Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Biochemistry ; 63(2): 230-240, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38150593

ABSTRACT

The first step of histidine biosynthesis in Acinetobacter baumannii, the condensation of ATP and 5-phospho-α-d-ribosyl-1-pyrophosphate to produce N1-(5-phospho-ß-d-ribosyl)-ATP (PRATP) and pyrophosphate, is catalyzed by the hetero-octameric enzyme ATP phosphoribosyltransferase, a promising target for antibiotic design. The catalytic subunit, HisGS, is allosterically activated upon binding of the regulatory subunit, HisZ, to form the hetero-octameric holoenzyme (ATPPRT), leading to a large increase in kcat. Here, we present the crystal structure of ATPPRT, along with kinetic investigations of the rate-limiting steps governing catalysis in the nonactivated (HisGS) and activated (ATPPRT) forms of the enzyme. A pH-rate profile showed that maximum catalysis is achieved above pH 8.0. Surprisingly, at 25 °C, kcat is higher when ADP replaces ATP as substrate for ATPPRT but not for HisGS. The HisGS-catalyzed reaction is limited by the chemical step, as suggested by the enhancement of kcat when Mg2+ was replaced by Mn2+, and by the lack of a pre-steady-state burst of product formation. Conversely, the ATPPRT-catalyzed reaction rate is determined by PRATP diffusion from the active site, as gleaned from a substantial solvent viscosity effect. A burst of product formation could be inferred from pre-steady-state kinetics, but the first turnover was too fast to be directly observed. Lowering the temperature to 5 °C allowed observation of the PRATP formation burst by ATPPRT. At this temperature, the single-turnover rate constant was significantly higher than kcat, providing additional evidence for a step after chemistry limiting catalysis by ATPPRT. This demonstrates allosteric activation by HisZ accelerates the chemical step.


Subject(s)
ATP Phosphoribosyltransferase , Acinetobacter baumannii , ATP Phosphoribosyltransferase/chemistry , Diphosphates , Acinetobacter baumannii/metabolism , Catalytic Domain , Kinetics , Adenosine Triphosphate/metabolism , Catalysis
2.
BMC Bioinformatics ; 23(1): 261, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35778683

ABSTRACT

BACKGROUND: Relationships among genetic or epigenetic features can be explored by learning probabilistic networks and unravelling the dependencies among a set of given genetic/epigenetic features. Bayesian networks (BNs) consist of nodes that represent the variables and arcs that represent the probabilistic relationships between the variables. However, practical guidance on how to make choices among the wide array of possibilities in Bayesian network analysis is limited. Our study aimed to apply a BN approach, while clearly laying out our analysis choices as an example for future researchers, in order to provide further insights into the relationships among epigenetic features and a stressful condition in chickens (Gallus gallus). RESULTS: Chickens raised under control conditions (n = 22) and chickens exposed to a social isolation protocol (n = 24) were used to identify differentially methylated regions (DMRs). A total of 60 DMRs were selected by a threshold, after bioinformatic pre-processing and analysis. The treatment was included as a binary variable (control = 0; stress = 1). Thereafter, a BN approach was applied: initially, a pre-filtering test was used for identifying pairs of features that must not be included in the process of learning the structure of the network; then, the average probability values for each arc of being part of the network were calculated; and finally, the arcs that were part of the consensus network were selected. The structure of the BN consisted of 47 out of 61 features (60 DMRs and the stressful condition), displaying 43 functional relationships. The stress condition was connected to two DMRs, one of them playing a role in tight and adhesive intracellular junctions in organs such as ovary, intestine, and brain. CONCLUSIONS: We clearly explain our steps in making each analysis choice, from discrete BN models to final generation of a consensus network from multiple model averaging searches. The epigenetic BN unravelled functional relationships among the DMRs, as well as epigenetic features in close association with the stressful condition the chickens were exposed to. The DMRs interacting with the stress condition could be further explored in future studies as possible biomarkers of stress in poultry species.


Subject(s)
Chickens , Poultry , Animals , Female , Bayes Theorem , Chickens/genetics , Epigenesis, Genetic
3.
Chemistry ; 28(70): e202201728, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36112344

ABSTRACT

Is-PETase has become an enzyme of significant interest due to its ability to catalyse the degradation of polyethylene terephthalate (PET) at mesophilic temperatures. We performed hybrid quantum mechanics and molecular mechanics (QM/MM) at the DSD-PBEP86-D3/ma-def2-TZVP/CHARMM27//rev-PBE-D3/dev2-SVP/CHARMM level to calculate the energy profile for the degradation of a suitable PET model by this enzyme. Very low overall barriers are computed for serine protease-type hydrolysis steps (as low as 34.1 kJ mol-1 ). Spontaneous deprotonation of the final product, terephthalic acid, with a high computed driving force indicates that product release could be rate limiting.


Subject(s)
Phthalic Acids , Polyethylene Terephthalates , Hydrolases/metabolism , Catalysis , Ethylenes
4.
J Chem Inf Model ; 56(11): 2162-2179, 2016 11 28.
Article in English | MEDLINE | ID: mdl-27749062

ABSTRACT

We compare a range of computational methods for the prediction of sublimation thermodynamics (enthalpy, entropy, and free energy of sublimation). These include a model from theoretical chemistry that utilizes crystal lattice energy minimization (with the DMACRYS program) and quantitative structure property relationship (QSPR) models generated by both machine learning (random forest and support vector machines) and regression (partial least squares) methods. Using these methods we investigate the predictability of the enthalpy, entropy and free energy of sublimation, with consideration of whether such a method may be able to improve solubility prediction schemes. Previous work has suggested that the major source of error in solubility prediction schemes involving a thermodynamic cycle via the solid state is in the modeling of the free energy change away from the solid state. Yet contrary to this conclusion other work has found that the inclusion of terms such as the enthalpy of sublimation in QSPR methods does not improve the predictions of solubility. We suggest the use of theoretical chemistry terms, detailed explicitly in the Methods section, as descriptors for the prediction of the enthalpy and free energy of sublimation. A data set of 158 molecules with experimental sublimation thermodynamics values and some CSD refcodes has been collected from the literature and is provided with their original source references.


Subject(s)
Informatics/methods , Organic Chemicals/chemistry , Phase Transition , Entropy , Models, Molecular , Molecular Conformation , Quantitative Structure-Activity Relationship
5.
PLoS Comput Biol ; 10(5): e1003642, 2014 May.
Article in English | MEDLINE | ID: mdl-24874434

ABSTRACT

Phylogenomic analysis of the occurrence and abundance of protein domains in proteomes has recently showed that the α/ß architecture is probably the oldest fold design. This holds important implications for the origins of biochemistry. Here we explore structure-function relationships addressing the use of chemical mechanisms by ancestral enzymes. We test the hypothesis that the oldest folds used the most mechanisms. We start by tracing biocatalytic mechanisms operating in metabolic enzymes along a phylogenetic timeline of the first appearance of homologous superfamilies of protein domain structures from CATH. A total of 335 enzyme reactions were retrieved from MACiE and were mapped over fold age. We define a mechanistic step type as one of the 51 mechanistic annotations given in MACiE, and each step of each of the 335 mechanisms was described using one or more of these annotations. We find that the first two folds, the P-loop containing nucleotide triphosphate hydrolase and the NAD(P)-binding Rossmann-like homologous superfamilies, were α/ß architectures responsible for introducing 35% (18/51) of the known mechanistic step types. We find that these two oldest structures in the phylogenomic analysis of protein domains introduced many mechanistic step types that were later combinatorially spread in catalytic history. The most common mechanistic step types included fundamental building blocks of enzyme chemistry: "Proton transfer," "Bimolecular nucleophilic addition," "Bimolecular nucleophilic substitution," and "Unimolecular elimination by the conjugate base." They were associated with the most ancestral fold structure typical of P-loop containing nucleotide triphosphate hydrolases. Over half of the mechanistic step types were introduced in the evolutionary timeline before the appearance of structures specific to diversified organisms, during a period of architectural diversification. The other half unfolded gradually after organismal diversification and during a period that spanned ∼2 billion years of evolutionary history.


