ABSTRACT
ABSTRACT: SETBP1 mutations are found in various clonal myeloid disorders. However, it is unclear whether they can initiate leukemia, because SETBP1 mutations typically appear as later events during oncogenesis. To answer this question, we generated a mouse model expressing mutated SETBP1 in hematopoietic tissue: this model showed profound alterations in the differentiation program of hematopoietic progenitors and developed a myeloid neoplasm with megakaryocytic dysplasia, splenomegaly, and bone marrow fibrosis, prompting us to investigate SETBP1 mutations in a cohort of 36 triple-negative primary myelofibrosis (TN-PMF) cases. We identified 2 distinct subgroups, one carrying SETBP1 mutations and the other completely devoid of somatic variants. Clinically, a striking difference in disease aggressiveness was noted, with patients with SETBP1 mutation showing a much worse clinical course. In contrast to myelodysplastic/myeloproliferative neoplasms, in which SETBP1 mutations are mostly found as a late clonal event, single-cell clonal hierarchy reconstruction in 3 patients with TN-PMF from our cohort revealed SETBP1 to be a very early event, suggesting that the phenotype of the different SETBP1+ disorders may be shaped by the opposite hierarchy of the same clonal SETBP1 variants.
Subject(s)
Hematopoietic System , Myelodysplastic-Myeloproliferative Diseases , Myeloproliferative Disorders , Primary Myelofibrosis , Animals , Mice , Humans , Primary Myelofibrosis/genetics , Myeloproliferative Disorders/genetics , Mutation , Carrier Proteins/genetics , Nuclear Proteins/geneticsABSTRACT
BACKGROUND: Anaplastic Large Cell Lymphoma (ALCL) is a rare and aggressive T-cell lymphoma, classified into ALK-positive and ALK-negative subtypes, based on the presence of chromosomal translocations involving the ALK gene. The current standard of treatment for ALCL is polychemotherapy, with a high overall survival rate. However, a subset of patients does not respond to or develops resistance to these therapies, posing a serious challenge for clinicians. Recent targeted treatments such as ALK kinase inhibitors and anti-CD30 antibody-drug conjugates have shown promise but, for a fraction of patients, the prognosis is still unsatisfactory. METHODS: We investigated the genetic landscape of ALK + ALCL by whole-exome sequencing; recurring mutations were characterized in vitro and in vivo using transduced ALCL cellular models. RESULTS: Recurrent mutations in FAT family genes and the transcription factor RUNX1T1 were found. These mutations induced changes in ALCL cells morphology, growth, and migration, shedding light on potential factors contributing to treatment resistance. In particular, FAT4 silencing in ALCL cells activated the ß-catenin and YAP1 pathways, which play crucial roles in tumor growth, and conferred resistance to chemotherapy. Furthermore, STAT1 and STAT3 were hyper-activated in these cells. Gene expression profiling showed global changes in pathways related to cell adhesion, cytoskeletal organization, and oncogenic signaling. Notably, FAT mutations associated with poor outcome in patients. CONCLUSIONS: These findings provide novel insights into the molecular portrait of ALCL, that could help improve treatment strategies and the prognosis for ALCL patients.
ABSTRACT
Anaplastic large cell lymphomas (ALCLs) frequently carry oncogenic fusions involving the anaplastic lymphoma kinase (ALK) gene. Targeting ALK using tyrosine kinase inhibitors (TKIs) is a therapeutic option in cases relapsed after chemotherapy, but TKI resistance may develop. By applying genomic loss-of-function screens, we identified PTPN1 and PTPN2 phosphatases as consistent top hits driving resistance to ALK TKIs in ALK+ ALCL. Loss of either PTPN1 or PTPN2 induced resistance to ALK TKIs in vitro and in vivo. Mechanistically, we demonstrated that PTPN1 and PTPN2 are phosphatases that bind to and regulate ALK phosphorylation and activity. In turn, oncogenic ALK and STAT3 repress PTPN1 transcription. We found that PTPN1 is also a phosphatase for SHP2, a key mediator of oncogenic ALK signaling. Downstream signaling analysis showed that deletion of PTPN1 or PTPN2 induces resistance to crizotinib by hyperactivating SHP2, the MAPK, and JAK/STAT pathways. RNA sequencing of patient samples that developed resistance to ALK TKIs showed downregulation of PTPN1 and PTPN2 associated with upregulation of SHP2 expression. Combination of crizotinib with a SHP2 inhibitor synergistically inhibited the growth of wild-type or PTPN1/PTPN2 knock-out ALCL, where it reverted TKI resistance. Thus, we identified PTPN1 and PTPN2 as ALK phosphatases that control sensitivity to ALK TKIs in ALCL and demonstrated that a combined blockade of SHP2 potentiates the efficacy of ALK inhibition in TKI-sensitive and -resistant ALK+ ALCL.
Subject(s)
Anaplastic Lymphoma Kinase/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Lymphoma, Large-Cell, Anaplastic/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , Anaplastic Lymphoma Kinase/metabolism , Animals , Cell Line, Tumor , Crizotinib/pharmacology , Humans , Lymphoma, Large-Cell, Anaplastic/metabolism , Mice, Inbred NOD , Mice, SCIDABSTRACT
OBJECTIVES: Ulcerative colitis (UC) is a chronic inflammatory disorder of unknown aetiology. Gut virome dysbiosis is fundamental in UC progression, although its role in the early phases of the disease is far from fully understood. Therefore, we sought to investigate the role of a virome-associated protein encoded by the Orthohepadnavirus genus, the hepatitis B virus X protein (HBx), in UC aetiopathogenesis. DESIGN: HBx positivity of UC patient-derived blood and gut mucosa was assessed by RT-PCR and Sanger sequencing and correlated with clinical characteristics by multivariate analysis. Transcriptomics was performed on HBx-overexpressing endoscopic biopsies from healthy donors.C57BL/6 mice underwent intramucosal injections of liposome-conjugated HBx-encoding plasmids or the control, with or without antibiotic treatment. Multidimensional flow cytometry analysis was performed on colonic samples from HBx-treated and control animals. Transepithelial electrical resistance measurement, proliferation assay, chromatin immunoprecipitation assay with sequencing and RNA-sequencing were performed on in vitro models of the gut barrier. HBx-silencing experiments were performed in vitro and in vivo. RESULTS: HBx was detected in about 45% of patients with UC and found to induce colonic inflammation in mice, while its silencing reverted the colitis phenotype in vivo. HBx acted as a transcriptional regulator in epithelial cells, provoking barrier leakage and altering both innate and adaptive mucosal immunity ex vivo and in vivo. CONCLUSION: This study described HBx as a contributor to the UC pathogenesis and provides a new perspective on the virome as a target for tailored treatments.
Subject(s)
Colitis, Ulcerative , Colitis , Animals , Mice , Colitis, Ulcerative/pathology , Virome , Mice, Inbred C57BL , Colon/pathology , Colitis/metabolism , Inflammation/metabolism , Intestinal Mucosa/metabolism , Disease Models, Animal , Dextran SulfateABSTRACT
Mantle-cell lymphoma (MCL) is a B-cell non-Hodgkin Lymphoma (NHL) with a poor prognosis, at high risk of relapse after conventional treatment. MCL-associated tumour microenvironment (TME) is characterized by M2-like tumour-associated macrophages (TAMs), able to interact with cancer cells, providing tumour survival and resistance to immuno-chemotherapy. Likewise, monocyte-derived nurse-like cells (NLCs) present M2-like profile and provide proliferation signals to chronic lymphocytic leukaemia (CLL), a B-cell malignancy sharing with MCL some biological and phenotypic features. Antibodies against TAMs targeted CD47, a 'don't eat me' signal (DEMs) able to quench phagocytosis by TAMs within TME, with clinical effectiveness when combined with Rituximab in pretreated NHL. Recently, CD24 was found as valid DEMs in solid cancer. Since CD24 is expressed during B-cell differentiation, we investigated and identified consistent CD24 in MCL, CLL and primary human samples. Phagocytosis increased when M2-like macrophages were co-cultured with cancer cells, particularly in the case of paired DEMs blockade (i.e. anti-CD24 + anti-CD47) combined with Rituximab. Similarly, unstimulated CLL patients-derived NLCs provided increased phagocytosis when DEMs blockade occurred. Since high levels of CD24 were associated with worse survival in both MCL and CLL, anti-CD24-induced phagocytosis could be considered for future clinical use, particularly in association with other agents such as Rituximab.
Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Lymphoma, Mantle-Cell , Adult , Humans , Rituximab/pharmacology , Rituximab/therapeutic use , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Lymphoma, Mantle-Cell/drug therapy , CD47 Antigen , Neoplasm Recurrence, Local , Phagocytosis , Tumor Microenvironment , CD24 AntigenABSTRACT
EGFR is a protein kinase whose aberrant activity is frequently involved in the development of non-small lung cancer (NSCLC) drug resistant forms. The allosteric inhibition of this enzyme is currently one among the most attractive approaches to design and develop anticancer drugs. In a previous study, we reported the identification of a hit compound acting as type III allosteric inhibitor of the L858R/T790M double mutant EGFR. Herein, we report the design, synthesis and in vitro testing of a series of analogues of the previously identified hit with the aim of exploring the structure-activity relationships (SAR) around this scaffold. The performed analyses allowed us to identify two compounds 15 and 18 showing improved inhibition of double mutant EGFR with respect to the original hit, as well as interesting antiproliferative activity against H1975 NSCLC cancer cells expressing double mutant EGFR. The newly discovered compounds represent promising starting points for further hit-to-lead optimisation.
Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , ErbB Receptors/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Protein Kinase Inhibitors , Mutation , Structure-Activity Relationship , Cell Line, Tumor , Drug Resistance, NeoplasmABSTRACT
Cyclin-dependent kinase (CDK) 4/6 inhibitors have significantly improved progression-free survival in hormone-receptor-positive (HR+), human-epidermal-growth-factor-receptor-type-2-negative (HER2-) metastatic luminal breast cancer (mLBC). Several studies have shown that in patients with endocrine-sensitive or endocrine-resistant LBC, the addition of CDK4/6 inhibitors to endocrine therapy significantly prolongs progression-free survival. However, the percentage of patients who are unresponsive or refractory to these therapies is as high as 40%, and no reliable and reproducible biomarkers have been validated to select a priori responders or refractory patients. The selection of mutant clones in the target oncoprotein is the main cause of resistance. Other mechanisms such as oncogene amplification/overexpression or mutations in other pathways have been described in several models. In this study, we focused on palbociclib, a selective CDK4/6 inhibitor. We generated a human MCF-7 luminal breast cancer cell line that was able to survive and proliferate at different concentrations of palbociclib and also showed cross-resistance to abemaciclib. The resistant cell line was characterized via RNA sequencing and was found to strongly activate the epithelial-to-mesenchymal transition. Among the top deregulated genes, we found a dramatic downregulation of the CDK4 inhibitor CDKN2B and an upregulation of the TWIST1 transcription factor. TWIST1 was further validated as a target for the reversal of palbociclib resistance. This study provides new relevant information about the mechanisms of resistance to CDK4/6 inhibitors and suggests potential new markers for patients' follow-up care during treatment.
Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Up-Regulation , Cyclin-Dependent Kinase 4 , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Progression-Free Survival , Cyclin-Dependent Kinase 6 , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Twist-Related Protein 1/genetics , Twist-Related Protein 1/metabolismABSTRACT
Triple-negative breast cancer (TNBC) is a very aggressive disease even in its early stages and is characterized by a severe prognosis. Neoadjuvant chemotherapy is one of the milestones of treatment, and paclitaxel (PTX) is among the most active drugs used in this setting. However, despite its efficacy, peripheral neuropathy occurs in approximately 20-25% of cases and represents the dose-limiting toxicity of this drug. New deliverable strategies to ameliorate drug delivery and reduce side effects are keenly awaited to improve patients' outcomes. Mesenchymal stromal cells (MSCs) have recently been demonstrated as promising drug delivery vectors for cancer treatment. The aim of the present preclinical study is to explore the possibility of a cell therapy approach based on the use of MSCs loaded with PTX to treat TNBC-affected patients. For this purpose, we in vitro evaluated the viability, migration and colony formation of two TNBC cell lines, namely, MDA-MB-231 and BT549, treated with MSC-PTX conditioned medium (MSC-CM PTX) in comparison with both CM of MSCs not loaded with PTX (CTRL) and free PTX. We observed stronger inhibitory effects on survival, migration and tumorigenicity for MSC-CM PTX than for CTRL and free PTX in TNBC cell lines. Further studies will provide more information about activity and potentially open the possibility of using this new drug delivery vector in the context of a clinical study.
Subject(s)
Mesenchymal Stem Cells , Triple Negative Breast Neoplasms , Humans , Paclitaxel/therapeutic use , Triple Negative Breast Neoplasms/metabolism , Culture Media, Conditioned/pharmacology , Culture Media, Conditioned/metabolism , Cell Line, Tumor , Mesenchymal Stem Cells/metabolismABSTRACT
Anaplastic large cell lymphoma (ALCL) is a T-cell malignancy predominantly driven by a hyperactive anaplastic lymphoma kinase (ALK) fusion protein. ALK inhibitors, such as crizotinib, provide alternatives to standard chemotherapy with reduced toxicity and side effects. Children with lymphomas driven by nucleophosmin 1 (NPM1)-ALK fusion proteins achieved an objective response rate to ALK inhibition therapy of 54% to 90% in clinical trials; however, a subset of patients progressed within the first 3 months of treatment. The mechanism for the development of ALK inhibitor resistance is unknown. Through genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) activation and knockout screens in ALCL cell lines, combined with RNA sequencing data derived from ALK inhibitor-relapsed patient tumors, we show that resistance to ALK inhibition by crizotinib in ALCL can be driven by aberrant upregulation of interleukin 10 receptor subunit alpha (IL10RA). Elevated IL10RA expression rewires the STAT3 signaling pathway, bypassing otherwise critical phosphorylation by NPM1-ALK. IL-10RA expression does not correlate with response to standard chemotherapy in pediatric patients, suggesting that a combination of crizotinib and chemotherapy could prevent ALK inhibitor resistance-specific relapse.
Subject(s)
Antineoplastic Agents/pharmacology , Crizotinib/pharmacology , Drug Resistance, Neoplasm/genetics , Interleukin-10 Receptor alpha Subunit/genetics , Lymphoma, Large-Cell, Anaplastic/genetics , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/genetics , Antineoplastic Agents/therapeutic use , CRISPR-Cas Systems , Cell Line , Crizotinib/therapeutic use , Dose-Response Relationship, Drug , Gene Editing , Gene Expression , Humans , Immunohistochemistry , Interleukin-10 Receptor alpha Subunit/metabolism , Lymphoma, Large-Cell, Anaplastic/drug therapy , Lymphoma, Large-Cell, Anaplastic/metabolism , Lymphoma, Large-Cell, Anaplastic/pathology , Models, Biological , Nucleophosmin , Protein Kinase Inhibitors/therapeutic use , Protein-Tyrosine Kinases/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effectsABSTRACT
Patients diagnosed with Anaplastic Large Cell Lymphoma (ALCL) are still treated with toxic multi-agent chemotherapy and as many as 25-50% of patients relapse. To understand disease pathology and to uncover novel targets for therapy, Whole-Exome Sequencing (WES) of Anaplastic Lymphoma Kinase (ALK)+ ALCL was performed as well as Gene-Set Enrichment Analysis. This revealed that the T-cell receptor (TCR) and Notch pathways were the most enriched in mutations. In particular, variant T349P of NOTCH1, which confers a growth advantage to cells in which it is expressed, was detected in 12% of ALK+ and ALK- ALCL patient samples. Furthermore, we demonstrate that NPM-ALK promotes NOTCH1 expression through binding of STAT3 upstream of NOTCH1. Moreover, inhibition of NOTCH1 with γ-secretase inhibitors (GSIs) or silencing by shRNA leads to apoptosis; co-treatment in vitro with the ALK inhibitor Crizotinib led to additive/synergistic anti-tumour activity suggesting this may be an appropriate combination therapy for future use in the circumvention of ALK inhibitor resistance. Indeed, Crizotinib-resistant and sensitive ALCL were equally sensitive to GSIs. In conclusion, we show a variant in the extracellular domain of NOTCH1 that provides a growth advantage to cells and confirm the suitability of the Notch pathway as a second-line druggable target in ALK+ ALCL.
Subject(s)
Lymphoma, Large-Cell, Anaplastic , Cell Line, Tumor , Humans , Lymphoma, Large-Cell, Anaplastic/drug therapy , Lymphoma, Large-Cell, Anaplastic/genetics , Mutation , Neoplasm Recurrence, Local , Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/genetics , Receptor, Notch1/genetics , Exome SequencingSubject(s)
Anaplastic Lymphoma Kinase/antagonists & inhibitors , Crizotinib/administration & dosage , Drug Resistance, Neoplasm/drug effects , Lymphoma, Large-Cell, Anaplastic , Protein Kinase Inhibitors/administration & dosage , Adolescent , Adult , Aged , Aged, 80 and over , Disease-Free Survival , Female , Humans , Lymphoma, Large-Cell, Anaplastic/drug therapy , Lymphoma, Large-Cell, Anaplastic/enzymology , Lymphoma, Large-Cell, Anaplastic/mortality , Male , Middle Aged , Recurrence , Survival RateABSTRACT
Chromosomal translocations involving anaplastic lymphoma kinase (ALK) are the driving mutations for a range of cancers and ALK is thus considered an attractive therapeutic target. We synthesized a series of functionalized benzo[4,5]imidazo[1,2-c]pyrimidines and benzo[4,5]imidazo[1,2-a]pyrazines by an aza-Graebe-Ullman reaction, followed by palladium-catalyzed cross-coupling reactions. A sequential regioselective cross-coupling route is reported for the synthesis of unsymmetrically disubstituted benzo[4,5]imidazo[1,2-a]pyrazines. The inhibition of ALK was evaluated and compound 19 in particular showed good activity against both the wild type and crizotinib-resistant L1196M mutant in vitro and in ALK-transfected BaF3 cells.
Subject(s)
Imidazoles/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Pyrazines/chemistry , Pyrimidines/chemistry , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Anaplastic Lymphoma Kinase , Animals , Binding Sites , Catalysis , Catalytic Domain , Cell Line , Enzyme Activation/drug effects , Humans , Imidazoles/chemical synthesis , Imidazoles/metabolism , Mice , Molecular Docking Simulation , Palladium , Protein Binding , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , Pyrazines/chemical synthesis , Pyrazines/metabolism , Pyrimidines/chemical synthesis , Pyrimidines/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , StereoisomerismABSTRACT
The treatment of acute myeloid leukemia (AML) presents a challenge to current therapies because of the development of drug resistance. Genetic mutation of FMS-like tyrosine kinase-3 (FLT3) is a target of interest for AML treatment, but the use of FLT3-targeting agents on AML patients has so far resulted in poor overall clinical outcomes.1 The incorporation of the boronic group in a drug scaffold could enhance the bioavailability and pharmacokinetic profile of conventional anticancer chemotypes. Boronic acids represent an intriguing and unexplored class of compounds in the context of AML, and they are only scantly reported as inhibitors of protein kinases. We identified a-triazolylboronic acids as a novel chemotype for targeting FLT3 by screening a library of structurally heterogeneous in-house boronic acids. Selected compounds show low micromolar activities on enzymatic and cellular assays, selectivity against control cell lines and a recurring binding mode in in-silico studies. Furthermore, control analogues synthesized ad hoc and lacking the boronic acid are inactive, confirming that this group is essential for the activity of the series. All together, these results suggest α-triazolylboronic acids could be a promising novel chemotype for FLT3 inhibition, laying the ground for the design of further compounds.
ABSTRACT
ALK and ROS1 fusions are effectively targeted by tyrosine kinase inhibitors (TKIs), however patients inevitably relapse after an initial response, often due to kinase domain mutations. We investigated circulating DNA from TKI-relapsed NSCLC patients by deep-sequencing. New EML4::ALK substitutions, L1198R, C1237Y and L1196P, were identified in the plasma of NSCLC ALK patients and characterized in a Ba/F3 cell model. Variants C1237Y and L1196P demonstrated pan-inhibitor resistance across 5 clinical and 2 investigational TKIs.
ABSTRACT
Cancer patients show heterogeneous phenotypes and very different outcomes and responses even to common treatments, such as standard chemotherapy. This state-of-affairs has motivated the need for the comprehensive characterization of cancer phenotypes and fueled the generation of large omics datasets, comprising multiple omics data reported for the same patients, which might now allow us to start deciphering cancer heterogeneity and implement personalized therapeutic strategies. In this work, we performed the analysis of four cancer types obtained from the latest efforts by The Cancer Genome Atlas, for which seven distinct omics data were available for each patient, in addition to curated clinical outcomes. We performed a uniform pipeline for raw data preprocessing and adopted the Cancer Integration via MultIkernel LeaRning (CIMLR) integrative clustering method to extract cancer subtypes. We then systematically review the discovered clusters for the considered cancer types, highlighting novel associations between the different omics and prognosis.
Subject(s)
Genomics , Neoplasms , Humans , Genomics/methods , Multiomics , Neoplasms/genetics , Genome , Cluster AnalysisABSTRACT
Recurring sequences of genomic alterations occurring across patients can highlight repeated evolutionary processes with significant implications for predicting cancer progression. Leveraging the ever-increasing availability of cancer omics data, here we unveil cancer's evolutionary signatures tied to distinct disease outcomes, representing "favored trajectories" of acquisition of driver mutations detected in patients with similar prognosis. We present a framework named ASCETIC (Agony-baSed Cancer EvoluTion InferenCe) to extract such signatures from sequencing experiments generated by different technologies such as bulk and single-cell sequencing data. We apply ASCETIC to (i) single-cell data from 146 myeloid malignancy patients and bulk sequencing from 366 acute myeloid leukemia patients, (ii) multi-region sequencing from 100 early-stage lung cancer patients, (iii) exome/genome data from 10,000+ Pan-Cancer Atlas samples, and (iv) targeted sequencing from 25,000+ MSK-MET metastatic patients, revealing subtype-specific single-nucleotide variant signatures associated with distinct prognostic clusters. Validations on several datasets underscore the robustness and generalizability of the extracted signatures.
Subject(s)
Genomics , Neoplasms , Humans , Neoplasms/genetics , Exome/genetics , Patients , TechnologyABSTRACT
Within the chromatin, distal elements interact with promoters to regulate specific transcriptional programs. Histone acetylation, interfering with the net charges of the nucleosomes, is a key player in this regulation. Here, we report that the oncoprotein SET is a critical determinant for the levels of histone acetylation within enhancers. We disclose that a condition in which SET is accumulated, the severe Schinzel-Giedion Syndrome (SGS), is characterized by a failure in the usage of the distal regulatory regions typically employed during fate commitment. This is accompanied by the usage of alternative enhancers leading to a massive rewiring of the distal control of the gene transcription. This represents a (mal)adaptive mechanism that, on one side, allows to achieve a certain degree of differentiation, while on the other affects the fine and corrected maturation of the cells. Thus, we propose the differential in cis-regulation as a contributing factor to the pathological basis of SGS and possibly other the SET-related disorders in humans.
Subject(s)
Enhancer Elements, Genetic , Histones , Humans , Histones/genetics , Histones/metabolism , Enhancer Elements, Genetic/genetics , Cell Differentiation/genetics , Chromatin/genetics , Promoter Regions, Genetic/geneticsABSTRACT
Anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitors (TKIs) show potent efficacy in several ALK-driven tumors, but the development of resistance limits their long-term clinical impact. Although resistance mechanisms have been studied extensively in ALK-driven non-small cell lung cancer, they are poorly understood in ALK-driven anaplastic large cell lymphoma (ALCL). Here, we identify a survival pathway supported by the tumor microenvironment that activates phosphatidylinositol 3-kinase γ (PI3K-γ) signaling through the C-C motif chemokine receptor 7 (CCR7). We found increased PI3K signaling in patients and ALCL cell lines resistant to ALK TKIs. PI3Kγ expression was predictive of a lack of response to ALK TKI in patients with ALCL. Expression of CCR7, PI3Kγ, and PI3Kδ were up-regulated during ALK or STAT3 inhibition or degradation and a constitutively active PI3Kγ isoform cooperated with oncogenic ALK to accelerate lymphomagenesis in mice. In a three-dimensional microfluidic chip, endothelial cells that produce the CCR7 ligands CCL19/CCL21 protected ALCL cells from apoptosis induced by crizotinib. The PI3Kγ/δ inhibitor duvelisib potentiated crizotinib activity against ALCL lines and patient-derived xenografts. Furthermore, genetic deletion of CCR7 blocked the central nervous system dissemination and perivascular growth of ALCL in mice treated with crizotinib. Thus, blockade of PI3Kγ or CCR7 signaling together with ALK TKI treatment reduces primary resistance and the survival of persister lymphoma cells in ALCL.
Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Lymphoma, Large-Cell, Anaplastic , Humans , Animals , Mice , Crizotinib/pharmacology , Crizotinib/therapeutic use , Receptor Protein-Tyrosine Kinases/metabolism , Anaplastic Lymphoma Kinase , Receptors, CCR7/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Endothelial Cells/metabolism , Phosphatidylinositol 3-Kinases , Lung Neoplasms/drug therapy , Protein-Tyrosine Kinases , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Lymphoma, Large-Cell, Anaplastic/drug therapy , Lymphoma, Large-Cell, Anaplastic/genetics , Lymphoma, Large-Cell, Anaplastic/pathology , Cell Line, Tumor , Tumor MicroenvironmentABSTRACT
Whether RET is able to directly phosphorylate and activate downstream targets independently of the binding of proteins that contain Src homology 2 or phosphotyrosine binding domains and whether mechanisms in trans by cytoplasmic kinases can modulate RET function and signaling remain largely unexplored. In this study, oligopeptide arrays were used to screen substrates directly phosphorylated by purified recombinant wild-type and oncogenic RET kinase domain in the presence or absence of small molecule inhibitors. The results of the peptide array were validated by enzyme kinetics, in vitro kinase, and cell-based experiments. The identification of focal adhesion kinase (FAK) as a direct substrate for RET kinase revealed (i) a RET-FAK transactivation mechanism consisting of direct phosphorylation of FAK Tyr-576/577 by RET and a reciprocal phosphorylation of RET by FAK, which crucially is able to rescue the kinase-impaired RET K758M mutant and (ii) that FAK binds RET via its FERM domain. Interestingly, this interaction is abolished upon RET phosphorylation, indicating that RET binding to the FERM domain of FAK is a priming step for RET-FAK transactivation. Finally, our data indicate that FAK inhibitors could be used as potential therapeutic agents for patients with multiple endocrine neoplasia type 2 tumors because both, treatment with the FAK kinase inhibitor NVP-TAE226 and FAK down-regulation by siRNA reduced RET phosphorylation and signaling as well as the proliferation and survival of tumor and transfected cell lines expressing oncogenic RET.