential bioagents for saline soils, with potential antagonistic effect on root rot disease. However, further studies at the physiological and molecular level would help to delineate a detail mechanistic understanding of broad-spectrum defence against salinity and potential biotic pathogen.

3.
ACS Appl Bio Mater ; 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36126340

ABSTRACT

Zinc oxide (ZnO) nanoparticles (NPs) have been widely used in industry, cosmetics, drugs, bioimaging, and drug delivery. ZnO NPs have been found to interact and interfere with cellular physiology via macrophages, thereby resulting in macrophage polarization. The functional reprogramming of the cells is synchronized through cellular metabolic adaptations. The current study, therefore, aims to establish crosstalk between ZnO-NP-induced metabolic alterations and macrophage polarization in PMA-activated THP-1 cell lines. We observed moderate to heightened cytotoxic response in terms of cell viability and proliferation. The results also revealed increased Th1-type cytokine and chemokine expression. In order to characterize the changes in metabolite concentration in treatment groups, we employed multivariate data analysis (principal component analysis and partial least-squares discriminant analysis) of 1H NMR spectra. The results revealed biologically relevant patterns and alterations in many metabolic pathways. These alterations and patterns were found to be in line across the immune-cytotoxic axis. Furthermore, the results also implicate the role of carbon metabolism toward the classical activation of macrophage polarization. The omics approach could identify the markers involved in NP-induced toxicity, thus elaborating our vision of cytotoxicity that is currently limited to end-point and cytokine assays. Also, it could be emphasized that metabolic reconfiguration upon NP stimulation could direct macrophage polarization toward classical activation.

4.
Arch Toxicol ; 84(12): 947-55, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20490462

ABSTRACT

Pulmonary silicosis is a deadly disease which kills thousands of people every year worldwide. The disease initially develops as an inflammatory response with recruitment of inflammatory cells into the lung controlled by multiple cytokines. The question whether these cytokines exert biological functions through signal transducing pathway remains unanswered along with the potential role of interleukin-6 receptor α (IL-6Rα) in regulating inflammatory cytokines. We aimed to assess the status of signal transducers and activator of transcription (Stat3), suppressor of cytokine signalling 3(Socs3) and inflammatory cytokines in airways of silica-exposed mice, and their relationship with IL-6Rα. Silica-exposed and silica-exposed IL-6Rα gene knockdown Balb/c mice were used in the study. Lung function was measured by plethysmography, mRNA expression of cytokines and signal molecules by qRT(2)-PCR and lung architecture by histopathology; T helper cell-type 2 (Th2) cytokines in broncho-alveolar lavage fluids were evaluated by ELISA and hydroxyproline in lung by colorimetry. Elevated levels of collagen deposition, signs of lung fibrosis, infiltration of inflammatory cells and presence of exfoliated mucosa in the lung of silica-exposed mice with concurrent increase in methacholine-induced specific resistance of airways were observed on day 60 post-exposure. In parallel, heightened expression of Th2 cytokines (IL-4, IL-5, IL-6) and signal molecules (Stat3 and Socs3) were observed in the airways of silica-exposed mice. Th1 (IL-1ß and TNF-α) cytokines are underexpressed in majority of the airways tissues of silica-exposed mice. Silencing IL-6Rα in lung of silica-exposed mice down regulated the hypermorphic mRNA pool of potential Th2 cytokines and signal molecules. Hypermorphic expression of Th2 cytokines and signal molecules in airways of silica-exposed mice are mediated through IL-6Rα.


Subject(s)
Cytokines/metabolism , Lung/metabolism , Pulmonary Fibrosis/physiopathology , Receptors, Interleukin-6/metabolism , STAT3 Transcription Factor/metabolism , Suppressor of Cytokine Signaling Proteins/metabolism , Th2 Cells/metabolism , Animals , Bronchoalveolar Lavage Fluid/chemistry , Colorimetry , Cytokines/biosynthesis , Cytokines/genetics , Enzyme-Linked Immunosorbent Assay , Female , Hydroxyproline/analysis , Hydroxyproline/metabolism , Inflammation/metabolism , Inflammation/pathology , Interleukin-6/metabolism , Lung/pathology , Lung/physiopathology , Mice , Mice, Inbred BALB C , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology , RNA, Messenger/metabolism , Silicon Dioxide , Silicosis/metabolism , Silicosis/pathology , Suppressor of Cytokine Signaling 3 Protein , Th2 Cells/pathology , Tumor Necrosis Factor-alpha/metabolism
5.
Sci Rep ; 10(1): 6263, 2020 Apr 07.
Article in English | MEDLINE | ID: mdl-32253378

