Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
J Am Chem Soc ; 144(30): 13773-13786, 2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35861788

ABSTRACT

The behavior of 5f electrons in soft ligand environments makes actinides, and especially transuranium chalcogenides, an intriguing class of materials for fundamental studies. Due to the affinity of actinides for oxygen, however, it is a challenge to synthesize actinide chalcogenides using non-metallic reagents. Using the boron chalcogen mixture method, we achieved the synthesis of the transuranium sulfide NaCuNpS3 starting from the oxide reagent, NpO2. Via the same synthetic route, the isostructural composition of NaCuUS3 was synthesized and the material contrasted with NaCuNpS3. Single crystals of the U-analogue, NaCuUS3, were found to undergo an unexpected reversible hydration process to form NaCuUS3·xH2O (x ≈ 1.5). A large combination of techniques was used to fully characterize the structure, hydration process, and electronic structures, specifically a combination of single crystal, powder, high temperature powder X-ray diffraction, extended X-ray absorption fine structure, infrared, and inductively coupled plasma spectroscopies, thermogravimetric analysis, and density functional theory calculations. The outcome of these analyses enabled us to determine the composition of NaCuUS3·xH2O and obtain a structural model that demonstrated the retention of the local structure within the [CuUS3]- layers throughout the hydration-dehydration process. Band structure, density of states, and Bader charge calculations for NaCuUS3, NaCuUS3·xH2O, and NaCuNpS3 along with X-ray absorption near edge structure, UV-vis-NIR, and work function measurements on ACuUS3 (A = Na, K, and Rb) and NaCuUS3·xH2O samples were carried out to demonstrate that electronic properties arise from the [CuTS3]- layers and show surprisingly little dependence on the interlayer distance.

2.
J Am Chem Soc ; 144(35): 16139-16149, 2022 09 07.
Article in English | MEDLINE | ID: mdl-36027644

ABSTRACT

Comparison of defect-controlled leaching-kinetics modulation of metal-organic frameworks (MOFs) and porous functionalized silica-based materials was performed on the example of a radionuclide and radionuclide surrogate for the first time, revealing an unprecedented readsorption phenomenon. On a series of zirconium-based MOFs as model systems, we demonstrated the ability to capture and retain >99% of the transuranic 241Am radionuclide after 1 week of storage. We report the possibility of tailoring radionuclide release kinetics in MOFs through framework defects as a function of postsynthetically installed organic ligands including cation-chelating crown ether-based linkers. Based on comprehensive analysis using spectroscopy (EXAFS, UV-vis, FTIR, and NMR), X-ray crystallography (single crystal and powder), and theoretical calculations (nine kinetics models and structure simulations), we demonstrated the synergy of radionuclide integration methods, topological restrictions, postsynthetic scaffold modification, and defect engineering. This combination is inaccessible in any other material and highlights the advantages of using well-defined frameworks for gaining fundamental knowledge necessary for the advancement of actinide-based material development, providing a pathway for addressing upcoming challenges in the nuclear waste administration sector.


Subject(s)
Metal-Organic Frameworks , Kinetics , Metal-Organic Frameworks/chemistry , Porosity , Radioisotopes , Zirconium/chemistry
3.
Inorg Chem ; 59(9): 6449-6459, 2020 May 04.
Article in English | MEDLINE | ID: mdl-32275404

ABSTRACT

A new family of layered alkali uranyl borates, A2(UO2)B2O5 (A = Cs, Rb, K), was synthesized as high quality single crystals via high temperature flux growth methods. At room temperature, the compounds are structurally closely related although they crystallize in different monoclinic space groups, specifically P21/c (Cs), C2/m (Rb), and C2/c (K). At a low temperature (100 K), Cs2(UO2)B2O5 becomes isostructural with K2(UO2)B2O5 as the result of a reversible structure transition by Cs2(UO2)B2O5. The title phases represent the first examples of uranyl borates resulting from high temperature flux growth utilizing alkali halide fluxes. The synthesis, structures, and thermal, optical, and ion exchange properties are reported, and modeling of the atomic structure and disorder of the ion exchanged phases is discussed.

