Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 332
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 607(7917): 119-127, 2022 07.
Article in English | MEDLINE | ID: mdl-35576972

ABSTRACT

The recent emergence of SARS-CoV-2 Omicron (B.1.1.529 lineage) variants possessing numerous mutations has raised concerns of decreased effectiveness of current vaccines, therapeutic monoclonal antibodies and antiviral drugs for COVID-19 against these variants1,2. The original Omicron lineage, BA.1, prevailed in many countries, but more recently, BA.2 has become dominant in at least 68 countries3. Here we evaluated the replicative ability and pathogenicity of authentic infectious BA.2 isolates in immunocompetent and human ACE2-expressing mice and hamsters. In contrast to recent data with chimeric, recombinant SARS-CoV-2 strains expressing the spike proteins of BA.1 and BA.2 on an ancestral WK-521 backbone4, we observed similar infectivity and pathogenicity in mice and hamsters for BA.2 and BA.1, and less pathogenicity compared with early SARS-CoV-2 strains. We also observed a marked and significant reduction in the neutralizing activity of plasma from individuals who had recovered from COVID-19 and vaccine recipients against BA.2 compared to ancestral and Delta variant strains. In addition, we found that some therapeutic monoclonal antibodies (REGN10987 plus REGN10933, COV2-2196 plus COV2-2130, and S309) and antiviral drugs (molnupiravir, nirmatrelvir and S-217622) can restrict viral infection in the respiratory organs of BA.2-infected hamsters. These findings suggest that the replication and pathogenicity of BA.2 is similar to that of BA.1 in rodents and that several therapeutic monoclonal antibodies and antiviral compounds are effective against Omicron BA.2 variants.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , SARS-CoV-2 , Animals , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing/pharmacology , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/pharmacology , Antibodies, Viral/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/genetics , COVID-19/immunology , COVID-19/virology , Cricetinae , Cytidine/analogs & derivatives , Drug Combinations , Hydroxylamines , Indazoles , Lactams , Leucine , Mice , Nitriles , Proline , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Triazines , Triazoles
2.
J Infect Dis ; 228(12): 1652-1661, 2023 12 20.
Article in English | MEDLINE | ID: mdl-37756608

ABSTRACT

BACKGROUND: Data are limited on the role of preinfection humoral immunity protection against Omicron BA.5 infection and long coronavirus disease (COVID) development. METHODS: We conducted nested case-control analysis among tertiary hospital staff in Tokyo who donated blood samples in June 2022 (1 month before Omicron BA.5 wave), approximately 6 months after receiving a third dose of COVID-19 mRNA vaccine. We measured live virus-neutralizing antibody titers against wild type and Omicron BA.5, and anti-receptor-binding domain (RBD) antibody titers at preinfection, and compared them between cases and propensity-matched controls. Among the breakthrough cases, we examined association between preinfection antibody titers and incidence of long COVID. RESULTS: Preinfection anti-RBD and neutralizing antibody titers were lower in cases than controls. Neutralizing titers against wild type and Omicron BA.5 were 64% (95% confidence interval [CI], 42%-77%) and 72% (95% CI, 53%-83%) lower, respectively, in cases than controls. Individuals with previous Omicron BA.1/BA.2 infections were more frequent among controls than cases (10.3% vs 0.8%), and their Omicron BA.5 neutralizing titers were 12.8-fold higher than infection-naive individuals. Among cases, preinfection antibody titers were not associated with incidence of long COVID. CONCLUSIONS: Preinfection immunogenicity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may play a role in protecting against the Omicron BA.5 infection but not preventing long COVID.


Subject(s)
COVID-19 , Post-Acute COVID-19 Syndrome , Humans , Antibodies, Neutralizing , Breakthrough Infections , COVID-19 Vaccines , Propensity Score , SARS-CoV-2 , Antibodies, Viral
3.
J Virol ; 96(4): e0155121, 2022 02 23.
Article in English | MEDLINE | ID: mdl-34818068