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

6.
Int Arch Allergy Immunol ; 148(2): 99-108, 2009.
Article in English | MEDLINE | ID: mdl-18799889

ABSTRACT

BACKGROUND: Stat3, Socs3 and cytokines play an integral role in the coordination and persistence of inflammation. However, a clear understanding of the role played by the Stat3/IL-6 and Socs3 pathway in airway inflammation is lacking. We report the alteration in the status of expression and activation of Stat3 by ovalbumin (OVA), and establish its relationship with Socs3 and IL-6 in the lungs of mice with eosinophilic pulmonary inflammation and airway hyperresponsiveness. METHODS: Alterations in the expression of Stat3, Socs3 and IL-6 were determined in a murine model of asthma, where Balb/c mice were sensitized and challenged with OVA (OVA/OVA) and compared with control mice sensitized and challenged with saline (SAL) (SAL/SAL) mice. The OVA/OVA mice were characterized by a moderate increase in methacholine-induced specific airway resistance, the presence of 150 microg/ml of OVA-specific IgG and 8.93 microg/ml OVA-specific IgE antibody and elevated levels of eosinophils and Th2 cytokines (IL-4 and IL-5) in the bronchoalveolar lavage fluid. In contrast SAL/SAL mice had low eosinophils, IL-4 and IL-5 and no OVA-specific IgG and IgE antibodies in the BALF. Stat3 and Socs3 expression profiles were monitored in OVA/OVA and Stat3- and Socs3-silenced OVA/OVA mice. Furthermore, expression of IL-6 in Stat3- and Socs3-silenced mice and the exogenous effect of IL-6 on Stat3 were studied. RESULTS: The results show that expression and activation of Stat3 mRNA and proteins are significantly low in lung of OVA/OVA mice in comparison to SAL/SAL mice following OVA challenge. An increased pool of Socs3 mRNA is observed in OVA/OVA mice with or without OVA challenge and in SAL/SAL mice 24 h after OVA challenge. Transient in vivo blocking of Socs3 gene by Socs3 siRNA restores the expression of IL-6 mRNA and protein in OVA/OVA mice, and nasal administration of recombinant IL-6 to OVA/OVA mice enhanced Stat3 mRNA expression. CONCLUSIONS: Our data suggest that airway inflammation is associated with low expression of Stat3 and IL-6 and overexpression of Socs3 genes in a mouse model of asthma. Furthermore, IL-6 is under the influence of the Socs3 gene and may contribute to the negative regulation of Stat3 via IL-6 following a challenge with an allergen during the development of asthma.


Subject(s)
Asthma/immunology , Asthma/physiopathology , Ovalbumin/pharmacology , Suppressor of Cytokine Signaling Proteins/metabolism , Animals , Bronchial Hyperreactivity/immunology , Disease Models, Animal , Eosinophils/immunology , Female , Gene Expression Regulation , Humans , Inflammation/immunology , Interleukin-6/genetics , Interleukin-6/metabolism , Mice , Mice, Inbred BALB C , Ovalbumin/immunology , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Suppressor of Cytokine Signaling 3 Protein , Suppressor of Cytokine Signaling Proteins/genetics
7.
Sci Rep ; 7(1): 18032, 2017 12 21.
Article in English | MEDLINE | ID: mdl-29269782

ABSTRACT

Variously synthesized and fabricated Bi2Se3 nanoparticles (NPs) have recently been explored for their theranostic properties. Herein, we investigated the long term in-vivo biodistribution of Bi2Se3 NPs and systematically screened its immune-toxic potential over lungs and other secondary organs post intratracheal instillation. X-Ray CT scan and ICP MS results revealed significant particle localization and retention in lungs monitored for 1 h and 6 months time period respectively. Subsequent particle trafficking was observed in liver, the major reticuloendothelial organ followed by gradual but incomplete renal clearance. Pulmonary cytotoxicity was also found to be associated with persistent neutrophilic and ROS generation at all time points following NP exposure. The inflammatory markers along with ROS generation further promoted oxidative stress and exaggerated additional inflammatory pathways leading to cell death. The present study, therefore, raises serious concern about the hazardous effects of Bi2Se3 NPs and calls for further toxicity assessments through different administration routes and doses as well.


