Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
J Chem Ecol ; 50(3-4): 129-142, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38195852

ABSTRACT

Biogenic volatile organic compounds (bVOCs), synthesised by plants, are important mediators of ecological interactions that can also undergo a series of reactions in the atmosphere. Ground-level ozone is a secondary pollutant generated through sunlight-driven reactions between nitrogen oxides (NOx) and VOCs. Its levels have increased since the industrial revolution and reactions involving ozone drive many chemical processes in the troposphere. While ozone precursors often originate in urban areas, winds may carry these hundreds of kilometres, causing ozone formation to also occur in less populated rural regions. Under elevated ozone conditions, ozonolysis of bVOCs can result in quantitative and qualitative changes in the gas phase, reducing the concentrations of certain bVOCs and resulting in the formation of other compounds. Such changes can result in disruption of bVOC-mediated behavioural or ecological interactions. Through a series of gas-phase experiments using Gas Chromatography Mass Spectrometry (GC-MS) and Proton Transfer Reaction Mass Spectrometry (PTR-MS), we investigated the products and their yields from the ozonolysis of a range of ubiquitous bVOCs, which were selected because of their importance in mediating ecological interactions such as pollinator and natural enemy attraction and plant-to-plant communication, namely: (E)-ß-ocimene, isomers of α and ß-farnesene, α-terpinene and 6-methyl-5-hepten-2-one. New products from the ozonolysis of these compounds were identified, and the formation of these compounds is consistent with terpene-ozone oxidation mechanisms. We present the degradation mechanism of our model bVOCs and identify their reaction products. We discuss the potential ecological implications of the degradation of each bVOC and of the formation of reaction products.


Subject(s)
Acyclic Monoterpenes , Alkenes , Ketones , Ozone , Sesquiterpenes , Volatile Organic Compounds , Ozone/chemistry , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/metabolism , Alkenes/chemistry , Sesquiterpenes/chemistry , Sesquiterpenes/metabolism , Atmosphere/chemistry , Monoterpenes/chemistry , Monoterpenes/metabolism , Cyclohexane Monoterpenes/chemistry , Gas Chromatography-Mass Spectrometry , Isomerism , Air Pollutants/chemistry , Air Pollutants/analysis
2.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Article in English | MEDLINE | ID: mdl-33526680

ABSTRACT

Outdoor ozone transported indoors initiates oxidative chemistry, forming volatile organic products. The influence of ozone chemistry on indoor air composition has not been directly quantified in normally occupied residences. Here, we explore indoor ozone chemistry in a house in California with two adult inhabitants. We utilize space- and time-resolved measurements of ozone and volatile organic compounds (VOCs) acquired over an 8-wk summer campaign. Despite overall low indoor ozone concentrations (mean value of 4.3 ppb) and a relatively low indoor ozone decay constant (1.3 h-1), we identified multiple VOCs exhibiting clear contributions from ozone-initiated chemistry indoors. These chemicals include 6-methyl-5-hepten-2-one (6-MHO), 4-oxopentanal (4-OPA), nonenal, and C8-C12 saturated aldehydes, which are among the commonly reported products from laboratory studies of ozone interactions with indoor surfaces and with human skin lipids. These VOCs together accounted for ≥12% molecular yield with respect to house-wide consumed ozone, with the highest net product yield for nonanal (≥3.5%), followed by 6-MHO (2.7%) and 4-OPA (2.6%). Although 6-MHO and 4-OPA are prominent ozonolysis products of skin lipids (specifically squalene), ozone reaction with the body envelopes of the two occupants in this house are insufficient to explain the observed yields. Relatedly, we observed that ozone-driven chemistry continued to produce 6-MHO and 4-OPA even after the occupants had been away from the house for 5 d. These observations provide evidence that skin lipids transferred to indoor surfaces made substantial contributions to ozone reactivity in the studied house.