4.
J Am Chem Soc ; 141(29): 11628-11640, 2019 Jul 24.
Article in English | MEDLINE | ID: mdl-31276404

ABSTRACT

Thermodynamic studies of actinide-containing metal-organic frameworks (An-MOFs), reported herein for the first time, are a step toward addressing challenges related to effective nuclear waste administration. In addition to An-MOF thermochemistry, enthalpies of formation were determined for the organic linkers, 2,2'-dimethylbiphenyl-4,4'-dicarboxylic acid (H2Me2BPDC) and biphenyl-4,4'-dicarboxylic acid (H2BPDC), which are commonly used building blocks for MOF preparation. The electronic structure of the first example of An-MOF with mixed-metal AnAn'-nodes was influenced through coordination of transition metals as shown by the density of states near the Fermi edge, changes in the Tauc plot, conductivity measurements, and theoretical calculations. The "structural memory" effect (i.e., solvent-directed crystalline-amorphous-crystalline structural dynamism) was demonstrated as a function of node coordination degree, which is the number of organic linkers per metal node. Remarkable three-month water stability was reported for Th-containing frameworks herein, and the mechanism is also considered for improvement of the behavior of a U-based framework in water. Mechanistic aspects of capping linker installation were highlighted through crystallographic characterization of the intermediate, and theoretical calculations of free energies of formation (ΔGf) for U- and Th-MOFs with 10- and 12-coordinated secondary building units (SBUs) were performed to elucidate experimentally observed transformations during the installation processes. Overall, these results are the first thermochemical, electronic, and mechanistic insights for a relatively young class of actinide-containing frameworks.

5.
Phys Chem Chem Phys ; 19(19): 12206-12220, 2017 May 17.
Article in English | MEDLINE | ID: mdl-28447674

ABSTRACT

In constrained geometries and in varying oxygen partial pressures and operating temperatures, exchange of oxygen ions between non-stoichiometric oxide thin films (for example, doped and undoped ceria systems) and the gas phase can lead to stresses. In this study, these compositional stresses were investigated in thin films of nanocrystalline 10% praseodymium doped ceria (PCO), as a function of average grain size. In situ wafer curvature measurements, along with High Temperature X-Ray Diffraction (HTXRD), were employed to measure stresses and strains, respectively on the PCO films during oxidation-reduction cycling, over the pO2 range of 10-1-10-5 atm at 750 °C. For relatively large grain sizes, the stress values agree well with the amount of expansion induced by oxygen non-stoichiometry (chemical expansion) predicted by a thin film defect equilibria model that was developed previously. The compositional stresses were found to increase with decreasing grain size. The origin of this effect, including the role of space charge effects near surfaces and interfaces are discussed in this paper. To our knowledge, this is the first time that such comparisons are reported by simultaneously employing high temperature in situ wafer curvature and HTXRD measurements on doped ceria systems.

6.
Nanomaterials (Basel) ; 13(2)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36678122

ABSTRACT

Copper-based chalcogenides have emerged as promising thermoelectric materials due to their high thermoelectric performance, tunable transport properties, earth abundance and low toxicity. We have presented an overview of experimental results and first-principal calculations investigating the thermoelectric properties of various polymorphs of Cu2SnS3 (CTS), Cu2ZnSnS4 (CZTS), and Cu2ZnSnSe4 (CZTSe) synthesized by high-energy reactive mechanical alloying (ball milling). Of particular interest are the disordered polymorphs of these materials, which exhibit phonon-glass-electron-crystal behavior-a decoupling of electron and phonon transport properties. The interplay of cationic disorder and nanostructuring leads to ultra-low thermal conductivities while enhancing electronic transport. These beneficial transport properties are the consequence of a plethora of features, including trap states, anharmonicity, rattling, and conductive surface states, both topologically trivial and non-trivial. Based on experimental results and computational methods, this report aims to elucidate the details of the electronic and lattice transport properties, thereby confirming that the higher thermoelectric (TE) performance of disordered polymorphs is essentially due to their complex crystallographic structures. In addition, we have presented synchrotron X-ray diffraction (SR-XRD) measurements and ab initio molecular dynamics (AIMD) simulations of the root-mean-square displacement (RMSD) in these materials, confirming anharmonicity and bond inhomogeneity for disordered polymorphs.