Subject(s)
Lung/drug effects , Nanoparticles/toxicity , Organoselenium Compounds/toxicity , Oxidative Stress/drug effects , Animals , Bismuth , Lung/metabolism , Mice , Reactive Oxygen Species/metabolism , Selenium Compounds , Tissue Distribution
8.
Front Microbiol ; 8: 330, 2017.
Article in English | MEDLINE | ID: mdl-28316594

ABSTRACT

Plasmonic nanoparticles (NPs) such as silver and gold have fascinating optical properties due to their enhanced optical sensitivity at a wavelength corresponding to their surface plasmon resonance (SPR) absorption. Present work deals with the fabrication of silver nanoparticles decorated cotton (SNDC) fibers as a cheap and efficient point of contact disinfectant. SNDC fibers were fabricated by a simple microwave assisted route. The microwave power and irradiation time were controlled to optimize size and density of silver nanoparticles (SNPs) on textile fibers. As prepared cotton fabric was characterized for ATR-FTIR, UV-VIS diffuse reflectance, SEM and TEM investigations. Size of SNPs as well as total density of silver atoms on fabric gets increased with the increase of microwave power from 100 W to 600 W. The antibacterial efficacy of SNPs extracted from SNDC fibers was found to be more effective against Gram-negative bacteria than Gram-positive bacteria with MIC 38.5 ± 0.93 µg/mL against Salmonella typhimurium MTCC-98 and 125 ± 2.12 µg/mL against Staphylococcus aureus MTCC-737, a linear correlation coefficient with R2 ranging from ∼0.928-0.935 was also observed. About >50% death cells were observed through Propidium Iodide (PI) internalization after treatment of SNPs extracted from SNDC fibers with concentration 31.25 µg/mL. Generation of ROS and free radical has also been observed which leads to cell death. Excellent Escherichia coli deactivation efficacy suggested that SNDC fibers could be used as potentially safe disinfectants for cleaning of medical equipment, hand, wound, water and preservation of food and beverages.

9.
Biomaterials ; 92: 90-102, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27057692

ABSTRACT

Titanium dioxide nanoparticles (nTiO2) previously considered to possess relatively low toxicity both in vitro and in vivo, although classified as possibly carcinogenic to humans. Also, their adjuvant potential has been reported to promote allergic sensitization and modulate immune responses. Previously, in OVA induced mouse model of asthma we found high expression of Socs3 and low expression of Stat3 and IL-6. However, a clear understanding regarding the signaling pathways associated with nTiO2 adjuvant effect in mouse model of asthma is lacking. In the present study we investigated the status of Stat3/IL-6 and Socs3 and their relationship with NF-κB, with nTiO2 as an adjuvant in mouse model of asthma. nTiO2 when administered with ovalbumin (OVA) during sensitization phase augmented airway hyper-responsiveness (AHR), biochemical markers of lung damage and a mixed Th2/Th1 dependent immune response. At the same time, we observed significant elevation in the levels of Stat3, Socs3, NF-κB, IL-6 and TNF-α. Furthermore, transient in vivo blocking of NF-κB by NF-κB p65 siRNA, downregulated the expression of Socs3, IL-6 and TNF-α. Our study, thus, shows that nTiO2 exacerbate the inflammatory responses in lungs of pre-sensitized allergic individuals and that these changes are regulated via NF-κB pathway.


Subject(s)
Asthma/complications , Hypersensitivity/complications , Inflammation/complications , Lung/pathology , NF-kappa B/metabolism , Nanoparticles/chemistry , Suppressor of Cytokine Signaling 3 Protein/metabolism , Titanium/chemistry , Animals , Asthma/immunology , Asthma/pathology , Asthma/physiopathology , Bronchoalveolar Lavage Fluid , Cytokines/metabolism , Disease Models, Animal , Gene Knockdown Techniques , Hypersensitivity/pathology , Hypersensitivity/physiopathology , Inflammation/immunology , Inflammation/pathology , Mice, Inbred BALB C , Models, Biological , Nanoparticles/ultrastructure , Ovalbumin , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Th1 Cells/drug effects , Th1 Cells/immunology , Th2 Cells/drug effects , Th2 Cells/immunology , Up-Regulation
10.
Curr Pharm Biotechnol ; 17(6): 540-8, 2016.
Article in English | MEDLINE | ID: mdl-26813302