Subject(s)
Air Pollutants/chemistry , Environmental Monitoring , Ozone/chemistry , Volatile Organic Compounds/chemistry , Air Pollutants/isolation & purification , Air Pollution, Indoor/analysis , Air Pollution, Indoor/prevention & control , Aldehydes/chemistry , California/epidemiology , Humans , Ketones/chemistry , Lipids/chemistry , Oxidation-Reduction/drug effects , Ozone/isolation & purification , Ozone/metabolism , Squalene/chemistry , Volatile Organic Compounds/isolation & purification
3.
Environ Sci Technol ; 57(8): 3260-3269, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36796310

ABSTRACT

Semivolatile organic compounds (SVOCs) represent an important class of indoor pollutants. The partitioning of SVOCs between airborne particles and the adjacent air influences human exposure and uptake. Presently, little direct experimental evidence exists about the influence of indoor particle pollution on the gas-particle phase partitioning of indoor SVOCs. In this study, we present time-resolved gas- and particle-phase distribution data for indoor SVOCs in a normally occupied residence using semivolatile thermal desorption aerosol gas chromatography. Although SVOCs in indoor air are found mostly in the gas phase, we show that indoor particles from cooking, candle use, and outdoor particle infiltration strongly affect the gas-particle phase distribution of specific indoor SVOCs. From gas- and particle-phase measurements of SVOCs spanning a range of chemical functionalities (alkanes, alcohols, alkanoic acids, and phthalates) and volatilities (vapor pressures from 10-13 to 10-4 atm), we find that the chemical composition of the airborne particles influences the partitioning of individual SVOC species. During candle burning, the enhanced partitioning of gas-phase SVOCs to indoor particles not only affects the particle composition but also enhances surface off-gassing, thereby increasing the total airborne concentration of specific SVOCs, including diethylhexyl phthalate.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Diethylhexyl Phthalate , Volatile Organic Compounds , Humans , Volatile Organic Compounds/analysis , Air Pollution, Indoor/analysis , Diethylhexyl Phthalate/analysis , Air Pollutants/analysis , Gases/analysis , Cooking
4.
Environ Sci Technol ; 57(16): 6589-6598, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37061949

ABSTRACT

Mask wearing and bleach disinfectants became commonplace during the COVID-19 pandemic. Bleach generates toxic species including hypochlorous acid (HOCl), chlorine (Cl2), and chloramines. Their reaction with organic species can generate additional toxic compounds. To understand interactions between masks and bleach disinfection, bleach was injected into a ventilated chamber containing a manikin with a breathing system and wearing a surgical or KN95 mask. Concentrations inside the chamber and behind the mask were measured by a chemical ionization mass spectrometer (CIMS) and a Vocus proton transfer reaction mass spectrometer (Vocus PTRMS). HOCl, Cl2, and chloramines were observed during disinfection and concentrations inside the chamber are 2-20 times greater than those behind the mask, driven by losses to the mask surface. After bleach injection, many species decay more slowly behind the mask by a factor of 0.5-0.7 as they desorb or form on the mask. Mass transfer modeling confirms the transition of the mask from a sink during disinfection to a source persisting >4 h after disinfection. Humidifying the mask increases reactive formation of chloramines, likely related to uptake of ammonia and HOCl. These experiments indicate that masks are a source of chemical exposure after cleaning events occur.


Subject(s)
COVID-19 , Disinfectants , Humans , Hypochlorous Acid , Chloramines/chemistry , N95 Respirators , Pandemics , Disinfectants/chemistry , Disinfectants/toxicity , Disinfection , Chlorine/chemistry
5.
Environ Sci Technol ; 56(3): 1557-1567, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35037463

ABSTRACT

In the western United States, the number and severity of large wildfires have been growing for decades. Biomass burning (BB) is a major source of volatile organic compounds (VOCs) to the atmosphere both globally and regionally. Following emission, BB VOCs are oxidized while being transported downwind, producing ozone, secondary organic aerosols, and secondary hazardous VOCs. In this research, we measured VOCs using proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) in an urban area 55-65 km downwind of the October 2017 Northern California wildfires. Nonaromatic oxygenated compounds were the dominant component of BB VOCs measured. In the smoke plumes, the VOCs account for 70-75% of the total observed organic carbon, with the remainder being particulate matter (with a diameter of <2.5 µm, PM2.5). We show that the correlation of VOCs with furan (primary BB VOC) and maleic anhydride (secondary BB VOC) can indicate the origin of the VOCs. This was further confirmed by the diurnal variations of the VOCs and their concentration-weighted trajectories. Oxidation during transport consumed highly reactive compounds including benzenoids, furanoids, and terpenoids and produced more oxygenated VOCs. Furthermore, wildfire VOCs altered the ozone formation regime and raised the O3 levels in the San Francisco Bay Area.


Subject(s)
Air Pollutants , Ozone , Volatile Organic Compounds , Wildfires , Air Pollutants/analysis , China , Environmental Monitoring/methods , Ozone/analysis , San Francisco
6.
Environ Sci Technol ; 56(22): 15427-15436, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36327170

ABSTRACT

Volatile methyl siloxanes (VMS) are ubiquitous in indoor environments due to their use in personal care products. This paper builds on previous work identifying sources of VMS by synthesizing time-resolved proton-transfer reaction time-of-flight mass spectrometer VMS concentration measurements from four multiweek indoor air campaigns to elucidate emission sources and removal processes. Temporal patterns of VMS emissions display both continuous and episodic behavior, with the relative importance varying among species. We find that the cyclic siloxane D5 is consistently the most abundant VMS species, mainly attributable to personal care product use. Two other cyclic siloxanes, D3 and D4, are emitted from oven and personal care product use, with continuous sources also apparent. Two linear siloxanes, L4 and L5, are also emitted from personal care product use, with apparent additional continuous sources. We report measurements for three other organosilicon compounds found in personal care products. The primary air removal pathway of the species examined in this paper is ventilation to the outdoors, which has implications for atmospheric chemistry. The net removal rate is slower for linear siloxanes, which persist for days indoors after episodic release events. This work highlights the diversity in sources of organosilicon species and their persistence indoors.


Subject(s)
Organosilicon Compounds , Siloxanes , Siloxanes/analysis , Environmental Monitoring , Ventilation
7.
Environ Sci Technol ; 55(3): 1690-1698, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33464056

ABSTRACT

Squalene can react with indoor ozone to generate a series of volatile and semi-volatile organic compounds, some of which may be skin or respiratory irritants, causing adverse health effects. Better understanding of the ozone/squalene reaction and product transport characteristics is thus important. In this study, we developed a physical-chemical coupling model to describe the behavior of ozone/squalene reaction products, that is, 6-methyl-5-hepten-2-one (6-MHO) and 4-oxopentanal (4-OPA) in the gas phase and skin, by considering the chemical reaction and physical transport processes (external convection, internal diffusion, and surface uptake). Experiments without intervention were performed in a single-family house in California utilizing time- and space-resolved measurements. The key parameters in the model were extracted from 5 day data and then used to predict the behaviors in some other days. Predictions from the present model can reproduce the concentration profiles of the three compounds (ozone, 6-MHO, and 4-OPA) well (R2 = 0.82-0.89), indicating high accuracy of the model. Exposure analysis shows that the total amount of 6-MHO and 4-OPA entering the blood capillaries in 4 days can reach 14.6 and 30.1 µg, respectively. The contribution of different sinks to ozone removal in the tested realistic indoor environment was also analyzed.


Subject(s)
Air Pollution, Indoor , Ozone , Volatile Organic Compounds , Air Pollution, Indoor/analysis , Models, Theoretical , Ozone/analysis , Squalene , Volatile Organic Compounds/analysis
8.
Environ Sci Technol ; 55(10): 6740-6751, 2021 05 18.
Article in English | MEDLINE | ID: mdl-33945266

ABSTRACT

Time spent in residences substantially contributes to human exposure to volatile organic compounds (VOCs). Such exposures have been difficult to study deeply, in part because VOC concentrations and indoor occupancy vary rapidly. Using a fast-response online mass spectrometer, we report time-resolved exposures from multi-season sampling of more than 200 VOCs in two California residences. Chemical-specific source apportionment revealed that time-averaged exposures for most VOCs were mainly attributable to continuous indoor emissions from buildings and their static contents. Also contributing to exposures were occupant-related activities, such as cooking, and outdoor-to-indoor transport. Health risk assessments are possible for a subset of observed VOCs. Acrolein, acetaldehyde, and acrylic acid concentrations were above chronic advisory health guidelines, whereas exposures for other assessable species were typically well below the guideline levels. Studied residences were built in the mid-20th century, indicating that VOC emissions even from older buildings and their contents can substantially contribute to occupant exposures.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Volatile Organic Compounds , Air Pollutants/analysis , Air Pollution, Indoor/analysis , California , Environmental Monitoring , Housing , Humans , Volatile Organic Compounds/analysis
9.
Indoor Air ; 31(1): 88-98, 2021 01.
Article in English | MEDLINE | ID: mdl-32779288

ABSTRACT

Inhalation of particulate matter is associated with adverse health outcomes. The fluorescent portion of supermicron particulate matter has been used as a proxy for bioaerosols. The sources and emission rates of fluorescent particles in residential environments are not well-understood. Using an ultraviolet aerodynamic particle sizer (UVAPS), emissions of total and fluorescent supermicron particles from common human activities were investigated during the HOMEChem campaign, a test-house investigation of the chemistry of indoor environments. Human occupancy and activities, including cooking and mopping, were found to be considerable sources of indoor supermicron fluorescent particles, which enhanced the indoor particle concentrations by two orders of magnitude above baseline levels. The estimated total (fluorescent) mass emission rates for the activities tested were in the range of 4-30 (1-11) mg per person meal for cooking and 0.1-4.9 (0.05-4.7) mg/h for occupancy and mopping. Model calculations indicate that, once released, the dominant fate of coarse particles (2.5-10 micrometer in diameter) was deposition onto indoor surfaces, allowing for the possibility of subsequent resuspension and consequent exposures over durations much longer than the ventilation time scale. Indoor coarse particle deposition would also contribute to soiling of indoor surfaces.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Particulate Matter/analysis , Air Pollution, Indoor/statistics & numerical data , Cooking , Environmental Monitoring , Housing , Humans , Particle Size
10.
Indoor Air ; 31(6): 2099-2117, 2021 11.
Article in English | MEDLINE | ID: mdl-34272904

ABSTRACT

Quantifying speciated concentrations and emissions of volatile organic compounds (VOCs) is critical to understanding the processes that control indoor VOC dynamics, airborne chemistry, and human exposures. Here, we present source strength profiles from the HOMEChem study, quantifying speciated VOC emissions from scripted experiments (with multiple replicates) of cooking, cleaning, and human occupancy and from unperturbed baseline measurements of the building and its contents. Measurements using a proton transfer reaction time-of-flight mass spectrometer were combined with tracer-based determinations of air-change rates to enable mass-balance-based calculations of speciated, time-resolved VOC source strengths. The building and its contents were the dominant emission source into the house, with large emissions of acetic acid, methanol, and formic acid. Cooking emissions were greater than cleaning emissions and were dominated by ethanol. Bleach cleaning generated high emissions of chlorinated compounds, whereas natural product cleaning emitted predominantly terpenoids. Occupancy experiments showed large emissions of siloxanes from personal care products in the morning, with much lower emissions in the afternoon. From these results, VOC emissions were simulated for a hypothetical 24-h period, showing that emissions from the house and its contents make up nearly half of total indoor VOC emissions.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Volatile Organic Compounds , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Cooking , Environmental Monitoring , Humans , Volatile Organic Compounds/analysis
11.
Environ Sci Technol ; 54(23): 14923-14935, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33205951

ABSTRACT

Despite the central role of reactive organic carbon (ROC) in the formation of secondary species that impact global air quality and climate, our assessment of ROC abundance and impacts is challenged by the diversity of species that contribute to it. We revisit measurements of ROC species made during two field campaigns in the United States: the 2013 SOAS campaign in forested Centreville, AL, and the 2010 CalNex campaign in urban Pasadena, CA. We find that average measured ROC concentrations are about twice as high in Pasadena (73.8 µgCsm-3) than in Centreville (36.5 µgCsm-3). However, the OH reactivity (OHR) measured at these sites is similar (20.1 and 19.3 s-1). The shortfall in OHR when summing up measured contributions is 31%, at Pasadena and 14% at Centreville, suggesting that there may be a larger reservoir of unmeasured ROC at the former site. Estimated O3 production and SOA potential (defined as concentration × yield) are both higher during CalNex than SOAS. This analysis suggests that the ROC in urban California is less reactive, but due to higher concentrations of oxides of nitrogen and hydroxyl radicals, is more efficient in terms of O3 and SOA production, than in the forested southeastern U.S.