Subject(s)
Catalysis , Enzymes/chemistry , Enzymes/genetics , Evolution, Molecular , Enzymes/ultrastructure , Protein Folding , Protein Structure, Tertiary , Structure-Activity Relationship
6.
J Comput Aided Mol Des ; 29(2): 183-98, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25425329

ABSTRACT

Recently developed multi-targeted ligands are novel drug candidates able to interact with monoamine oxidase A and B; acetylcholinesterase and butyrylcholinesterase; or with histamine N-methyltransferase and histamine H3-receptor (H3R). These proteins are drug targets in the treatment of depression, Alzheimer's disease, obsessive disorders, and Parkinson's disease. A probabilistic method, the Parzen-Rosenblatt window approach, was used to build a "predictor" model using data collected from the ChEMBL database. The model can be used to predict both the primary pharmaceutical target and off-targets of a compound based on its structure. Molecular structures were represented based on the circular fingerprint methodology. The same approach was used to build a "predictor" model from the DrugBank dataset to determine the main pharmacological groups of the compound. The study of off-target interactions is now recognised as crucial to the understanding of both drug action and toxicology. Primary pharmaceutical targets and off-targets for the novel multi-target ligands were examined by use of the developed cheminformatic method. Several multi-target ligands were selected for further study, as compounds with possible additional beneficial pharmacological activities. The cheminformatic targets identifications were in agreement with four 3D-QSAR (H3R/D1R/D2R/5-HT2aR) models and by in vitro assays for serotonin 5-HT1a and 5-HT2a receptor binding of the most promising ligand (71/MBA-VEG8).


Subject(s)
Alzheimer Disease/drug therapy , Nervous System Diseases/drug therapy , Parkinson Disease/drug therapy , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Databases, Factual , Drug Discovery , Histamine N-Methyltransferase/chemistry , Histamine N-Methyltransferase/metabolism , Humans , Ligands , Monoamine Oxidase/chemistry , Monoamine Oxidase/metabolism , Quantitative Structure-Activity Relationship , Receptor, Serotonin, 5-HT2A/chemistry , Receptor, Serotonin, 5-HT2A/metabolism
7.
Pattern Recognit Lett ; 63: 30-35, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26435560

ABSTRACT

Pattern classification methods assign an object to one of several predefined classes/categories based on features extracted from observed attributes of the object (pattern). When L discriminatory features for the pattern can be accurately determined, the pattern classification problem presents no difficulty. However, precise identification of the relevant features for a classification algorithm (classifier) to be able to categorize real world patterns without errors is generally infeasible. In this case, the pattern classification problem is often cast as devising a classifier that minimizes the misclassification rate. One way of doing this is to consider both the pattern attributes and its class label as random variables, estimate the posterior class probabilities for a given pattern and then assign the pattern to the class/category for which the posterior class probability value estimated is maximum. More often than not, the form of the posterior class probabilities is unknown. The so-called Parzen Window approach is widely employed to estimate class-conditional probability (class-specific probability) densities for a given pattern. These probability densities can then be utilized to estimate the appropriate posterior class probabilities for that pattern. However, the Parzen Window scheme can become computationally impractical when the size of the training dataset is in the tens of thousands and L is also large (a few hundred or more). Over the years, various schemes have been suggested to ameliorate the computational drawback of the Parzen Window approach, but the problem still remains outstanding and unresolved. In this paper, we revisit the Parzen Window technique and introduce a novel approach that may circumvent the aforementioned computational bottleneck. The current paper presents the mathematical aspect of our idea. Practical realizations of the proposed scheme will be given elsewhere.