ABSTRACT

Present exploration deals with the therapeutic perspective of methyl gallate isolated from the leaf extract of Acacia nilotica (L.) Delile in contrast to food-borne bacterial pathogen's viz., Escherichia coli, Klebsiella pneumoniae, Salmonella typhimurium, Pseudomonas aeruginosa and Staphylococcus aureus with their evolutionary succession. The extract was subjected to phytochemical analysis and isolated compound was identified as methyl gallate using UV-vis, IR and NMR spectra. It was found most potent against K. pneumoniae with its minimum inhibition concentration (MIC) of 0.32 mg/ml and minimum bactericidal concentration (MBC) at 0.62 mg/ml. The correlation of MIC values with an evolutionary succession assists the relationship between their genetic and toxic properties. The cytotoxic pursuit of methyl gallate was additionally assessed over NIH3T3 mouse fibroblast by Neutral red (NR) uptake, MTT cell proliferation assay and did not disclose any relevant influence on cell viability as well as cell proliferation. As such, the methyl gallate extracted from the leaf of A. nilotica holds massive antibacterial aptitude and hands out towards a new paradigm for food and pharmaceutical industries.


Subject(s)
Acacia , Anti-Bacterial Agents/pharmacology , Gallic Acid/analogs & derivatives , Animals , Bacteria/drug effects , Bacteria/growth & development , Cell Survival/drug effects , Gallic Acid/pharmacology , Mice , Microbial Sensitivity Tests , NIH 3T3 Cells , Phylogeny , Plant Extracts , Plant Leaves
11.
Mol Immunol ; 48(15-16): 1809-17, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21636132

ABSTRACT

Neutrophils have been implicated in the pathogenesis of COPD, being recruited into the lung in response to cigarette smoke (CS) inhalation and responsible for the release of proteases and oxidant-producing enzymes, resulting in bronchitis and emphysema. Several hematopoietic cytokines are involved in neutrophil growth and recruitment; however, little is known about the effects of CS on hematopoietic cytokines are transmitted between generations. In the present investigation we evaluate the expression of hematopoietic and proinflammatory cytokines in different organs of female F(0) mice subjected to sub-chronic CS exposure, and in F(1) litters. Virgin female Balb/c mice inhaled either air or air containing CS for 90 days. The specific resistance of the airways (sRaw) was evaluated and, thereafter, the mice were mated with unexposed adult males. The levels of granulocyte-macrophage colony stimulating factor (GM-CSF), granulocyte-colony stimulating factor (G-CSF), interleukin-6 (IL-6), IL-1ß and TNF-α mRNA and protein were evaluated in the bone marrow, amniotic fluid and bronchoalveolar lavage fluid (BALF) of F(0) dams at gestation day(14) (gd(14)) and the bone marrow, BALF and lungs of F(0) dams and F(1) littermates at post natal day(21) (pnd(21)). At gd(14), overexpression of GM-CSF, G-CSF and IL-6 mRNA and protein was observed in the bone marrow, amniotic fluid and BALF of F(0) dams. These hematopoietic cytokines were also overexpressed in the lungs of F(1) littermates compared with the control F(1) litters at pnd(21). Lineage-specific hematopoietic growth factors may play an important role in the transmission of neutrophil-associated disease susceptibility across generations.


Subject(s)
Cytokines/drug effects , Prenatal Exposure Delayed Effects/metabolism , Tobacco Smoke Pollution/adverse effects , Animals , Blotting, Western , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/immunology , Cytokines/analysis , Cytokines/biosynthesis , Female , Granulocyte Colony-Stimulating Factor/analysis , Granulocyte Colony-Stimulating Factor/biosynthesis , Granulocyte-Macrophage Colony-Stimulating Factor/analysis , Granulocyte-Macrophage Colony-Stimulating Factor/biosynthesis , Interleukin-1beta/analysis , Interleukin-1beta/biosynthesis , Interleukin-6/analysis , Interleukin-6/biosynthesis , Lung/drug effects , Lung/pathology , Male , Mice , Mice, Inbred BALB C , Pregnancy , Prenatal Exposure Delayed Effects/immunology , Reverse Transcriptase Polymerase Chain Reaction , Tumor Necrosis Factor-alpha/analysis , Tumor Necrosis Factor-alpha/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL