ABSTRACT
The purpose of this study was to discover how abundant toxigenic fungi and mycotoxins are in animal feedstuff samples. A total of ninety samples representing various types of animal feedstuff samples were collected from ninety sites in Egypt. Isolation, identification, and determination of mycotoxins (aflatoxins B1, B2, G1, G2, and ochratoxin A) were performed. The results revealed that 79 (87.77%) of the samples were contaminated with fungi, and 1.1 × 105 CFU/g were recovered, including 41 fungal species belonging to 18 genera, such as Zygomycota, which was represented by three species (7.31% of the total species number), teleomorphic Ascomycota (10 species, 24.39%), and anamorphic Ascomycota (28 species, 69.29%). When taxonomically investigated, these species were categorized into 2 phyla, 4 classes, 6 orders, and 12 families (one of them with an uncertain position). Moreover, the genus Aspergillus exhibited 16 species (39.02%). Notably, site no. 6 showed the highest Margalef species richness index at 10.87 followed by site no. 4, while the Shannon diversity index (H) of the recovered taxa was 2.20. Based on the frequency of occurrence, Aspergillus flavus recorded the highest percentage (65.56%) followed by A. niger (50%) and Penicillium chrysogenum (40%). Genus Aspergillus was recorded in 75 samples (88.33%), while Penicillium appeared only in 43 samples, accounting for 47.77% out of 90 samples. The High-performance liquid chromatography (HPLC) analysis showed that aflatoxin B1 (AFB1) was recorded in two animal feedstuff samples at a ratio of 0.851 and 1.363 µg/kg, While AFB2 was discovered in only one animal feedstuff sample at a ratio of 0.479 g/kg. The aflatoxins levels in the positive samples (AFB1 and AFB2) Beef cattle sample components were below the permissible limit for animal feedstuff which is (20 g/kg). Although aflatoxins were found in certain samples, the amounts were much below the maximum residue limits (MRLs) defined by the international authorities or Egyptian guidelines. toxigenic fungi found in contaminated animal feed samples pose a major threat to animal and poultry health, productivity, and even human health. Therefore, periodic monitoring is an excellent way to keep track of their existence and mitigate their hazards.
Subject(s)
Aflatoxins , Mycotoxins , Aflatoxin B1/analysis , Aflatoxins/analysis , Animals , Aspergillus , Cattle , Food Contamination/analysis , Fungi , Livestock , Mycotoxins/analysis , PoultryABSTRACT
A multitude of plants from the Brazilian savanna are known for their medicinal properties. Many plants contain endophytic fungi, which lead to the production of bioactive compounds by both the fungi and their hosts. This study investigated the bioprospecting of endophytic fungi recovered from the leaves of Palicourea rigida, a native medicinal plant of the Brazilian savanna. Four fungal taxa (Colletotrichum sp. SXS649, Pestalotiopsis sp. SXS650, the order Botryosphaeriales SXS651, and Diaporthe sp. SXS652) were recovered. The phenolic, flavonoid, extracellular degrading enzymes (amylase, cellulase, protease, and tannase) and antioxidant activity of these taxa were determined. Evaluation of the antimicrobial activity showed that the Botryosphaeriales SXS651 extract displays a minimum inhibitory concentration (MIC) of 23.20 mg mL-1 against Staphylococcus epidermidis and Pseudomonas aeruginosa, and the Diaporthe sp. SXS652 extract exhibited an MIC of 27.00 mg mL-1 against Escherichia coli. The Colletotrichum sp. SXS649 isolate inhibited tumors in potato discs by 69% at a concentration of 9.70 mg mL-1. All isolates had potential bioremediation criteria against soil contaminated with soybean oil, as proved by a high percentage of germination of Lactuca sativa and a reduction in phytotoxicity. Furthermore, the taxa under investigation demonstrated antagonistic action to phytopathogenic fungi, namely, Aspergillus niger, Inonotus rickii, Pestalotiopsis mangiferae, and Coniophora puteana, with an inhibition range between 34.2% and 76.9%. The preliminary toxicity assessment showed that all isolates possessed an LC50 of less than 100 mg mL-1 to the microcrustacean Artemia salina. These results indicate that the endophytic fungi of the Brazilian savanna are promising candidates for biotechnological and industrial applications and, in agricultural applications, for the biological control of phytopathogenic fungi.