8.
BMC Bioinformatics ; 15: 150, 2014 May 19.
Article in English | MEDLINE | ID: mdl-24885296

ABSTRACT

BACKGROUND: In this work we predict enzyme function at the level of chemical mechanism, providing a finer granularity of annotation than traditional Enzyme Commission (EC) classes. Hence we can predict not only whether a putative enzyme in a newly sequenced organism has the potential to perform a certain reaction, but how the reaction is performed, using which cofactors and with susceptibility to which drugs or inhibitors, details with important consequences for drug and enzyme design. Work that predicts enzyme catalytic activity based on 3D protein structure features limits the prediction of mechanism to proteins already having either a solved structure or a close relative suitable for homology modelling. RESULTS: In this study, we evaluate whether sequence identity, InterPro or Catalytic Site Atlas sequence signatures provide enough information for bulk prediction of enzyme mechanism. By splitting MACiE (Mechanism, Annotation and Classification in Enzymes database) mechanism labels to a finer granularity, which includes the role of the protein chain in the overall enzyme complex, the method can predict at 96% accuracy (and 96% micro-averaged precision, 99.9% macro-averaged recall) the MACiE mechanism definitions of 248 proteins available in the MACiE, EzCatDb (Database of Enzyme Catalytic Mechanisms) and SFLD (Structure Function Linkage Database) databases using an off-the-shelf K-Nearest Neighbours multi-label algorithm. CONCLUSION: We find that InterPro signatures are critical for accurate prediction of enzyme mechanism. We also find that incorporating Catalytic Site Atlas attributes does not seem to provide additional accuracy. The software code (ml2db), data and results are available online at http://sourceforge.net/projects/ml2db/ and as supplementary files.


Subject(s)
Artificial Intelligence , Enzymes/chemistry , Sequence Analysis, Protein , Algorithms , Catalysis , Catalytic Domain , Databases, Protein , Protein Conformation , Software
9.
J Mol Evol ; 79(3-4): 117-29, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25185655

ABSTRACT

Bacteria use metallo-ß-lactamase enzymes to hydrolyse lactam rings found in many antibiotics, rendering them ineffective. Metallo-ß-lactamase activity is thought to be polyphyletic, having arisen on more than one occasion within a single functionally diverse homologous superfamily. Since discovery of multiple origins of enzymatic activity conferring antibiotic resistance has broad implications for the continued clinical use of antibiotics, we test the hypothesis of polyphyly further; if lactamase function has arisen twice independently, the most recent common ancestor (MRCA) is not expected to possess lactam-hydrolysing activity. Two major problems present themselves. Firstly, even with a perfectly known phylogeny, ancestral sequence reconstruction is error prone. Secondly, the phylogeny is not known, and in fact reconstructing a single, unambiguous phylogeny for the superfamily has proven impossible. To obtain a more statistical view of the strength of evidence for or against MRCA lactamase function, we reconstructed a sample of 98 MRCAs of the metallo-ß-lactamases, each based on a different tree in a bootstrap sample of reconstructed phylogenies. InterPro sequence signatures and homology modelling were then used to assess our sample of MRCAs for lactamase functionality. Only 5 % of these models conform to our criteria for metallo-ß-lactamase functionality, suggesting that the ancestor was unlikely to have been a metallo-ß-lactamase. On the other hand, given that ancestral proteins may have had metallo-ß-lactamase functionality with variation in sequence and structural properties compared with extant enzymes, our criteria are conservative, estimating a lower bound of evidence for metallo-ß-lactamase functionality but not an upper bound.


Subject(s)
Bacteria/genetics , Biological Evolution , Phylogeny , beta-Lactamases/genetics , Amino Acid Sequence , Bacterial Proteins/genetics , Likelihood Functions , Models, Genetic , Models, Molecular , Molecular Sequence Data , Protein Structure, Tertiary , Sequence Homology, Amino Acid
10.
Mol Pharm ; 11(8): 2962-72, 2014 Aug 04.
Article in English | MEDLINE | ID: mdl-24919008

ABSTRACT

We report the results of testing quantitative structure-property relationships (QSPR) that were trained upon the same druglike molecules but two different sets of solubility data: (i) data extracted from several different sources from the published literature, for which the experimental uncertainty is estimated to be 0.6-0.7 log S units (referred to mol/L); (ii) data measured by a single accurate experimental method (CheqSol), for which experimental uncertainty is typically <0.05 log S units. Contrary to what might be expected, the models derived from the CheqSol experimental data are not more accurate than those derived from the "noisy" literature data. The results suggest that, at the present time, it is the deficiency of QSPR methods (algorithms and/or descriptor sets), and not, as is commonly quoted, the uncertainty in the experimental measurements, which is the limiting factor in accurately predicting aqueous solubility for pharmaceutical molecules.


Subject(s)
Chemistry, Pharmaceutical/methods , Water/chemistry , Algorithms , Kinetics , Models, Chemical , Molecular Structure , Quantitative Structure-Activity Relationship , Regression Analysis , Reproducibility of Results , Research Design , Software , Solubility , Temperature , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL