Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Hum Brain Mapp ; 44(14): 4833-4847, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37516916

ABSTRACT

Overlapping clinical presentations in primary progressive aphasia (PPA) variants present challenges for diagnosis and understanding pathophysiology, particularly in the early stages of the disease when behavioral (speech) symptoms are not clearly evident. Divergent atrophy patterns (temporoparietal degeneration in logopenic variant lvPPA, frontal degeneration in nonfluent variant nfvPPA) can partially account for differential speech production errors in the two groups in the later stages of the disease. While the existing dogma states that neurodegeneration is the root cause of compromised behavior and cortical activity in PPA, the extent to which neurophysiological signatures of speech dysfunction manifest independent of their divergent atrophy patterns remain unknown. We test the hypothesis that nonword deficits in lvPPA and nfvPPA arise from distinct patterns of neural oscillations that are unrelated to atrophy. We use a novel structure-function imaging approach integrating magnetoencephalographic imaging of neural oscillations during a non-word repetition task with voxel-based morphometry-derived measures of gray matter volume to isolate neural oscillation abnormalities independent of atrophy. We find reduced beta band neural activity in left temporal regions associated with the late stages of auditory encoding unique to patients with lvPPA and reduced high-gamma neural activity over left frontal regions associated with the early stages of motor preparation in patients with nfvPPA. Neither of these patterns of reduced cortical oscillations was explained by cortical atrophy in our statistical model. These findings highlight the importance of structure-function imaging in revealing neurophysiological sequelae in early stages of dementia when neither structural atrophy nor behavioral deficits are clinically distinct.


Subject(s)
Aphasia, Primary Progressive , Primary Progressive Nonfluent Aphasia , Humans , Aphasia, Primary Progressive/diagnostic imaging , Neurophysiology , Magnetic Resonance Imaging , Gray Matter/pathology , Atrophy/pathology , Primary Progressive Nonfluent Aphasia/diagnostic imaging , Primary Progressive Nonfluent Aphasia/complications , Primary Progressive Nonfluent Aphasia/pathology
2.
Brain ; 145(2): 744-753, 2022 04 18.
Article in English | MEDLINE | ID: mdl-34919638

ABSTRACT

Since the first demonstrations of network hyperexcitability in scientific models of Alzheimer's disease, a growing body of clinical studies have identified subclinical epileptiform activity and associated cognitive decline in patients with Alzheimer's disease. An obvious problem presented in these studies is lack of sensitive measures to detect and quantify network hyperexcitability in human subjects. In this study we examined whether altered neuronal synchrony can be a surrogate marker to quantify network hyperexcitability in patients with Alzheimer's disease. Using magnetoencephalography (MEG) at rest, we studied 30 Alzheimer's disease patients without subclinical epileptiform activity, 20 Alzheimer's disease patients with subclinical epileptiform activity and 35 age-matched controls. Presence of subclinical epileptiform activity was assessed in patients with Alzheimer's disease by long-term video-EEG and a 1-h resting MEG with simultaneous EEG. Using the resting-state source-space reconstructed MEG signal, in patients and controls we computed the global imaginary coherence in alpha (8-12 Hz) and delta-theta (2-8 Hz) oscillatory frequencies. We found that Alzheimer's disease patients with subclinical epileptiform activity have greater reductions in alpha imaginary coherence and greater enhancements in delta-theta imaginary coherence than Alzheimer's disease patients without subclinical epileptiform activity, and that these changes can distinguish between Alzheimer's disease patients with subclinical epileptiform activity and Alzheimer's disease patients without subclinical epileptiform activity with high accuracy. Finally, a principal component regression analysis showed that the variance of frequency-specific neuronal synchrony predicts longitudinal changes in Mini-Mental State Examination in patients and controls. Our results demonstrate that quantitative neurophysiological measures are sensitive biomarkers of network hyperexcitability and can be used to improve diagnosis and to select appropriate patients for the right therapy in the next-generation clinical trials. The current results provide an integrative framework for investigating network hyperexcitability and network dysfunction together with cognitive and clinical correlates in patients with Alzheimer's disease.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Brain , Cognitive Dysfunction/complications , Cognitive Dysfunction/etiology , Electroencephalography/methods , Humans , Magnetoencephalography
3.
Hum Brain Mapp ; 43(2): 633-646, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34609038

ABSTRACT

Neuromodulation treatment effect size for bothersome tinnitus may be larger and more predictable by adopting a target selection approach guided by personalized striatal networks or functional connectivity maps. Several corticostriatal mechanisms are likely to play a role in tinnitus, including the dorsal/ventral striatum and the putamen. We examined whether significant tinnitus treatment response by deep brain stimulation (DBS) of the caudate nucleus may be related to striatal network increased functional connectivity with tinnitus networks that involve the auditory cortex or ventral cerebellum. The first study was a cross-sectional 2-by-2 factorial design (tinnitus, no tinnitus; hearing loss, normal hearing, n = 68) to define cohort level abnormal functional connectivity maps using high-field 7.0 T resting-state fMRI. The second study was a pilot case-control series (n = 2) to examine whether tinnitus modulation response to caudate tail subdivision stimulation would be contingent on individual level striatal connectivity map relationships with tinnitus networks. Resting-state fMRI identified five caudate subdivisions with abnormal cohort level functional connectivity maps. Of those, two connectivity maps exhibited increased connectivity with tinnitus networks-dorsal caudate head with Heschl's gyrus and caudate tail with the ventral cerebellum. DBS of the caudate tail in the case-series responder resulted in dramatic reductions in tinnitus severity and loudness, in contrast to the nonresponder who showed no tinnitus modulation. The individual level connectivity map of the responder was in alignment with the cohort expectation connectivity map, where the caudate tail exhibited increased connectivity with tinnitus networks, whereas the nonresponder individual level connectivity map did not.


Subject(s)
Auditory Cortex/physiopathology , Caudate Nucleus/physiopathology , Cerebellum/physiopathology , Connectome , Deep Brain Stimulation , Hearing Loss/physiopathology , Nerve Net/physiopathology , Tinnitus/physiopathology , Tinnitus/therapy , Adult , Aged , Auditory Cortex/diagnostic imaging , Case-Control Studies , Caudate Nucleus/diagnostic imaging , Cerebellum/diagnostic imaging , Cross-Sectional Studies , Female , Hearing Loss/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Nerve Net/diagnostic imaging , Tinnitus/diagnostic imaging
4.
Brain Topogr ; 35(1): 96-107, 2022 01.
Article in English | MEDLINE | ID: mdl-34114168

ABSTRACT

Magnetoencephalography (MEG) is a robust method for non-invasive functional brain mapping of sensory cortices due to its exceptional spatial and temporal resolution. The clinical standard for MEG source localization of functional landmarks from sensory evoked responses is the equivalent current dipole (ECD) localization algorithm, known to be sensitive to initialization, noise, and manual choice of the number of dipoles. Recently many automated and robust algorithms have been developed, including the Champagne algorithm, an empirical Bayesian algorithm, with powerful abilities for MEG source reconstruction and time course estimation (Wipf et al. 2010; Owen et al. 2012). Here, we evaluate automated Champagne performance in a clinical population of tumor patients where there was minimal failure in localizing sensory evoked responses using the clinical standard, ECD localization algorithm. MEG data of auditory evoked potentials and somatosensory evoked potentials from 21 brain tumor patients were analyzed using Champagne, and these results were compared with equivalent current dipole (ECD) fit. Across both somatosensory and auditory evoked field localization, we found there was a strong agreement between Champagne and ECD localizations in all cases. Given resolution of 8mm voxel size, peak source localizations from Champagne were below 10mm of ECD peak source localization. The Champagne algorithm provides a robust and automated alternative to manual ECD fits for clinical localization of sensory evoked potentials and can contribute to improved clinical MEG data processing workflows.


Subject(s)
Brain Mapping , Magnetoencephalography , Algorithms , Bayes Theorem , Brain Mapping/methods , Evoked Potentials, Somatosensory/physiology , Humans , Magnetoencephalography/methods
5.
Brain ; 143(8): 2545-2560, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32789455

ABSTRACT

Reading aloud requires mapping an orthographic form to a phonological one. The mapping process relies on sublexical statistical regularities (e.g. 'oo' to |uː|) or on learned lexical associations between a specific visual form and a series of sounds (e.g. yacht to/jɑt/). Computational, neuroimaging, and neuropsychological evidence suggest that sublexical, phonological and lexico-semantic processes rely on partially distinct neural substrates: a dorsal (occipito-parietal) and a ventral (occipito-temporal) route, respectively. Here, we investigated the spatiotemporal features of orthography-to-phonology mapping, capitalizing on the time resolution of magnetoencephalography and the unique clinical model offered by patients with semantic variant of primary progressive aphasia (svPPA). Behaviourally, patients with svPPA manifest marked lexico-semantic impairments including difficulties in reading words with exceptional orthographic to phonological correspondence (irregular words). Moreover, they present with focal neurodegeneration in the anterior temporal lobe, affecting primarily the ventral, occipito-temporal, lexical route. Therefore, this clinical population allows for testing of specific hypotheses on the neural implementation of the dual-route model for reading, such as whether damage to one route can be compensated by over-reliance on the other. To this end, we reconstructed and analysed time-resolved whole-brain activity in 12 svPPA patients and 12 healthy age-matched control subjects while reading irregular words (e.g. yacht) and pseudowords (e.g. pook). Consistent with previous findings that the dorsal route is involved in sublexical, phonological processes, in control participants we observed enhanced neural activity over dorsal occipito-parietal cortices for pseudowords, when compared to irregular words. This activation was manifested in the beta-band (12-30 Hz), ramping up slowly over 500 ms after stimulus onset and peaking at ∼800 ms, around response selection and production. Consistent with our prediction, svPPA patients did not exhibit this temporal pattern of neural activity observed in controls this contrast. Furthermore, a direct comparison of neural activity between patients and controls revealed a dorsal spatiotemporal cluster during irregular word reading. These findings suggest that the sublexical/phonological route is involved in processing both irregular and pseudowords in svPPA. Together these results provide further evidence supporting a dual-route model for reading aloud mediated by the interplay between lexico-semantic and sublexical/phonological neurocognitive systems. When the ventral route is damaged, as in the case of neurodegeneration affecting the anterior temporal lobe, partial compensation appears to be possible by over-recruitment of the slower, serial attention-dependent, dorsal one.


Subject(s)
Aphasia, Primary Progressive/physiopathology , Brain Mapping/methods , Brain/physiopathology , Reading , Aged , Aphasia, Primary Progressive/diagnostic imaging , Brain/diagnostic imaging , Female , Humans , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Magnetoencephalography/methods , Male , Middle Aged
6.
Ear Hear ; 42(5): 1253-1262, 2021.
Article in English | MEDLINE | ID: mdl-33974786

ABSTRACT

OBJECTIVES: Auditory cortical activation of the two hemispheres to monaurally presented tonal stimuli has been shown to be asynchronous in normal hearing (NH) but synchronous in the extreme case of adult-onset asymmetric hearing loss (AHL) with single-sided deafness. We addressed the wide knowledge gap between these two anchoring states of interhemispheric temporal organization. The objectives of this study were as follows: (1) to map the trajectory of interhemispheric temporal reorganization from asynchrony to synchrony using magnitude of interaural threshold difference as the independent variable in a cross-sectional study and (2) to evaluate reversibility of interhemispheric synchrony in association with hearing in noise performance by amplifying the aidable poorer ear in a repeated measures, longitudinal study. DESIGN: The cross-sectional and longitudinal cohorts were comprised of 49 subjects (AHL; N = 21; 11 male, 10 female; mean age = 48 years) and NH (N = 28; 16 male, 12 female; mean age = 45 years). The maximum interaural threshold difference of the two cohorts spanned from 0 to 65 dB. Magnetoencephalography analyses focused on latency of the M100 peak response from auditory cortex in both hemispheres between 50 msec and 150 msec following monaural tonal stimulation at the frequency (0.5, 1, 2, 3, or 4 kHz) corresponding to the maximum and minimum interaural threshold difference for better and poorer ears separately. The longitudinal AHL cohort was drawn from three subjects in the cross-sectional AHL cohort (all male; ages 49 to 60 years; varied AHL etiologies; no amplification for at least 2 years). All longitudinal study subjects were treated by monaural amplification of the poorer ear and underwent repeated measures examination of the M100 response latency and quick speech in noise hearing in noise performance at baseline, and postamplification months 3, 6, and 12. RESULTS: The M100 response peak latency values in the ipsilateral hemisphere lagged those in the contralateral hemisphere for all stimulation conditions. The mean (SD) interhemispheric latency difference values (ipsilateral less contralateral) to better ear stimulation for three categories of maximum interaural threshold difference were as follows: NH (≤ 10 dB)-8.6 (3.0) msec; AHL (15 to 40 dB)-3.0 (1.2) msec; AHL (≥ 45 dB)-1.4 (1.3) msec. In turn, the magnitude of difference values were used to define interhemispheric temporal organization states of asynchrony, mixed asynchrony and synchrony, and synchrony, respectively. Amplification of the poorer ear in longitudinal subjects drove interhemispheric organization change from baseline synchrony to postamplification asynchrony and hearing in noise performance improvement in those with baseline impairment over a 12-month period. CONCLUSIONS: Interhemispheric temporal organization in AHL was anchored between states of asynchrony in NH and synchrony in single-sided deafness. For asymmetry magnitudes between 15 and 40 dB, the intermediate mixed state of asynchrony and synchrony was continuous and reversible. Amplification of the poorer ear in AHL improved hearing in noise performance and restored normal temporal organization of auditory cortices in the two hemispheres. The return to normal interhemispheric asynchrony from baseline synchrony and improvement in hearing following monoaural amplification of the poorer ear evolved progressively over a 12-month period.


Subject(s)
Auditory Cortex , Hearing Loss , Adult , Auditory Threshold , Cortical Synchronization , Cross-Sectional Studies , Female , Humans , Longitudinal Studies , Male , Middle Aged
7.
Alzheimers Dement ; 17(12): 2009-2019, 2021 12.
Article in English | MEDLINE | ID: mdl-33884753

ABSTRACT

INTRODUCTION: Neurophysiological manifestations selectively associated with amyloid beta and tau depositions in Alzheimer's disease (AD) are useful network biomarkers to identify peptide specific pathological processes. The objective of this study was to validate the associations between reduced neuronal synchrony within alpha oscillations and neurofibrillary tangle (NFT) density in autopsy examination, in patients with AD. METHODS: In a well-characterized clinicopathological cohort of AD patients (n = 13), we quantified neuronal synchrony within alpha (8-12 Hz) and delta-theta (2-8 Hz) oscillations, using magnetoencephalography during the disease course, within six selected neocortical and hippocampal regions, including angular gyrus, superior temporal gurus, middle frontal gyrus, primary motor cortex, CA1, and subiculum, and correlated these with regional NFT density quantified at histopathological examination. RESULTS: Abnormal synchrony in alpha, but not in delta-theta, significantly predicted the NFT density at post mortem neuropathological examination. DISCUSSION: Reduced alpha synchrony is a sensitive neurophysiological index associated with pathological tau, and a potential network biomarker for clinical trials, to gauge the extent of network dysfunction and the degree of rescue in treatments targeting tau pathways in AD.


Subject(s)
Alzheimer Disease/pathology , Autopsy , Brain/pathology , Neurofibrillary Tangles/pathology , Neuropathology , Aged , Atrophy/pathology , Cohort Studies , Female , Hippocampus/pathology , Humans , Magnetoencephalography , Male , Parietal Lobe , Temporal Lobe
8.
J Cogn Neurosci ; 32(8): 1497-1507, 2020 08.
Article in English | MEDLINE | ID: mdl-32286133

ABSTRACT

Little is known about language impairment in brain tumor patients, especially in the presurgical phase. Impairment in this population may be missed because standardized tests fail to capture mild deficits. Additionally, neuroplasticity may also contribute to minimizing language impairments. We examined 14 presurgical patients with brain tumors in the language-dominant hemisphere using magnetoencephalography (MEG) while they performed a demanding picture-word interference task, that is, participants name pictures while ignoring distractor words. Brain tumor patients had behavioral picture-naming effects typically observed in healthy controls. The MEG responses also showed the expected pattern in its timing and amplitude modulation typical of controls, but with an altered spatial distribution of right hemisphere sources, in contrast to the classic left hemisphere source found in healthy individuals. This finding supports tumor-induced neural reorganization of language before surgery. Crucially, the use of electrophysiology allowed us to show the "same" neuronal response in terms of its timing and amplitude modulation in the right hemisphere, supporting the hypothesis that the processes performed by the right hemisphere following reorganization are similar in nature to those (previously) performed by the left hemisphere. We also identified one participant with a fast-growing tumor affecting large parts of critical language areas and underlying ventral and dorsal white matter tracts who showed a deviant pattern in behavior and in the MEG event-related responses. In conclusion, our results attest to the validity of using a demanding picture-naming task in presurgical patients and provide evidence for neuroplasticity, with the right hemisphere performing similar computations as the left hemisphere typically performs.


Subject(s)
Brain Neoplasms , Magnetoencephalography , Brain Mapping , Humans , Language , Neuronal Plasticity
9.
Neuroimage ; 207: 116376, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31756519

ABSTRACT

Single-sided deafness (SSD) or profound unilateral hearing loss is the condition where the transfer of acoustic information to the brain is restricted to one ear. SSD impairment is most evident under adverse acoustic environments with overlapping interference, which burdens cognitive resources. It is known that bilateral deafness induces cross-modal brain plasticity within visual cortical areas. Here we investigate whether similar cross-modal plasticity is observed in adult-onset SSD. In SSD patients (n â€‹= â€‹29) and matched controls (n â€‹= â€‹29) we estimated voxel level resting-state power and functional connectivity in the alpha band (8-12 â€‹Hz) from magnetoencephalography (MEG) data. We examined both global functional connectivity (mean functional connectivity of each voxel with the rest of the brain), and seeded functional connectivity of primary auditory cortices (A1), primary visual cortices (V1) and posterior cingulate cortex (PCC) of the default mode network (DMN). Power reduction was observed in left auditory cortex. Global functional connectivity showed reduction in frontal cortices and enhancement in visual cortex. Seeded functional connectivity of auditory cortices showed reduction in temporal, frontal and occipital regions, and enhancement in parietal cortex. Interestingly, seeded functional connectivity of visual cortices showed enhancement in visual cortices, inferior parietal lobe, post-central gyrus, and the precuneus, and reduction in auditory cortex. Seeded functional connectivity of PCC showed reduction in frontal cortical regions that are part of the DMN, attention, and working memory networks. Adult-onset SSD exhibited widespread cross-modal brain plasticity involving alterations in auditory, visual, attention, working memory and default mode networks.


Subject(s)
Auditory Cortex/physiopathology , Brain/physiopathology , Deafness/physiopathology , Neural Pathways/physiopathology , Adult , Female , Gyrus Cinguli/physiopathology , Humans , Magnetic Resonance Imaging/methods , Magnetoencephalography/methods , Male , Memory, Short-Term/physiology , Neuronal Plasticity/physiology
10.
Hum Brain Mapp ; 41(10): 2846-2861, 2020 07.
Article in English | MEDLINE | ID: mdl-32243040

ABSTRACT

This study examined global resting-state functional connectivity of neural oscillations in individuals with chronic tinnitus and normal and impaired hearing. We tested the hypothesis that distinct neural oscillatory networks are engaged in tinnitus with and without hearing loss. In both tinnitus groups, with and without hearing loss, we identified multiple frequency band-dependent regions of increased and decreased global functional connectivity. We also found that the auditory domain of tinnitus severity, assayed by the Tinnitus Functional Index, was associated with global functional connectivity in both auditory and nonauditory regions. These findings provide candidate biomarkers to target and monitor treatments for tinnitus with and without hearing loss.


Subject(s)
Brain Waves/physiology , Cerebral Cortex/physiopathology , Connectome , Hearing Loss/physiopathology , Magnetoencephalography , Nerve Net/physiopathology , Tinnitus/physiopathology , Adult , Aged , Aged, 80 and over , Auditory Cortex/diagnostic imaging , Auditory Cortex/physiopathology , Cerebral Cortex/diagnostic imaging , Female , Hearing Loss/diagnostic imaging , Humans , Magnetic Resonance Imaging , Magnetoencephalography/methods , Male , Middle Aged , Nerve Net/diagnostic imaging , Severity of Illness Index , Tinnitus/diagnostic imaging , Young Adult
11.
Hum Brain Mapp ; 40(4): 1082-1092, 2019 03.
Article in English | MEDLINE | ID: mdl-30549134

ABSTRACT

In patients with gliomas, changes in hemispheric specialization for language determined by magnetoencephalography (MEG) were analyzed to elucidate the impact of treatment and tumor recurrence on language networks. Demonstration of reorganization of language networks in these patients has significant implications on the prevention of postoperative functional loss and recovery. Whole-brain activity during an auditory verb generation task was estimated from MEG recordings in a group of 73 patients with recurrent gliomas. Hemisphere of language dominance was estimated using the language laterality index (LI), a measure derived from the task. The initial scan was performed prior to resection; patients subsequently underwent surgery and adjuvant treatment. A second scan was performed upon recurrence prior to repeat resection. The relationship between the shift in LI between scans and demographics, anatomic location, pathology, and adjuvant treatment was analyzed. Laterality shifts were observed between scans; the median percent change was 29.1% across all patients. Laterality shift magnitude and relative direction were associated with the initial position of language dominance; patients with increased lateralization experienced greater shifts than those presenting more bilateral representation. A change in LI from left or right to bilateral (or vice versa) occurred in 23.3% of patients; complete switch occurred in 5.5% of patients. Patients with tumors within the language-dominant hemisphere experienced significantly greater shifts than those with contralateral tumors. The majority of patients with glioma experience shifts in language network organization over time which correlate with the relative position of language lateralization and tumor location.


Subject(s)
Brain Mapping/methods , Brain Neoplasms/physiopathology , Functional Laterality/physiology , Glioma/physiopathology , Neuronal Plasticity/physiology , Adolescent , Adult , Aged , Female , Humans , Language , Magnetoencephalography/methods , Male , Middle Aged , Neoplasm Recurrence, Local/physiopathology , Neuroimaging/methods , Retrospective Studies , Young Adult
12.
Brain ; 140(10): 2737-2751, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28969381

ABSTRACT

Primary progressive aphasia is a syndrome characterized by progressive loss of language abilities with three main phenotypic clinical presentations, including logopenic, non-fluent/agrammatic, and semantic variants. Previous imaging studies have shown unique anatomic impacts within language networks in each variant. However, direct measures of spontaneous neuronal activity and functional integrity of these impacted neural networks in primary progressive aphasia are lacking. The aim of this study was to characterize the spatial and temporal patterns of resting state neuronal synchronizations in primary progressive aphasia syndromes. We hypothesized that resting state brain oscillations will show unique deficits within language network in each variant of primary progressive aphasia. We examined 39 patients with primary progressive aphasia including logopenic variant (n = 14, age = 61 ± 9 years), non-fluent/agrammatic variant (n = 12, age = 71 ± 8 years) and semantic variant (n = 13, age = 65 ± 7 years) using magnetoencephalographic imaging, compared to a control group that was matched in age and gender to each primary progressive aphasia subgroup (n = 20, age = 65 ± 5 years). Each patient underwent a complete clinical evaluation including a comprehensive battery of language tests. We examined the whole-brain resting state functional connectivity as measured by imaginary coherence in each patient group compared to the control cohort, in three frequency oscillation bands-delta-theta (2-8 Hz); alpha (8-12 Hz); beta (12-30 Hz). Each variant showed a distinct spatiotemporal pattern of altered functional connectivity compared to age-matched controls. Specifically, we found significant hyposynchrony of alpha and beta frequency within the left posterior temporal and occipital cortices in patients with the logopenic variant, within the left inferior frontal cortex in patients with the non-fluent/agrammatic variant, and within the left temporo-parietal junction in patients with the semantic variant. Patients with logopenic variant primary progressive aphasia also showed significant hypersynchrony of delta-theta frequency within bilateral medial frontal and posterior parietal cortices. Furthermore, region of interest-based analyses comparing the spatiotemporal patterns of variant-specific regions of interest identified in comparison to age-matched controls showed significant differences between primary progressive aphasia variants themselves. We also found distinct patterns of regional spectral power changes in each primary progressive aphasia variant, compared to age-matched controls. Our results demonstrate neurophysiological signatures of network-specific neuronal dysfunction in primary progressive aphasia variants. The unique spatiotemporal patterns of neuronal synchrony signify diverse neurophysiological disruptions and pathological underpinnings of the language network in each variant.


Subject(s)
Aphasia, Primary Progressive/pathology , Brain Mapping , Brain/physiopathology , Aged , Aged, 80 and over , Aphasia, Primary Progressive/classification , Aphasia, Primary Progressive/diagnostic imaging , Atrophy/etiology , Atrophy/pathology , Brain/diagnostic imaging , Brain/pathology , Brain Waves/physiology , Cognition Disorders/diagnosis , Cognition Disorders/etiology , Female , Functional Laterality , Gray Matter/pathology , Humans , Image Interpretation, Computer-Assisted , Magnetic Resonance Imaging , Magnetoencephalography , Male , Middle Aged , Neuropsychological Tests , ROC Curve
13.
Ann Neurol ; 80(6): 858-870, 2016 12.
Article in English | MEDLINE | ID: mdl-27696483

ABSTRACT

OBJECTIVE: Seizures are more frequent in patients with Alzheimer's disease (AD) and can hasten cognitive decline. However, the incidence of subclinical epileptiform activity in AD and its consequences are unknown. Motivated by results from animal studies, we hypothesized higher than expected rates of subclinical epileptiform activity in AD with deleterious effects on cognition. METHODS: We prospectively enrolled 33 patients (mean age, 62 years) who met criteria for AD, but had no history of seizures, and 19 age-matched, cognitively normal controls. Subclinical epileptiform activity was assessed, blinded to diagnosis, by overnight long-term video-electroencephalography (EEG) and a 1-hour resting magnetoencephalography exam with simultaneous EEG. Patients also had comprehensive clinical and cognitive evaluations, assessed longitudinally over an average period of 3.3 years. RESULTS: Subclinical epileptiform activity was detected in 42.4% of AD patients and 10.5% of controls (p = 0.02). At the time of monitoring, AD patients with epileptiform activity did not differ clinically from those without such activity. However, patients with subclinical epileptiform activity showed faster declines in global cognition, determined by the Mini-Mental State Examination (3.9 points/year in patients with epileptiform activity vs 1.6 points/year in patients without; p = 0.006), and in executive function (p = 0.01). INTERPRETATION: Extended monitoring detects subclinical epileptiform activity in a substantial proportion of patients with AD. Patients with this indicator of network hyperexcitability are at risk for accelerated cognitive decline and might benefit from antiepileptic therapies. These data call for more sensitive and comprehensive neurophysiological assessments in AD patient evaluations and impending clinical trials. Ann Neurol 2016;80:858-870.


Subject(s)
Alzheimer Disease/epidemiology , Seizures/epidemiology , California/epidemiology , Case-Control Studies , Comorbidity , Electroencephalography , Female , Humans , Incidence , Magnetic Resonance Imaging , Magnetoencephalography , Male , Middle Aged , Neuroimaging , Neuropsychological Tests , Prodromal Symptoms , Prospective Studies
14.
Brain ; 138(Pt 8): 2249-62, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25981965

ABSTRACT

Intractable focal epilepsy is a devastating disorder with profound effects on cognition and quality of life. Epilepsy surgery can lead to seizure freedom in patients with focal epilepsy; however, sometimes it fails due to an incomplete delineation of the epileptogenic zone. Brain networks in epilepsy can be studied with resting-state functional connectivity analysis, yet previous investigations using functional magnetic resonance imaging or electrocorticography have produced inconsistent results. Magnetoencephalography allows non-invasive whole-brain recordings, and can be used to study both long-range network disturbances in focal epilepsy and regional connectivity at the epileptogenic zone. In magnetoencephalography recordings from presurgical epilepsy patients, we examined: (i) global functional connectivity maps in patients versus controls; and (ii) regional functional connectivity maps at the region of resection, compared to the homotopic non-epileptogenic region in the contralateral hemisphere. Sixty-one patients were studied, including 30 with mesial temporal lobe epilepsy and 31 with focal neocortical epilepsy. Compared with a group of 31 controls, patients with epilepsy had decreased resting-state functional connectivity in widespread regions, including perisylvian, posterior temporo-parietal, and orbitofrontal cortices (P < 0.01, t-test). Decreased mean global connectivity was related to longer duration of epilepsy and higher frequency of consciousness-impairing seizures (P < 0.01, linear regression). Furthermore, patients with increased regional connectivity within the resection site (n = 24) were more likely to achieve seizure postoperative seizure freedom (87.5% with Engel I outcome) than those with neutral (n = 15, 64.3% seizure free) or decreased (n = 23, 47.8% seizure free) regional connectivity (P < 0.02, chi-square). Widespread global decreases in functional connectivity are observed in patients with focal epilepsy, and may reflect deleterious long-term effects of recurrent seizures. Furthermore, enhanced regional functional connectivity at the area of resection may help predict seizure outcome and aid surgical planning.


Subject(s)
Brain Mapping , Cerebral Cortex/physiopathology , Epilepsies, Partial/therapy , Adult , Brain Mapping/methods , Electrodes, Implanted , Epilepsies, Partial/physiopathology , Female , Humans , Magnetic Resonance Imaging/methods , Magnetoencephalography/methods , Male , Treatment Outcome
15.
Epilepsia ; 56(6): 949-58, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25921215

ABSTRACT

OBJECTIVE: The efficacy of epilepsy surgery depends critically upon successful localization of the epileptogenic zone. Magnetoencephalography (MEG) enables noninvasive detection of interictal spike activity in epilepsy, which can then be localized in three dimensions using magnetic source imaging (MSI) techniques. However, the clinical value of MEG in the presurgical epilepsy evaluation is not fully understood, as studies to date are limited by either a lack of long-term seizure outcomes or small sample size. METHODS: We performed a retrospective cohort study of patients with focal epilepsy who received MEG for interictal spike mapping followed by surgical resection at our institution. RESULTS: We studied 132 surgical patients, with mean postoperative follow-up of 3.6 years (minimum 1 year). Dipole source modeling was successful in 103 patients (78%), whereas no interictal spikes were seen in others. Among patients with successful dipole modeling, MEG findings were concordant with and specific to the following: (1) the region of resection in 66% of patients, (2) invasive electrocorticography (ECoG) findings in 67% of individuals, and (3) the magnetic resonance imaging (MRI) abnormality in 74% of cases. MEG showed discordant lateralization in ~5% of cases. After surgery, 70% of all patients achieved seizure freedom (Engel class I outcome). Whereas 85% of patients with concordant and specific MEG findings became seizure-free, this outcome was achieved by only 37% of individuals with MEG findings that were nonspecific to or discordant with the region of resection (χ(2) = 26.4, p < 0.001). MEG reliability was comparable in patients with or without localized scalp electroencephalography (EEG), and overall, localizing MEG findings predicted seizure freedom with an odds ratio of 5.11 (95% confidence interval [CI] 2.23-11.8). SIGNIFICANCE: MEG is a valuable tool for noninvasive interictal spike mapping in epilepsy surgery, including patients with nonlocalized findings receiving long-term EEG monitoring, and localization of the epileptogenic zone using MEG is associated with improved seizure outcomes.


Subject(s)
Brain Waves/physiology , Magnetoencephalography , Seizures/diagnosis , Seizures/pathology , Adult , Chi-Square Distribution , Cohort Studies , Electroencephalography , Epilepsy/surgery , Female , Humans , Magnetic Resonance Imaging , Male , Predictive Value of Tests , Reproducibility of Results , Treatment Outcome
16.
Alzheimers Res Ther ; 16(1): 62, 2024 03 19.
Article in English | MEDLINE | ID: mdl-38504361

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is the most common form of dementia, progressively impairing cognitive abilities. While neuroimaging studies have revealed functional abnormalities in AD, how these relate to aberrant neuronal circuit mechanisms remains unclear. Using magnetoencephalography imaging we documented abnormal local neural synchrony patterns in patients with AD. To identify global abnormal biophysical mechanisms underlying the spatial and spectral electrophysiological patterns in AD, we estimated the parameters of a biophysical spectral graph model (SGM). METHODS: SGM is an analytic neural mass model that describes how long-range fiber projections in the brain mediate the excitatory and inhibitory activity of local neuronal subpopulations. Unlike other coupled neuronal mass models, the SGM is linear, available in closed-form, and parameterized by a small set of biophysical interpretable global parameters. This facilitates their rapid and unambiguous inference which we performed here on a well-characterized clinical population of patients with AD (N = 88, age = 62.73 +/- 8.64 years) and a cohort of age-matched controls (N = 88, age = 65.07 +/- 9.92 years). RESULTS: Patients with AD showed significantly elevated long-range excitatory neuronal time scales, local excitatory neuronal time scales and local inhibitory neural synaptic strength. The long-range excitatory time scale had a larger effect size, compared to local excitatory time scale and inhibitory synaptic strength and contributed highest for the accurate classification of patients with AD from controls. Furthermore, increased long-range time scale was associated with greater deficits in global cognition. CONCLUSIONS: These results demonstrate that long-range excitatory time scale of neuronal activity, despite being a global measure, is a key determinant in the local spectral signatures and cognition in the human brain, and how it might be a parsimonious factor underlying altered neuronal activity in AD. Our findings provide new insights into mechanistic links between abnormal local spectral signatures and global connectivity measures in AD.


Subject(s)
Alzheimer Disease , Cognition Disorders , Cognitive Dysfunction , Humans , Middle Aged , Aged , Alzheimer Disease/complications , Alzheimer Disease/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Brain/diagnostic imaging , Cognition
17.
bioRxiv ; 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38352614

ABSTRACT

Sensory processing dysfunction not only affects most individuals with autism spectrum disorder (ASD), but at least 5% of children without ASD also experience dysfunctional sensory processing. Our understanding of the relationship between sensory dysfunction and resting state brain activity is still emerging. This study compared long-range resting state functional connectivity of neural oscillatory behavior in children aged 8-12 years with autism spectrum disorder (ASD; N=18), those with sensory processing dysfunction (SPD; N=18) who do not meet ASD criteria, and typically developing control participants (TDC; N=24) using magnetoencephalography (MEG). Functional connectivity analyses were performed in the alpha and beta frequency bands, which are known to be implicated in sensory information processing. Group differences in functional connectivity and associations between sensory abilities and functional connectivity were examined. Distinct patterns of functional connectivity differences between ASD and SPD groups were found only in the beta band, but not in the alpha band. In both alpha and beta bands, ASD and SPD cohorts differed from the TDC cohort. Somatosensory cortical beta-band functional connectivity was associated with tactile processing abilities, while higher-order auditory cortical alpha-band functional connectivity was associated with auditory processing abilities. These findings demonstrate distinct long-range neural synchrony alterations in SPD and ASD that are associated with sensory processing abilities. Neural synchrony measures could serve as potential sensitive biomarkers for ASD and SPD.

18.
Brain Commun ; 6(2): fcae121, 2024.
Article in English | MEDLINE | ID: mdl-38665964

ABSTRACT

While animal models of Alzheimer's disease (AD) have shown altered gamma oscillations (∼40 Hz) in local neural circuits, the low signal-to-noise ratio of gamma in the resting human brain precludes its quantification via conventional spectral estimates. Phase-amplitude coupling (PAC) indicating the dynamic integration between the gamma amplitude and the phase of low-frequency (4-12 Hz) oscillations is a useful alternative to capture local gamma activity. In addition, PAC is also an index of neuronal excitability as the phase of low-frequency oscillations that modulate gamma amplitude, effectively regulates the excitability of local neuronal firing. In this study, we sought to examine the local neuronal activity and excitability using gamma PAC, within brain regions vulnerable to early AD pathophysiology-entorhinal cortex and parahippocampus, in a clinical population of patients with AD and age-matched controls. Our clinical cohorts consisted of a well-characterized cohort of AD patients (n = 50; age, 60 ± 8 years) with positive AD biomarkers, and age-matched, cognitively unimpaired controls (n = 35; age, 63 ± 5.8 years). We identified the presence or the absence of epileptiform activity in AD patients (AD patients with epileptiform activity, AD-EPI+, n = 20; AD patients without epileptiform activity, AD-EPI-, n = 30) using long-term electroencephalography (LTM-EEG) and 1-hour long magnetoencephalography (MEG) with simultaneous EEG. Using the source reconstructed MEG data, we computed gamma PAC as the coupling between amplitude of the gamma frequency (30-40 Hz) with phase of the theta (4-8 Hz) and alpha (8-12 Hz) frequency oscillations, within entorhinal and parahippocampal cortices. We found that patients with AD have reduced gamma PAC in the left parahippocampal cortex, compared to age-matched controls. Furthermore, AD-EPI+ patients showed greater reductions in gamma PAC than AD-EPI- in bilateral parahippocampal cortices. In contrast, entorhinal cortices did not show gamma PAC abnormalities in patients with AD. Our findings demonstrate the spatial patterns of altered gamma oscillations indicating possible region-specific manifestations of network hyperexcitability within medial temporal lobe regions vulnerable to AD pathophysiology. Greater deficits in AD-EPI+ suggests that reduced gamma PAC is a sensitive index of network hyperexcitability in AD patients. Collectively, the current results emphasize the importance of investigating the role of neural circuit hyperexcitability in early AD pathophysiology and explore its potential as a modifiable contributor to AD pathobiology.

19.
Neuroimage ; 82: 260-72, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-23702420

ABSTRACT

OBJECTIVE: Lesion-based mapping of speech pathways has been possible only during invasive neurosurgical procedures using direct cortical stimulation (DCS). However, navigated transcranial magnetic stimulation (nTMS) may allow for lesion-based interrogation of language pathways noninvasively. Although not lesion-based, magnetoencephalographic imaging (MEGI) is another noninvasive modality for language mapping. In this study, we compare the accuracy of nTMS and MEGI with DCS. METHODS: Subjects with lesions around cortical language areas underwent preoperative nTMS and MEGI for language mapping. nTMS maps were generated using a repetitive TMS protocol to deliver trains of stimulations during a picture naming task. MEGI activation maps were derived from adaptive spatial filtering of beta-band power decreases prior to overt speech during picture naming and verb generation tasks. The subjects subsequently underwent awake language mapping via intraoperative DCS. The language maps obtained from each of the 3 modalities were recorded and compared. RESULTS: nTMS and MEGI were performed on 12 subjects. nTMS yielded 21 positive language disruption sites (11 speech arrest, 5 anomia, and 5 other) while DCS yielded 10 positive sites (2 speech arrest, 5 anomia, and 3 other). MEGI isolated 32 sites of peak activation with language tasks. Positive language sites were most commonly found in the pars opercularis for all three modalities. In 9 instances the positive DCS site corresponded to a positive nTMS site, while in 1 instance it did not. In 4 instances, a positive nTMS site corresponded to a negative DCS site, while 169 instances of negative nTMS and DCS were recorded. The sensitivity of nTMS was therefore 90%, specificity was 98%, the positive predictive value was 69% and the negative predictive value was 99% as compared with intraoperative DCS. MEGI language sites for verb generation and object naming correlated with nTMS sites in 5 subjects, and with DCS sites in 2 subjects. CONCLUSION: Maps of language function generated with nTMS correlate well with those generated by DCS. Negative nTMS mapping also correlates with negative DCS mapping. In our study, MEGI lacks the same level of correlation with intraoperative mapping; nevertheless it provides useful adjunct information in some cases. nTMS may offer a lesion-based method for noninvasively interrogating language pathways and be valuable in managing patients with peri-eloquent lesions.


Subject(s)
Brain Mapping/methods , Neural Pathways/physiopathology , Speech/physiology , Transcranial Magnetic Stimulation/methods , Adult , Aged , Brain Neoplasms/complications , Cerebral Cortex/physiopathology , Female , Humans , Language , Magnetic Resonance Imaging , Magnetoencephalography , Male , Middle Aged , Signal Processing, Computer-Assisted , Speech Disorders/etiology , Speech Disorders/physiopathology , Young Adult
20.
eNeuro ; 10(6)2023 06.
Article in English | MEDLINE | ID: mdl-37221089

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disease involving cognitive impairment and abnormalities in speech and language. Here, we examine how AD affects the fidelity of auditory feedback predictions during speaking. We focus on the phenomenon of speaking-induced suppression (SIS), the auditory cortical responses' suppression during auditory feedback processing. SIS is determined by subtracting the magnitude of auditory cortical responses during speaking from listening to playback of the same speech. Our state feedback control (SFC) model of speech motor control explains SIS as arising from the onset of auditory feedback matching a prediction of that feedback onset during speaking, a prediction that is absent during passive listening to playback of the auditory feedback. Our model hypothesizes that the auditory cortical response to auditory feedback reflects the mismatch with the prediction: small during speaking, large during listening, with the difference being SIS. Normally, during speaking, auditory feedback matches its predictions, then SIS will be large. Any reductions in SIS will indicate inaccuracy in auditory feedback prediction not matching the actual feedback. We investigated SIS in AD patients [n = 20; mean (SD) age, 60.77 (10.04); female (%), 55.00] and healthy controls [n = 12; mean (SD) age, 63.68 (6.07); female (%), 83.33] through magnetoencephalography (MEG)-based functional imaging. We found a significant reduction in SIS at ∼100 ms in AD patients compared with healthy controls (linear mixed effects model, F (1,57.5) = 6.849, p = 0.011). The results suggest that AD patients generate inaccurate auditory feedback predictions, contributing to abnormalities in AD speech.


Subject(s)
Alzheimer Disease , Auditory Cortex , Neurodegenerative Diseases , Humans , Female , Middle Aged , Speech/physiology , Auditory Perception/physiology , Auditory Cortex/physiology
SELECTION OF CITATIONS
SEARCH DETAIL