ABSTRACT

Despite various attempts to treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected patients with COVID-19 convalescent plasmas, neither appropriate approach nor clinical utility has been established. We examined the efficacy of administration of highly neutralizing COVID-19 convalescent plasma (hn-plasmas) and such plasma-derived IgG administration using the Syrian hamster COVID-19 model. Two hn-plasmas, which were in the best 1% of 340 neutralizing activity-determined convalescent plasmas, were intraperitoneally administered to SARS-CoV-2-infected hamsters, resulting in a significant reduction of viral titers in lungs by up to 32-fold compared to the viral titers in hamsters receiving control nonneutralizing plasma, while with two moderately neutralizing plasmas (mn-plasmas) administered, viral titer reduction was by up to 6-fold. IgG fractions purified from the two hn-plasmas also reduced viral titers in lungs more than those from the two mn-plasmas. The severity of lung lesions seen in hamsters receiving hn-plasmas was minimal to moderate as assessed using microcomputerized tomography, which histological examination confirmed. Western blotting revealed that all four COVID-19 convalescent plasmas variably contained antibodies against SARS-CoV-2 components, including the receptor-binding domain and S1 domain. The present data strongly suggest that administering potent neutralizing activity-confirmed COVID-19 convalescent plasmas would be efficacious in treating patients with COVID-19. IMPORTANCE Convalescent plasmas obtained from patients who recovered from a specific infection have been used as agents to treat other patients infected with the very pathogen. To treat using convalescent plasmas, despite that more than 10 randomized controlled clinical trials have been conducted and more than 100 studies are currently ongoing, the effects of convalescent plasma against COVID-19 remained uncertain. On the other hand, certain COVID-19 vaccines have been shown to reduce the clinical COVID-19 onset by 94 to 95%, for which the elicited SARS-CoV-2-neutralizing antibodies are apparently directly responsible. Here, we demonstrate that highly neutralizing effect-confirmed convalescent plasmas significantly reduce the viral titers in the lung of SARS-CoV-2-infected Syrian hamsters and block the development of virally induced lung lesions. The present data provide a proof of concept that the presence of highly neutralizing antibody in COVID-19 convalescent plasmas is directly responsible for the reduction of viral replication and support the use of highly neutralizing antibody-containing plasmas in COVID-19 therapy with convalescent plasmas.


Subject(s)
COVID-19/therapy , Lung , SARS-CoV-2/physiology , Virus Replication , Animals , COVID-19/metabolism , Chlorocebus aethiops , Disease Models, Animal , Humans , Immunization, Passive , Lung/metabolism , Lung/virology , Male , Mesocricetus , Vero Cells , COVID-19 Serotherapy
4.
Bioorg Med Chem Lett ; 83: 129168, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36738797

ABSTRACT

We report here the synthesis and biological evaluation of darunavir derived HIV-1 protease inhibitors and their functional effect on enzyme inhibition and antiviral activity in MT-2 cell lines. The P2' 4-amino functionality was modified to make a number of amide derivatives to interact with residues in the S2' subsite of the HIV-1 protease active site. Several compounds exhibited picomolar enzyme inhibitory and low nanomolar antiviral activity. The X-ray crystal structure of the chloroacetate derivative bound to HIV-1 protease was determined. Interestingly, the active chloroacetate group converted to the acetate functionality during X-ray exposure. The structure revealed that the P2' carboxamide functionality makes enhanced hydrogen bonding interactions with the backbone atoms in the S2'-subsite.


Subject(s)
HIV Protease Inhibitors , HIV-1 , Darunavir/pharmacology , Amides/pharmacology , HIV Protease/metabolism , Chloroacetates/pharmacology , Crystallography, X-Ray , Drug Design , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 96: 129489, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37770002

ABSTRACT

We report here the synthesis and biological evaluation of a series of small molecule SARS-CoV-2 PLpro inhibitors. We compared the activity of selected compounds in both SARS-CoV-1 and SARS-CoV-2 PLpro inhibitory and antiviral assays. We have synthesized and evaluated several new structural variants of previous leads against SARS-CoV-2 PLpro. The replacement of the carboxamide functionality with sulfonamide derivatives resulted in PLpro inhibitors with potent PLpro inhibitory and antiviral activity in VeroE6 cells similar to GRL0617. To obtain molecular insight, we created an optimized model of a potent sulfonamide derivative in the SARS-CoV-2 PLpro active site.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Sulfonamides/pharmacology
6.
BMC Infect Dis ; 23(1): 282, 2023 May 04.
Article in English | MEDLINE | ID: mdl-37142992

ABSTRACT

BACKGROUND: Longitudinal data are lacking to compare booster effects of Delta breakthrough infection versus third vaccine dose on neutralizing antibodies (NAb) against Omicron. METHODS: Participants were the staff of a national research and medical institution in Tokyo who attended serological surveys on June 2021 (baseline) and December 2021 (follow-up); in between, the Delta-dominant epidemic occurred. Of 844 participants who were infection-naïve and had received two doses of BNT162b2 at baseline, we identified 11 breakthrough infections during follow-up. One control matched to each case was selected from boosted and unboosted individuals. We compared live-virus NAb against Wild-type, Delta, and Omicron BA.1 across groups. RESULTS: Breakthrough infection cases showed marked increases in NAb titers against Wild-type (4.1-fold) and Delta (5.5-fold), and 64% had detectable NAb against Omicron BA.1 at follow-up, although the NAb against Omicron after breakthrough infection was 6.7- and 5.2-fold lower than Wild-type and Delta, respectively. The increase was apparent only in symptomatic cases and as high as in the third vaccine recipients. CONCLUSIONS: Symptomatic Delta breakthrough infection increased NAb against Wild-type, Delta, and Omicron BA.1, similar to the third vaccine. Given the much lower NAb against Omicron BA.1, infection prevention measures must be continued irrespective of vaccine and infection history while the immune evasive variants are circulating.


Subject(s)
Antibodies, Neutralizing , Epidemics , Humans , BNT162 Vaccine , Breakthrough Infections , Vaccination , Antibodies, Viral
7.
Transfus Apher Sci ; 62(3): 103638, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36610860

ABSTRACT

PURPOSE: In the current study, we aimed to evaluate the neutralizing IgG activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as well as the coagulation factors of convalescent plasmas which we manufactured in-house without a fast-freezing technique. METHODS: We collected plasmas from eligible participants who had confirmed certain titers of neutralizing antibodies. The plasmas were frozen and stored in the ordinary biofreezer without a fast-freezing function. The purified-IgG neutralizing activity of 20 samples from 19 participants and the coagulation factors of 49 samples from 40 participants were evaluated before and after freezing. RESULTS: Purified-IgG maintained its neutralizing activities, with the median 50 % inhibitory concentration (IC50) of 10.11 mg/ml (IQR 6.53-18.19) before freezing and 8.90 m g/ml (IQR 6.92-28.27) after thawing (p = 0.956). On the contrary, fibrinogen and factor Ⅷ decreased significantly after freezing and thawing in our environment. No significant temperature deviation was observed during the storage period. CONCLUSION: Neutralizing IgG activity, which largely contributes to the antiviral activity of convalescent plasma, did not change through our in-house manufacturing, without fastfreezing and storage conditions for more than 200 days. Ordinary freezers without the fast-freezing function are suitable enough to manufacture and store convalescent plasmas. Hospitals or facilities without specified resources could easily collect and store convalescent plasmas in case of upcoming emerging or re-emerging infectious diseases on-demand with appropriate neutralizing antibody levels measurements.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/therapy , Immunization, Passive , COVID-19 Serotherapy , Antibodies, Viral , Antibodies, Neutralizing , Immunoglobulin G
8.
J Infect Chemother ; 29(9): 869-874, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37178973

ABSTRACT

BACKGROUND: Convalescent plasma is a potential therapeutic option for patients with coronavirus disease 2019 (COVID-19). Despite its use for treating several viral infections, we lack comprehensive data on its efficacy against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). METHODS: We conducted a multicenter, open-label, randomized controlled trial of convalescent plasma therapy with high neutralizing activity against SARS-CoV-2 in high-risk patients within five days after the onset of COVID-19 symptoms. The primary endpoint was the time-weighted average change in the SARS-CoV-2 viral load in nasopharyngeal swabs from days 0-5. RESULTS: Between February 24, 2021, and November 30, 2021, 25 patients were randomly assigned to either convalescent plasma (n = 14) or standard of care (n = 11) groups. Four patients discontinued their allocated convalescent plasma, and 21 were included in the modified intention-to-treat analysis. The median interval between the symptom onset and plasma administration was 4.5 days (interquartile range, 3-5 days). The primary outcome of the time-weighted average change in the SARS-CoV-2 viral load in nasopharyngeal swabs did not significantly differ between days 0-5 (1.2 log10 copies/mL in the convalescent plasma vs. 1.2 log10 copies/mL in the standard of care (effect estimate, 0.0 [95% confidence interval, -0.8-0.7]; P = 0.94)). No deaths were observed in either group. CONCLUSIONS: The early administration of convalescent plasma with high neutralizing activity did not contribute to a decrease in the viral load within five days compared with the standard of care alone.


Subject(s)
COVID-19 , Humans , COVID-19/therapy , SARS-CoV-2 , Japan , COVID-19 Serotherapy , Immunization, Passive/adverse effects , Treatment Outcome
9.
Proc Natl Acad Sci U S A ; 117(28): 16587-16595, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32571934

ABSTRACT

At the end of 2019, a novel coronavirus (severe acute respiratory syndrome coronavirus 2; SARS-CoV-2) was detected in Wuhan, China, that spread rapidly around the world, with severe consequences for human health and the global economy. Here, we assessed the replicative ability and pathogenesis of SARS-CoV-2 isolates in Syrian hamsters. SARS-CoV-2 isolates replicated efficiently in the lungs of hamsters, causing severe pathological lung lesions following intranasal infection. In addition, microcomputed tomographic imaging revealed severe lung injury that shared characteristics with SARS-CoV-2-infected human lung, including severe, bilateral, peripherally distributed, multilobular ground glass opacity, and regions of lung consolidation. SARS-CoV-2-infected hamsters mounted neutralizing antibody responses and were protected against subsequent rechallenge with SARS-CoV-2. Moreover, passive transfer of convalescent serum to naïve hamsters efficiently suppressed the replication of the virus in the lungs even when the serum was administrated 2 d postinfection of the serum-treated hamsters. Collectively, these findings demonstrate that this Syrian hamster model will be useful for understanding SARS-CoV-2 pathogenesis and testing vaccines and antiviral drugs.


Subject(s)
Coronavirus Infections/virology , Disease Models, Animal , Lung/pathology , Pneumonia, Viral/virology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Betacoronavirus/pathogenicity , Betacoronavirus/physiology , COVID-19 , Cell Line , Chlorocebus aethiops , Coronavirus Infections/pathology , Coronavirus Infections/therapy , Cricetinae , Humans , Immunization, Passive , Lung/diagnostic imaging , Lung/virology , Mesocricetus , Pandemics , Pneumonia, Viral/pathology , Ribonucleoproteins/chemistry , SARS-CoV-2 , Vero Cells , Viral Proteins/chemistry , Virus Replication , COVID-19 Serotherapy
10.
Chem Pharm Bull (Tokyo) ; 71(12): 879-886, 2023.
Article in English | MEDLINE | ID: mdl-38044140

ABSTRACT

In the development of anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) drugs, its main protease (Mpro), which is an essential enzyme for viral replication, is a promising target. To date, the Mpro inhibitors, nirmatrelvir and ensitrelvir, have been clinically developed by Pfizer Inc. and Shionogi & Co., Ltd., respectively, as orally administrable drugs to treat coronavirus disease of 2019 (COVID-19). We have also developed several potent inhibitors of SARS-CoV-2 Mpro that include compounds 4, 5, TKB245 (6), and TKB248 (7), which possesses a 4-fluorobenzothiazole ketone moiety as a reactive warhead. In compounds 5 and TKB248 (7) we have also found that replacement of the P1-P2 amide of compounds 4 and TKB245 (6) with the corresponding thioamide improved their pharmacokinetics (PK) profile in mice. Here, we report the design, synthesis and evaluation of SARS-CoV-2 Mpro inhibitors with replacement of a digestible amide bond by surrogates (9-11, 33, and 34) and introduction of fluorine atoms in a metabolically reactive methyl group on the indole moiety (8). As the results, these compounds showed comparable or less potency compared to the corresponding parent compounds, YH-53/5h (2) and 4. These results should provide useful information for further development of Mpro inhibitors.


Subject(s)
COVID-19 , Animals , Mice , SARS-CoV-2 , Amides/pharmacology , Halogens , Protease Inhibitors/chemistry , Viral Nonstructural Proteins , Antiviral Agents/chemistry
11.
Clin Infect Dis ; 75(1): e683-e691, 2022 08 24.
Article in English | MEDLINE | ID: mdl-34950947

ABSTRACT

BACKGROUND: While increasing coverage of effective vaccines against coronavirus disease 2019 (COVID-19), emergent variants raise concerns about breakthrough infection. Data are limited, however, whether breakthrough infection during the epidemic of the variant is ascribed to insufficient vaccine-induced immunogenicity. METHODS: We describe incident COVID-19 in relation to the vaccination program among workers of a referral hospital in Tokyo. During the predominantly Delta epidemic, we followed 2415 fully vaccinated staff (BNT162b2) for breakthrough infection and selected 3 matched controls. We measured post-vaccination neutralizing antibodies against the wild-type, Alpha (B.1.1.7), and Delta (B.1.617.2) strains using live viruses and anti-spike antibodies using quantitative assays, and compared them using the generalized estimating equation model between the 2 groups. RESULTS: No COVID-19 cases occurred 1-2 months after the vaccination program during the fourth epidemic wave in Japan, dominated by the Alpha variant, while 22 cases emerged 2-4 months after the vaccination program during the fifth wave, dominated by the Delta variant. In the vaccinated cohort, all 17 cases of breakthrough infection were mild or asymptomatic and participants had returned to work early. There was no measurable difference between cases and controls in post-vaccination neutralizing antibody titers against the wild-type, Alpha, Delta, and anti-spike antibody titers, while neutralizing titers against the variants were considerably lower than those against the wild-type. CONCLUSIONS: Post-vaccination neutralizing antibody titers were not decreased among patients with breakthrough infection relative to their controls under the Delta variant outbreak. The result points to the importance of infection-control measures in the post-vaccination era, irrespective of immunogenicity profile.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , Health Personnel , Hospitals , Humans , Referral and Consultation , SARS-CoV-2 , Tokyo/epidemiology , Vaccination
12.
Antimicrob Agents Chemother ; 66(2): e0171521, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34978889

ABSTRACT

To date, there are no specific treatment regimens for HIV-1-related central nervous system (CNS) complications, such as HIV-1-associated neurocognitive disorders (HAND). Here, we report that two newly generated CNS-targeting HIV-1 protease (PR) inhibitors (PIs), GRL-08513 and GRL-08613, which have a P1-3,5-bis-fluorophenyl or P1-para-monofluorophenyl ring and P2-tetrahydropyrano-tetrahydrofuran (Tp-THF) with a sulfonamide isostere, are potent against wild-type HIV-1 strains and multiple clinically isolated HIV-1 strains (50% effective concentration [EC50]: 0.0001 to ∼0.0032 µM). As assessed with HIV-1 variants that had been selected in vitro to propagate at a 5 µM concentration of each HIV-1 PI (atazanavir, lopinavir, or amprenavir), GRL-08513 and GRL-08613 efficiently inhibited the replication of these highly PI-resistant variants (EC50: 0.003 to ∼0.006 µM). GRL-08513 and GRL-08613 also maintained their antiviral activities against HIV-2ROD as well as severely multidrug-resistant clinical HIV-1 variants. Additionally, when we assessed with the in vitro blood-brain barrier (BBB) reconstruction system, GRL-08513 and GRL-08613 showed the most promising properties of CNS penetration among the evaluated compounds, including the majority of FDA-approved combination antiretroviral therapy (cART) drugs. In the crystallographic analysis of compound-PR complexes, it was demonstrated that the Tp-THF rings at the P2 moiety of GRL-08513 and GRL-08613 form robust hydrogen bond interactions with the active site of HIV-1 PR. Furthermore, both the P1-3,5-bis-fluorophenyl- and P1-para-monofluorophenyl rings sustain greater contact surfaces and form stronger van der Waals interactions with PR than is the case with darunavir-PR complex. Taken together, these results strongly suggest that GRL-08513 and GRL-08613 have favorable features for patients infected with wild-type/multidrug-resistant HIV-1 strains and might serve as candidates for a preventive and/or therapeutic agent for HAND and other CNS complications.


Subject(s)
HIV Protease Inhibitors , HIV-1 , Blood-Brain Barrier , Central Nervous System/metabolism , Fluorine/pharmacology , HIV Protease/metabolism , HIV Protease Inhibitors/chemistry , HIV Protease Inhibitors/pharmacology , Humans , Virus Replication
13.
J Virol ; 95(16): e0240120, 2021 07 26.
Article in English | MEDLINE | ID: mdl-34076480

ABSTRACT

Entecavir (ETV) is a widely used anti-hepatitis B virus (HBV) drug. However, the emergence of resistant mutations in HBV reverse transcriptase (RT) results in treatment failure. To understand the mechanism underlying the development of ETV resistance by HBV RT, we analyzed the L180M, M204V, and L180M/M204V mutants using a combination of biochemical and structural techniques. ETV-triphosphate (ETV-TP) exhibited competitive inhibition with dGTP in both wild-type (wt) RT and M204V RT, as observed using Lineweaver-Burk plots. In contrast, RT L180M or L180M/M204V did not fit either competitive, uncompetitive, noncompetitive, or typical mixed inhibition, although ETV-TP was a competitive inhibitor of dGTP. Crystallography of HIV RTY115F/F116Y/Q151M/F160M/M184V, mimicking HBV RT L180M/M204V, showed that the F115 bulge (F88 in HBV RT) caused by the F160M mutation induced deviated binding of dCTP from its normal tight binding position. Modeling of ETV-TP on the deviated dCTP indicated that a steric clash could occur between ETV-TP methylene and the 3'-end nucleoside ribose. ETV-TP is likely to interact primarily with HBV RT M171 prior to final accommodation at the deoxynucleoside triphosphate (dNTP) binding site (Y. Yasutake, S. Hattori, H. Hayashi, K. Matsuda, et al., Sci Rep 8:1624, 2018, https://doi.org/10.1038/s41598-018-19602-9). Therefore, in HBV RT L180M/M204V, ETV-TP may be stuck at M171, a residue that is conserved in almost all HBV isolates, leading to the strange inhibition pattern observed in the kinetic analysis. Collectively, our results provide novel insights into the mechanism of ETV resistance of HBV RT caused by L180M and M204V mutations. IMPORTANCE HBV infects 257 million people in the world, who suffer from elevated risks of liver cirrhosis and cancer. ETV is one of the most potent anti-HBV drugs, and ETV resistance mutations in HBV RT have been extensively studied. Nevertheless, the mechanisms underlying ETV resistance have remained elusive. We propose an attractive hypothesis to explain ETV resistance and effectiveness using a combination of kinetic and structural analyses. ETV is likely to have an additional interaction site, M171, beside the dNTP pocket of HBV RT; this finding indicates that nucleos(t)ide analogues (NAs) recognizing multiple interaction sites within RT may effectively inhibit the enzyme. Modification of ETV may render it more effective and enable the rational design of efficient NA inhibitors.


Subject(s)
Drug Resistance, Viral/genetics , Guanine/analogs & derivatives , Hepatitis B virus/drug effects , RNA-Directed DNA Polymerase/chemistry , Reverse Transcriptase Inhibitors/pharmacology , Binding Sites , Crystallography, X-Ray , Deoxycytosine Nucleotides/metabolism , Deoxyguanine Nucleotides/metabolism , Guanine/metabolism , Guanine/pharmacology , HIV Reverse Transcriptase/chemistry , HIV Reverse Transcriptase/genetics , HIV Reverse Transcriptase/metabolism , Hepatitis B virus/chemistry , Hepatitis B virus/enzymology , Inhibitory Concentration 50 , Kinetics , Lamivudine/metabolism , Lamivudine/pharmacology , Mutation , RNA-Directed DNA Polymerase/genetics , RNA-Directed DNA Polymerase/metabolism , Reverse Transcriptase Inhibitors/metabolism , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism
14.
J Pharmacol Sci ; 150(4): 201-203, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36344041

ABSTRACT

Currently, the emergence of drug resistance is an important issue in the treatment of hepatitis B virus (HBV). Recently, our collaborating group developed a novel long-acting anti-HBV drug, E-CFCP. However, until this study, the effects of E-CFCP in the kidney have remained unclarified. Using cell viability and uptake assays, we examined the effects of E-CFCP on the function of renal organic anion transporters (OATs). No cytotoxicity was shown related to the E-CFCP in the renal OATs in either assay. Thus, this study suggested that E-CFCP may be a novel, excellent candidate drug for the treatment of drug-resistant HBV.


Subject(s)
Hepatitis B , Organic Anion Transporters , Humans , Hepatitis B/drug therapy , Hepatitis B virus , Kidney , Membrane Transport Proteins , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Drug Resistance, Viral
15.
J Infect Chemother ; 28(12): 1704-1706, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36067912

ABSTRACT

Vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have shown high efficacy in preventing the onset of disease. However, the immune response to infection immediately after the first vaccination remains unknown. We examined the anti-SARS-CoV-2-binding-antibody titers and neutralizing activity in patients who developed coronavirus disease 2019 after the first vaccination. The amount of anti-SARS-CoV-2-binding antibodies and neutralizing activity drastically increased from the first to the second collection. Our results may provide important data on the course of immune response following vaccination.


Subject(s)
COVID-19 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Humans , Neutralization Tests/methods , SARS-CoV-2 , Vaccination
16.
J Infect Chemother ; 28(9): 1340-1343, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35644734

ABSTRACT

The Omicron variant of severe acute respiratory syndrome coronavirus 2 has multiple amino acid mutations in its spike proteins, which may allow it to evade immunity elicited by vaccination. We examined the neutralising activity and S1-IgG titres in patients with breakthrough infections caused by the Omicron variant after two doses of vaccination. We found that neutralising activity was significantly lower for the Omicron variant than for the Wuhan strain. Two doses of vaccination might not induce sufficient neutralising activity for the Omicron variant.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Humans , Japan , SARS-CoV-2/genetics
17.
J Infect Chemother ; 28(7): 991-994, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35337728

ABSTRACT

Management of COVID-19 patients with humoral immunodeficiency is challenging. We describe a woman with COVID-19 with multiple relapses due to anti-CD20 monoclonal antibody treatment. She was successfully treated with casirivimab/imdevimab and confirmed to have neutralizing antibodies. This case suggests that monoclonal antibodies have therapeutic and prophylactic value in patients with humoral immunodeficiency.


Subject(s)
Antineoplastic Agents, Immunological , COVID-19 Drug Treatment , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing/therapeutic use , Female , Humans , SARS-CoV-2
18.
J Hepatol ; 74(5): 1075-1086, 2021 05.
Article in English | MEDLINE | ID: mdl-33333207

ABSTRACT

BACKGROUND & AIMS: While certain nucleos(t)ide reverse transcriptase inhibitors (NRTIs) are efficacious in treating HBV infection, their effects are yet to be optimized and the emergence of NRTI-resistant HBV variants is an issue because of the requirement for lifelong treatment. The development of agents that more profoundly suppress wild-type and drug-resistant HBVs, and that have a long-acting effect, are crucial to improve patient outcomes. METHODS: Herein, we synthesized a novel long-acting 4'-modified NRTI termed E-CFCP. We tested its anti-HBV activity in vitro, before evaluating its anti-HBV activity in HBV-infected human-liver-chimeric mice (PXB-mice). E-CFCP's long-acting features and E-CFCP-triphosphate's interactions with the HBV reverse transcriptase (HBV-RT) were examined. RESULTS: E-CFCP potently blocked HBVWTD1 production (IC50qPCR_cell=1.8 nM) in HepG2.2.15 cells and HBVWTC2 (IC50SB_cell=0.7 nM), entecavir (ETV)-resistant HBVETV-RL180M/S202G/M204V (IC50SB_cell=77.5 nM), and adefovir-resistant HBVADV-RA181T/N236T production (IC50SB_cell=14.1 nM) in Huh7 cells. E-CFCP profoundly inhibited intracellular HBV DNA production to below the detection limit, but ETV and tenofovir alafenamide (TAF) failed to do so. E-CFCP also showed less toxicity than ETV and TAF. E-CFCP better penetrated hepatocytes and was better tri-phosphorylated; E-CFCP-triphosphate persisted intracellularly for longer than ETV-triphosphate. Once-daily peroral E-CFCP administration over 2 weeks (0.02~0.2 mg/kg/day) reduced HBVWTC2-viremia by 2-3 logs in PXB-mice without significant toxicities and the reduction persisted over 1-3 weeks following treatment cessation, suggesting once-weekly dosing capabilities. E-CFCP also reduced HBVETV-RL180M/S202G/M204V-viremia by 2 logs over 2 weeks, while ETV completely failed to reduce HBVETV-RL180M/S202G/M204V-viremia. E-CFCP's 4'-cyano and fluorine interact with both HBVWT-RT and HBVETV-RL180M/S202G-M204 -RT via Van der Waals and polar forces, being important for E-CFCP-triphosphate's interactions and anti-HBV potency. CONCLUSION: E-CFCP represents the first reported potential long-acting NRTI with potent activity against wild-type and treatment-resistant HBV. LAY SUMMARY: Although there are currently effective treatment options for HBV, treatment-resistant variants and the need for lifelong therapy pose a significant challenge. Therefore, the development of new treatment options is crucial to improve outcomes and quality of life. Herein, we report preclinical evidence showing that the anti-HBV agent, E-CFCP, has potent activity against wild-type and treatment-resistant variants. In addition, once-weekly oral dosing may be possible, which is preferrable to the current daily dosing regimens.


Subject(s)
Drug Development/methods , Drug Resistance, Viral/drug effects , Hepatitis B virus , Hepatitis B , Reverse Transcriptase Inhibitors/pharmacology , Animals , Delayed-Action Preparations/pharmacology , Disease Models, Animal , Drug Administration Routes , Drug Administration Schedule , Hepatitis B/drug therapy , Hepatitis B/virology , Hepatitis B virus/drug effects , Hepatitis B virus/physiology , Humans , Mice , RNA-Directed DNA Polymerase/metabolism , Time
19.
Antimicrob Agents Chemother ; 65(12): e0116721, 2021 11 17.
Article in English | MEDLINE | ID: mdl-34516245

ABSTRACT

4'-Ethynyl-2-fluoro-2'-deoxyadenosine (EFdA, MK-8591, islatravir) is a nucleoside reverse transcriptase translocation inhibitor (NRTTI) with exceptional potency against wild-type (WT) and drug-resistant HIV-1 in phase III clinical trials. EFdA resistance is not well characterized. To study EFdA resistance patterns that may emerge in naive or tenofovir (TFV)-, emtricitabine/lamivudine (FTC/3TC)-, or zidovudine (AZT)-treated patients, we performed viral passaging experiments starting with WT, K65R, M184V, or D67N/K70R/T215F/K219Q HIV-1. Regardless of the starting viral sequence, all selected EFdA-resistant variants included the M184V reverse transcriptase (RT) mutation. Using recombinant viruses, we validated the role for M184V as the primary determinant of EFdA resistance; none of the observed connection subdomain (R358K and E399K) or RNase H domain (A502V) mutations significantly contributed to EFdA resistance. A novel EFdA resistance mutational pattern that included A114S was identified in the background of M184V. A114S/M184V exhibited higher EFdA resistance (∼24-fold) than either M184V (∼8-fold) or A114S alone (∼2-fold). Remarkably, A114S/M184V and A114S/M184V/A502V resistance mutations were up to 50-fold more sensitive to tenofovir than was WT HIV-1. These mutants also had significantly lower specific infectivities than did WT. Biochemical experiments confirmed decreases in the enzymatic efficiency (kcat/Km) of WT versus A114S (2.1-fold) and A114S/M184V/A502V (6.5-fold) RTs, with no effect of A502V on enzymatic efficiency or specific infectivity. The rather modest EFdA resistance of M184V or A114S/M184V (8- and 24-fold), their hypersusceptibility to tenofovir, and strong published in vitro and in vivo data suggest that EFdA is an excellent therapeutic candidate for naive, AZT-, FTC/3TC-, and especially tenofovir-treated patients.


Subject(s)
HIV-1 , Reverse Transcriptase Inhibitors , Deoxyadenosines/pharmacology , HIV-1/genetics , Humans , Lamivudine , Reverse Transcriptase Inhibitors/pharmacology
20.
J Pharmacol Sci ; 146(2): 82-87, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33941324

ABSTRACT

Islatravir (ISL; 4'-ethynyl-2-fluoro-2'-deoxyadenosine or EFdA) is a novel reverse transcriptase translocation inhibitor and has a unique structure and high antiviral activity against wild-type and multidrug resistant HIV strains. In this study, we investigated whether islatravir (ISL) can cause kidney damage compared to tenofovir disoproxil fumarate (TDF) and tenofovir (TFV). We also investigated interactions of these drugs with organic anion transporters (OATs). There is a large gap in ISL concentration between the pharmacological dose to proximal tubular cells and the clinical dose. ISL is unlikely to be taken up via OAT1 or OAT3; therefore, OAT1 and OAT3 may not be involved in the injury to tubular cells. Present data strongly suggests that ISL is not toxic to proximal tubules because blood levels of ISL are not high enough to cause kidney damage in the clinical setting.


Subject(s)
Deoxyadenosines/adverse effects , Deoxyadenosines/metabolism , Kidney Tubules, Proximal/drug effects , Organic Anion Transporters/metabolism , Reverse Transcriptase Inhibitors/adverse effects , Reverse Transcriptase Inhibitors/metabolism , Acute Kidney Injury/etiology , Cells, Cultured , Deoxyadenosines/blood , Dose-Response Relationship, Drug , Humans
SELECTION OF CITATIONS
SEARCH DETAIL