Subject(s)
Air Pollutants , Ozone , Aerosols/analysis , Air Pollutants/analysis , California , Carbon , Ozone/analysis , Southeastern United States
12.
Environ Sci Technol ; 54(11): 6751-6760, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32379430

ABSTRACT

Measurements by semivolatile thermal desorption aerosol gas chromatography (SV-TAG) were used to investigate how semivolatile organic compounds (SVOCs) partition among indoor reservoirs in (1) a manufactured test house under controlled conditions (HOMEChem campaign) and (2) a single-family residence when vacant (H2 campaign). Data for phthalate diesters and siloxanes suggest that volatility-dependent partitioning processes modulate airborne SVOC concentrations through interactions with surface-laden condensed-phase reservoirs. Airborne concentrations of SVOCs with vapor pressures in the range of C13 to C23 alkanes were observed to be correlated with indoor air temperature. Observed temperature dependencies were quantitatively similar to theoretical predictions that assumed a surface-air boundary layer with equilibrium partitioning maintained at the air-surface interface. Airborne concentrations of SVOCs with vapor pressures corresponding to C25 to C31 alkanes correlated with airborne particle mass concentration. For SVOCs with higher vapor pressures, which are expected to be predominantly gaseous, correlations with particle mass concentration were weak or nonexistent. During primary particle emission events, enhanced gas-phase emissions from condensed-phase reservoirs partitioned to airborne particles, contributing substantially to organic particulate matter. An emission event related to oven-usage was inferred to deposit siloxanes in condensed-phase reservoirs throughout the house, leading to the possibility of reemission during subsequent periods with high particle loading.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Volatile Organic Compounds , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Housing , Particulate Matter/analysis , Volatile Organic Compounds/analysis , Volatilization
13.
Environ Sci Technol ; 54(10): 5980-5991, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32271021

ABSTRACT

Anthropogenic emissions alter secondary organic aerosol (SOA) formation chemistry from naturally emitted isoprene. We use correlations of tracers and tracer ratios to provide new perspectives on sulfate, NOx, and particle acidity influencing isoprene-derived SOA in two isoprene-rich forested environments representing clean to polluted conditions-wet and dry seasons in central Amazonia and Southeastern U.S. summer. We used a semivolatile thermal desorption aerosol gas chromatograph (SV-TAG) and filter samplers to measure SOA tracers indicative of isoprene/HO2 (2-methyltetrols, C5-alkene triols, 2-methyltetrol organosulfates) and isoprene/NOx (2-methylglyceric acid, 2-methylglyceric acid organosulfate) pathways. Summed concentrations of these tracers correlated with particulate sulfate spanning three orders of magnitude, suggesting that 1 µg m-3 reduction in sulfate corresponds with at least ∼0.5 µg m-3 reduction in isoprene-derived SOA. We also find that isoprene/NOx pathway SOA mass primarily comprises organosulfates, ∼97% in the Amazon and ∼55% in Southeastern United States. We infer under natural conditions in high isoprene emission regions that preindustrial aerosol sulfate was almost exclusively isoprene-derived organosulfates, which are traditionally thought of as representative of an anthropogenic influence. We further report the first field observations showing that particle acidity correlates positively with 2-methylglyceric acid partitioning to the gas phase and negatively with the ratio of 2-methyltetrols to C5-alkene triols.


Subject(s)
Air Pollutants , Hemiterpenes , Aerosols/analysis , Brazil , Butadienes , Pentanes , Southeastern United States
14.
Environ Sci Technol ; 53(14): 8262-8270, 2019 Jul 16.
Article in English | MEDLINE | ID: mdl-31260270

ABSTRACT

Volatile organic chemicals are produced from reactions of ozone with squalene in human skin oil. Both primary and secondary reaction products, i.e., 6-methyl-5-hepten-2-one (6-MHO) and 4-oxopentanal (4-OPA), have been reported in indoor occupied spaces. However, the abundance of these products indoors is a function of many variables, including the amount of ozone and occupants present as well as indoor removal processes. In this study, we develop a time-dependent kinetic model describing the behavior of ozone/squalene reaction products indoors, including the reaction process and physical adsorption process of products on indoor surfaces. The key parameters in the model were obtained by fitting time-resolved concentrations of 6-MHO, 4-OPA, and ozone in a university classroom on 1 day with multiple class sessions. The model predictions were subsequently tested against observations from four additional measurement days in the same classroom. Model predictions and experimental data agreed well (R2 = 0.87-0.92) for all test days, including ∼7 class sessions covering a range of occupants (10-70) and ozone concentrations (0.09-32 ppb), demonstrating the effectiveness of the model. Accounting for surface uptake of 6-MHO and 4-OPA significantly improved model predictions (R2 = 0.52-0.76 without surface uptake), reflecting the importance of including surface interactions to quantitatively represent product behavior in indoor environments.


Subject(s)
Air Pollution, Indoor , Ozone , Volatile Organic Compounds , Humans , Squalene , Universities
15.
Environ Sci Technol ; 53(24): 14441-14448, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31757120

ABSTRACT

Previous work examining the condensed-phase products of squalene particle ozonolysis found that an increase in water vapor concentration led to lower concentrations of secondary ozonides, increased concentrations of carbonyls, and smaller particle diameter, suggesting that water changes the fate of the Criegee intermediate. To determine if this volume loss corresponds to an increase in gas-phase products, we measured gas-phase volatile organic compound (VOC) concentrations via proton-transfer-reaction time-of-flight mass spectrometry. Studies were conducted in a flow-tube reactor at atmospherically relevant ozone (O3) exposure levels (5-30 ppb h) with pure squalene particles. An increase in water vapor concentration led to strong enhancement of gas-phase oxidation products at all tested O3 exposures. An increase in water vapor from near zero to 70% relative humidity (RH) at high O3 exposure increased the total mass concentration of gas-phase VOCs by a factor of 3. The observed fraction of carbon in the gas-phase correlates with the fraction of particle volume lost. Experiments involving O3 oxidation of shirts soiled with skin oil confirms that the RH dependence of gas-phase reaction product generation occurs similarly on surfaces containing skin oil under realistic conditions. Similar behavior is expected for O3 reactions with other surface-bound organics containing unsaturated carbon bonds.


Subject(s)
Ozone , Squalene , Mass Spectrometry , Organic Chemicals , Steam
16.
Environ Sci Technol ; 53(13): 7337-7346, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31180211

ABSTRACT

Phthalate esters, commonly used as plasticizers, can be found indoors in the gas phase, in airborne particulate matter, in dust, and on surfaces. The dynamic behavior of phthalates indoors is not fully understood. In this study, time-resolved measurements of airborne phthalate concentrations and associated gas-particle partitioning data were acquired in a normally occupied residence. The vapor pressure and associated gas-particle partitioning of measured phthalates influenced their airborne dynamic behavior. Concentrations of higher vapor pressure phthalates correlated well with indoor temperature, with little discernible influence from direct occupant activity. Conversely, occupant-related behaviors substantially influenced the concentrations and dynamic behavior of a lower vapor pressure compound, diethylhexyl phthalate (DEHP), mainly through production of particulate matter during cooking events. The proportion of airborne DEHP in the particle phase was experimentally observed to increase under higher particle mass concentrations and lower indoor temperatures in correspondence with theory. Experimental observations indicate that indoor surfaces of the residence are large reservoirs of phthalates. The results also indicate that two key factors influenced by human behavior-temperature and particle mass concentration-cause short-term changes in airborne phthalate concentrations.


Subject(s)
Air Pollution, Indoor , Diethylhexyl Phthalate , Phthalic Acids , Humans , Plasticizers
17.
Indoor Air ; 29(4): 645-655, 2019 07.
Article in English | MEDLINE | ID: mdl-31004533

ABSTRACT

Semivolatile organic compounds (SVOCs) emitted from building materials, consumer products, and occupant activities alter the composition of air in residences where people spend most of their time. Exposures to specific SVOCs potentially pose risks to human health. However, little is known about the chemical complexity, total burden, and dynamic behavior of SVOCs in residential environments. Furthermore, little is known about the influence of human occupancy on the emissions and fates of SVOCs in residential air. Here, we present the first-ever hourly measurements of airborne SVOCs in a residence during normal occupancy. We employ state-of-the-art semivolatile thermal-desorption aerosol gas chromatography (SV-TAG). Indoor air is shown consistently to contain much higher levels of SVOCs than outdoors, in terms of both abundance and chemical complexity. Time-series data are characterized by temperature-dependent elevated background levels for a broad suite of chemicals, underlining the importance of continuous emissions from static indoor sources. Substantial increases in SVOC concentrations were associated with episodic occupant activities, especially cooking and cleaning. The number of occupants within the residence showed little influence on the total airborne SVOC concentration. Enhanced ventilation was effective in reducing SVOCs in indoor air, but only temporarily; SVOCs recovered to previous levels within hours.


Subject(s)
Air Pollution, Indoor/analysis , Housing , Volatile Organic Compounds/analysis , California , Construction Materials , Cooking , Environmental Monitoring/methods , Humans , San Francisco , Ventilation
18.
Indoor Air ; 29(4): 630-644, 2019 07.
Article in English | MEDLINE | ID: mdl-31004537

ABSTRACT

We investigate source characteristics and emission dynamics of volatile organic compounds (VOCs) in a single-family house in California utilizing time- and space-resolved measurements. About 200 VOC signals, corresponding to more than 200 species, were measured during 8 weeks in summer and five in winter. Spatially resolved measurements, along with tracer data, reveal that VOCs in the living space were mainly emitted directly into that space, with minor contributions from the crawlspace, attic, or outdoors. Time-resolved measurements in the living space exhibited baseline levels far above outdoor levels for most VOCs; many compounds also displayed patterns of intermittent short-term enhancements (spikes) well above the indoor baseline. Compounds were categorized as "high-baseline" or "spike-dominated" based on indoor-to-outdoor concentration ratio and indoor mean-to-median ratio. Short-term spikes were associated with occupants and their activities, especially cooking. High-baseline compounds indicate continuous indoor emissions from building materials and furnishings. Indoor emission rates for high-baseline species, quantified with 2-hour resolution, exhibited strong temperature dependence and were affected by air-change rates. Decomposition of wooden building materials is suggested as a major source for acetic acid, formic acid, and methanol, which together accounted for ~75% of the total continuous indoor emissions of high-baseline species.


Subject(s)
Air Pollution, Indoor/analysis , Construction Materials , Interior Design and Furnishings , Volatile Organic Compounds/analysis , California , Construction Materials/adverse effects , Cooking , Environmental Monitoring , Female , Housing , Humans , Male , Middle Aged , Seasons
19.
Build Environ ; 170: 1-16, 2019 Dec 18.
Article in English | MEDLINE | ID: mdl-32055099

ABSTRACT

Carpet and rugs currently represent about half of the United States flooring market and offer many benefits as a flooring type. How carpets influence our exposure to both microorganisms and chemicals in indoor environments has important health implications but is not well understood. The goal of this manuscript is to consolidate what is known about how carpet impacts indoor chemistry and microbiology, as well as to identify the important research gaps that remain. After describing the current use of carpet indoors, questions focus on five specific areas: 1) indoor chemistry, 2) indoor microbiology, 3) resuspension and exposure, 4) current practices and future needs, and 5) sustainability. Overall, it is clear that carpet can influence our exposures to particles and volatile compounds in the indoor environment by acting as a direct source, as a reservoir of environmental contaminants, and as a surface supporting chemical and biological transformations. However, the health implications of these processes are not well known, nor how cleaning practices could be optimized to minimize potential negative impacts. Current standards and recommendations focus largely on carpets as a primary source of chemicals and on limiting moisture that would support microbial growth. Future research should consider enhancing knowledge related to the impact of carpet in the indoor environment and how we might improve the design and maintenance of this common material to reduce our exposure to harmful contaminants while retaining the benefits to consumers.

20.
Environ Sci Technol ; 52(24): 14208-14215, 2018 12 18.
Article in English | MEDLINE | ID: mdl-29883108

ABSTRACT

Characterization of indoor emissions of cyclic volatile methylsiloxanes (cVMS) due to the use of personal care products is important for elucidating indoor air composition and associated health risks. This manuscript describes a mass transfer model to characterize the emission behaviors of decamethylcyclopentasiloxane (D5, the most abundant indoor cVMS) from skin lipids. A C-history method is introduced to determine the key parameters in the model, i.e., the initial concentration and diffusion coefficient of D5 inside the skin lipids. Experiments were conducted in a university classroom to examine the D5 emission behaviors by using a proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS). Data from the first class session of two typical days was applied to obtain the key parameters, which were subsequently used for predicting D5 concentrations in other class sessions. Good agreement between model predictions and experiments demonstrates the effectiveness of the model and parameter determination method. With the model, we found that the reuse of personal care products has a significant impact on the D5 emissions. In addition, the time-dependent emission rate and remaining amount of D5 inside the skin can also be calculated. These results indicate a fast decay pattern during the initial emission period, which is consistent with prior experimental studies.


Subject(s)
Household Products , Siloxanes , Universities , Humans , Students
SELECTION OF CITATIONS
SEARCH DETAIL