Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
J Liposome Res ; 32(4): 365-375, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35132919

ABSTRACT

Curcumin (Cur) is a natural compound that exhibited therapeutic effects against various liver injuries however Cur showed poor water solubility and bioavailability. This study aimed to design Cur-loaded solid lipid nanoparticles (SLNs) and to evaluate the hepatoprotective and antioxidant effects in a model of acute hepatotoxicity induced by paracetamol (PCM) overdose compared to the raw Cur and N-acetylcysteine (NAC). SLNs were prepared by emulsion/solvent evaporation method and 32 factorial design was employed. Wistar rats were divided into Control, PCM, PCM + NAC, PCM + raw Cur, and PCM + Cur-SLNs groups and treated orally for 14 days before receiving a single PCM dose. The Cur-loaded SLNs showed high entrapment efficiency % ranging between 69.1 and 92.1%, particle size (PS) between 217 and 506 nm, and zeta potential values between -17.9 and -25.5 mV. The in vivo results revealed that the PCM group exhibited deterioration of liver functions, pathological lesions on the liver tissues, severe oxidative stress, and increases in both the serum and hepatic iNOS levels. Remarkably, the PCM + Cur-SLNs group showed significantly better liver functions and tissue integrity compared to the PCM group. Furthermore, higher reduced glutathione and catalase but lower malondialdehyde and iNOS levels were observed. In conclusion, Cur-loaded SLNs effectively prevented the liver damage induced by PCM overdose through alleviating the oxidative stress and inhibiting the serum and hepatic iNOS expression in an effect comparable to NAC and better than raw Cur.


Subject(s)
Curcumin , Nanoparticles , Animals , Rats , Curcumin/pharmacology , Liposomes , Acetaminophen , Nitric Oxide Synthase Type II , Rats, Wistar , Acetylcysteine
SELECTION OF CITATIONS
SEARCH DETAIL