7.
RSC Adv ; 10(3): 1484-1497, 2020 Jan 07.
Article in English | MEDLINE | ID: mdl-35494712

ABSTRACT

This work reports the layer-tunnel conversion of porous dehydrated synthetic alkali-free δ-MnO2 analogs prepared by exfoliation, flocculation, and heat treatment of nanosheets derived from highly crystalline potassium birnessite. High surface area porous solids result, with specific surface areas of 90-130 m2 g-1 and isotherms characteristic of both micro and macropores. The microstructures of the re-assembled floccules are reminiscent of crumpled paper where single and re-stacked nanosheets form the walls of interconnected macropores. The atomic and local structures of the floccules heat treated from 60-400 °C are tracked by Raman spectroscopy and synchrotron X-ray total scattering measurements. During heating, the nanosheets comprising the pore walls condense to form tunnel-structured fragments beginning at temperatures below 100 °C, while the microstructure with high surface area remains intact. The flocc microstructure remains largely unchanged in samples heated up to 400 °C while an increasing fraction of the sample is transformed, at least locally, to possess 1D tunnels characteristic of α-MnO2. Cyclic voltammetry in Na2SO4 aqueous electrolyte reflects the nanoscale structural evolution, where intercalative pseudocapacitance diminishes with the degree of transformation. Collectively, these results demonstrate that it is feasible to tailor the materials for applications incorporating nanoporous solids and nanofluidics, and specifically imply strategies to maintain a kinetically accessible interlayer contribute to Na intercalative pseudocapacitance.

8.
Acta Crystallogr E Crystallogr Commun ; 76(Pt 6): 900-904, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32523760

ABSTRACT

Ferrocyanides with general formula A I xB II y [Fe(CN)6], where A and B are cations, are thought to accept many substitutions on the A and B positions. In this communication, the synthesis and crystal structure of Cs2Sr[Fe(CN)6] are reported. The latter was obtained from K2Ba[Fe(CN)6] particles, put in contact with caesium and strontium ions. Hence, a simultaneous ion-exchange mechanism (Cs for K, Sr for Ba) occurs to yield Cs2Sr[Fe(CN)6]. The synthesis protocol shows that K2BaFe(CN)6 particles can be used for the simultaneous trapping of radioactive caesium and strontium nuclides in water streams. Cs2Sr[Fe(CN)6] adopts the cryolite structure type and is isotypic with the known compound Cs2Na[Mn(CN)6] [dicaesium sodium hexa-cyanidomanganate(III)]. The octa-hedrally coordinated Sr and Fe sites both are located on inversion centres, and the eightfold-coordinated Cs site on a general position.

9.
PLoS One ; 15(6): e0234774, 2020.
Article in English | MEDLINE | ID: mdl-32569283

ABSTRACT

We developed and describe a differential scanning calorimetry method for calculating the initial crystallinity, change of crystallinity and crystallinity percentage of amorphous metal alloys as a function of temperature. Using thermodynamic enthalpies of amorphous, crystalline and partially devitrified specimens, our methodology is capable of determining crystallinity percentages as low as a few percent. Moreover, the linear relationship between the set (pre-determined) and calculated crystallinities of experimental samples indicates that there is no need to prepare calibration samples before measuring the crystallinity percentage of target samples. This technique also eliminates the need for expensive in situ accessories, such as those required in electron microscopy. Thus, the technique is highly relevant as a primary technique for characterization of devitrification behavior in amorphous materials.


Subject(s)
Alloys/chemistry , Calorimetry, Differential Scanning , Crystallography, X-Ray , Temperature
10.
ACS Omega ; 4(1): 65-72, 2019 Jan 31.
Article in English | MEDLINE | ID: mdl-31459312

ABSTRACT

We show results of basic energetics and interacting behavior of hydrogen with metal hexaboride surfaces using a combination of self-consistent density functional calculations and dynamics based on the Car-Parrinello method. Our results show that hydrogen is strongly attracted to localized exposed boron atoms and interactions with the terminal cations are strictly repulsive. From these, preliminary local adsorption energy calculations suggest that a single hydrogen molecule per surface unit-cell is possible (one ML). Strongest bonds are found when hydrogen is above the terminal boron atoms affected by reduced coordination and dangling bonds. This location serves to restore the hexaboride unit to a more stable structure by providing electronic density to the deficient surface octahedra. Additionally, trajectories from dynamic simulations provide insight into how hydrogen recombination reactions occur on the surface through dissociative adsorption and the method of travel prior to recombination to be along the octahedral face and bridging sites connecting separate unit cells on the surface. Upon adsorption, a single hydrogen atom becomes localized at the dangling bond site while the second interacts with the surface along a weaker potential energy path. Desorption at lower temperatures occurs when migrating atoms from separate adsorption sites intersect to form a new pair.

11.
Adv Sci (Weinh) ; 5(5): 1700850, 2018 May.
Article in English | MEDLINE | ID: mdl-29876211

ABSTRACT

Melting presents one of the most prominent phenomena in condensed matter science. Its microscopic understanding, however, is still fragmented, ranging from simplistic theory to the observation of melting point depressions. Here, a multimethod experimental approach is combined with computational simulation to study the microscopic mechanism of melting between these two extremes. Crystalline structures are exploited in which melting occurs into a metastable liquid close to its glass transition temperature. The associated sluggish dynamics concur with real-time observation of homogeneous melting. In-depth information on the structural signature is obtained from various independent spectroscopic and scattering methods, revealing a step-wise nature of the transition before reaching the liquid state. A kinetic model is derived in which the first reaction step is promoted by local instability events, and the second is driven by diffusive mobility. Computational simulation provides further confirmation for the sequential reaction steps and for the details of the associated structural dynamics. The successful quantitative modeling of the low-temperature decelerated melting of zeolite crystals, reconciling homogeneous with heterogeneous processes, should serve as a platform for understanding the inherent instability of other zeolitic structures, as well as the prolific and more complex nanoporous metal-organic frameworks.

12.
Sci Rep ; 7(1): 5920, 2017 07 19.
Article in English | MEDLINE | ID: mdl-28724965

ABSTRACT

Compounds with the formulae CaZr1-xCexTi2O7 with x = 0.1-0.5 were synthesized by solid state reaction. Cerium was used as a surrogate for actinide elements. A transition from the 2M polymorph to the 4M polymorph (expanded unit cell due to cation ordering) in zirconolite was observed with increasing cerium content. The presence of both tri- and tetravalent Ce, contrary to formulation, was confirmed using X-ray absorption near edge spectroscopy, suggesting substitution on both Ca and Zr sites. Sintering was carried out via spark plasma sintering, during which the perovskite phase (Ca0.4Ce0.4TiO3) was stabilized due to the reducing conditions of this technique. Scanning electron microscopy and energy dispersive spectrometry revealed that the 2M polymorph was dilute in Ce content in comparison to the 4M-zirconolite. High temperature X-ray diffraction was used to detail the kinetics of perovskite to zirconolite transition. It was found that CaCeTi2O7 (cubic pyrochlore) formed as an intermediate phase during the transition. Our results show that a transition from 2M- to 4M-zirconolite occurs with increasing Ce content and can be controlled by adjusting the PO2 and the heat treatment temperature.


Subject(s)
Cerium/chemistry , Phase Transition , Zirconium/chemistry , Kinetics , Models, Molecular , Spectrometry, X-Ray Emission , Temperature , X-Ray Absorption Spectroscopy , X-Ray Diffraction
13.
ACS Appl Mater Interfaces ; 9(42): 37357-37363, 2017 Oct 25.
Article in English | MEDLINE | ID: mdl-28984122

ABSTRACT

We present the effect of pulsed direct current on metal ion diffusion in CaB6-SrB6 diffusion couples, showing that the diffusivity of Ca2+ and Sr2+ across the diffusion couple interface is higher toward the positive electrode when subjected to a current flow of 2.2 kA at a temperature of 2007 K. We attribute this enhanced mobility to the movement of negatively charged metal vacancies toward the positive electrode in the system. Energy-dispersive spectroscopy is used to map the concentration of Ca2+ and Sr2+ in the region near the interface, and diffusion profiles are fitted with error functions. The concentration curves display concentration-dependent Boltzmann-Matano diffusivity. Total dopant values (Q) have been used to numerically compare the differences between Ca2+ diffusion in SrB6 and Sr2+ diffusion in CaB6. We determine an enhancement of 3.8× for Ca2+ into SrB6 versus an enhancement of 1.8× for Sr2+ into CaB6. No new phases are formed at the interface between CaB6 and SrB6, since hexaboride compounds readily form solid solutions. The results elucidate the role of pulsed direct current on the diffusion of metal ions in hexaboride compounds.

14.
Nat Commun ; 8: 14559, 2017 02 23.
Article in English | MEDLINE | ID: mdl-28230193

ABSTRACT

3D porous nanostructures built from 2D δ-MnO2 nanosheets are an environmentally friendly and industrially scalable class of supercapacitor electrode material. While both the electrochemistry and defects of this material have been studied, the role of defects in improving the energy storage density of these materials has not been addressed. In this work, δ-MnO2 nanosheet assemblies with 150 m2 g-1 specific surface area are prepared by exfoliation of crystalline KxMnO2 and subsequent reassembly. Equilibration at different pH introduces intentional Mn vacancies into the nanosheets, increasing pseudocapacitance to over 300 F g-1, reducing charge transfer resistance as low as 3 Ω, and providing a 50% improvement in cycling stability. X-ray absorption spectroscopy and high-energy X-ray scattering demonstrate a correlation between the defect content and the improved electrochemical performance. The results show that Mn vacancies provide ion intercalation sites which concurrently improve specific capacitance, charge transfer resistance and cycling stability.

15.
Article in English | MEDLINE | ID: mdl-23357900

ABSTRACT

A framework for describing anion displacements from perfect octahedra in perovskites has been developed for use with neutron diffraction data sets. We describe the distortions as noncoplanar arrangements, or buckling, of oxygen ions in any central plane of the octahedron, ignoring the central cation. Nonplanar distortions of octahedra have been calculated for perovskite structures contained within the Inorganic Crystal Structure Database. We find that antiferroelectric materials have buckling angles larger than ~2° and ferroelectric materials have buckling angles between 0° and 1°. The trend is found as a function of solid solution composition and temperature for common antiferroelectrics. For example, the described method resolves a structural difference between the end members PbTiO(3) and PbZrO(3), which exhibit ferroelectric and antiferroelectric responses, respectively. This technique is applicable to other structures containing anion octahedra, e.g., pyrochlores, spinels, and tungsten bronzes.

16.
J Am Chem Soc ; 124(48): 14450-9, 2002 Dec 04.
Article in English | MEDLINE | ID: mdl-12452721

ABSTRACT

The three-dimensional structure, conformation, and packing of molecules in the solid state are crucial components used in the optimization of many technologically useful materials properties. Single-crystal X-ray diffraction is the traditional and most effective method of determining 3-D structures in the solid state. Obtaining single crystals that are sufficiently large and free of imperfections is often laborious, time-consuming, and, occasionally, impossible. The feasibility of an integrated approach to the determination and verification of a complete three-dimensional structure for a medium-sized organic molecule without using single crystals is demonstrated for the case of an organic stabilizer compound N-(p-tolyl)-dodecylsulfonamide. The approach uses a combination of powder XRD data, several computational packages involving Monte Carlo simulations and ab initio quantum mechanical calculations, and experimental solid-state NMR chemical shifts. Structure elucidation of N-(p-tolyl)-dodecylsulfonamide revealed that the Bravais lattice is monoclinic, with cell dimensions of a = 38.773 A, b = 5.507 A, c = 9.509 A, and beta = 86.35 degrees, and a space group of P21/c.

SELECTION OF CITATIONS
SEARCH DETAIL