Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 135
Filter
Add more filters

Publication year range
1.
Cell ; 175(2): 530-543.e24, 2018 10 04.
Article in English | MEDLINE | ID: mdl-30220458

ABSTRACT

The occurrence of a spontaneous nephropathy with intranuclear inclusions in laboratory mice has puzzled pathologists for over 4 decades, because its etiology remains elusive. The condition is more severe in immunodeficient animals, suggesting an infectious cause. Using metagenomics, we identify the causative agent as an atypical virus, termed "mouse kidney parvovirus" (MKPV), belonging to a divergent genus of Parvoviridae. MKPV was identified in animal facilities in Australia and North America, is transmitted via a fecal-oral or urinary-oral route, and is controlled by the adaptive immune system. Detailed analysis of the clinical course and histopathological features demonstrated a stepwise progression of pathology ranging from sporadic tubular inclusions to tubular degeneration and interstitial fibrosis and culminating in renal failure. In summary, we identify a widely distributed pathogen in laboratory mice and establish MKPV-induced nephropathy as a new tool for elucidating mechanisms of tubulointerstitial fibrosis that shares molecular features with chronic kidney disease in humans.


Subject(s)
Nephritis, Interstitial/virology , Parvovirus/isolation & purification , Parvovirus/pathogenicity , Animals , Australia , Disease Progression , Female , Fibrosis/pathology , Fibrosis/virology , Humans , Kidney/metabolism , Kidney/physiology , Male , Mice , Mice, Inbred C57BL , Nephritis, Interstitial/physiopathology , North America , Parvoviridae Infections/metabolism
2.
Mol Cell ; 81(10): 2064-2075.e8, 2021 05 20.
Article in English | MEDLINE | ID: mdl-33756105

ABSTRACT

Dysregulated mTORC1 signaling alters a wide range of cellular processes, contributing to metabolic disorders and cancer. Defining the molecular details of downstream effectors is thus critical for uncovering selective therapeutic targets. We report that mTORC1 and its downstream kinase S6K enhance eIF4A/4B-mediated translation of Wilms' tumor 1-associated protein (WTAP), an adaptor for the N6-methyladenosine (m6A) RNA methyltransferase complex. This regulation is mediated by 5' UTR of WTAP mRNA that is targeted by eIF4A/4B. Single-nucleotide-resolution m6A mapping revealed that MAX dimerization protein 2 (MXD2) mRNA contains m6A, and increased m6A modification enhances its degradation. WTAP induces cMyc-MAX association by suppressing MXD2 expression, which promotes cMyc transcriptional activity and proliferation of mTORC1-activated cancer cells. These results elucidate a mechanism whereby mTORC1 stimulates oncogenic signaling via m6A RNA modification and illuminates the WTAP-MXD2-cMyc axis as a potential therapeutic target for mTORC1-driven cancers.


Subject(s)
Adenosine/analogs & derivatives , Mechanistic Target of Rapamycin Complex 1/metabolism , RNA Stability , Adenosine/metabolism , Animals , Base Sequence , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation , Eukaryotic Initiation Factors/metabolism , HEK293 Cells , Humans , Male , Mice , Models, Biological , Protein Biosynthesis , Proto-Oncogene Proteins c-myc/metabolism , RNA Splicing Factors/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribosomal Protein S6 Kinases/metabolism , Signal Transduction
3.
Proc Natl Acad Sci U S A ; 120(14): e2220413120, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36972439

ABSTRACT

Human epidermal growth factor receptor 2 (HER2) is overexpressed in various cancer types. HER2-targeting trastuzumab plus chemotherapy is used as first-line therapy for HER2-positive recurrent or primary metastatic gastric cancer, but intrinsic and acquired trastuzumab resistance inevitably develop over time. To overcome gastric cancer resistance to HER2-targeted therapies, we have conjugated trastuzumab with a beta-emitting therapeutic isotope, lutetium-177, to deliver radiation locally to gastric tumors with minimal toxicity. Because trastuzumab-based targeted radioligand therapy (RLT) requires only the extramembrane domain binding of membrane-bound HER2 receptors, HER2-targeting RLT can bypass any resistance mechanisms that occur downstream of HER2 binding. Leveraging our previous discoveries that statins, a class of cholesterol-lowering drugs, can enhance the cell surface-bound HER2 to achieve effective drug delivery in tumors, we proposed that the combination of statins and [177Lu]Lu-trastuzumab-based RLT can enhance the therapeutic efficacy of HER2-targeted RLT in drug-resistant gastric cancers. We demonstrate that lovastatin elevates cell surface HER2 levels and increases the tumor-absorbed radiation dose of [177Lu]Lu-DOTA-trastuzumab. Furthermore, lovastatin-modulated [177Lu]Lu-DOTA-trastuzumab RLT durably inhibits tumor growth and prolongs overall survival in mice bearing NCI-N87 gastric tumors and HER2-positive patient-derived xenografts (PDXs) of known clinical resistance to trastuzumab therapy. Statins also exhibit a radioprotective effect, reducing radiotoxicity in a mice cohort given the combination of statins and [177Lu]Lu-DOTA-trastuzumab. Since statins are commonly prescribed to patients, our results strongly support the feasibility of clinical studies that combine lovastatin with HER2-targeted RLT in HER2-postive patients and trastuzumab-resistant HER2-positive patients.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Stomach Neoplasms , Humans , Animals , Mice , Stomach Neoplasms/drug therapy , Stomach Neoplasms/radiotherapy , Stomach Neoplasms/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Pharmaceutical Preparations , Receptor, ErbB-2/metabolism , Trastuzumab/pharmacology , Trastuzumab/therapeutic use , Lovastatin/pharmacology , Lovastatin/therapeutic use , Cell Line, Tumor
4.
J Cell Sci ; 136(13)2023 07 01.
Article in English | MEDLINE | ID: mdl-37282854

ABSTRACT

Tylosis with oesophageal cancer (TOC) is a rare familial disorder caused by cytoplasmic mutations in inactive rhomboid 2 (iRhom2 or iR2, encoded by Rhbdf2). iR2 and the related iRhom1 (or iR1, encoded by Rhbdf1) are key regulators of the membrane-anchored metalloprotease ADAM17, which is required for activating EGFR ligands and for releasing pro-inflammatory cytokines such as TNFα (or TNF). A cytoplasmic deletion in iR2, including the TOC site, leads to curly coat or bare skin (cub) in mice, whereas a knock-in TOC mutation (toc) causes less severe alopecia and wavy fur. The abnormal skin and hair phenotypes of iR2cub/cub and iR2toc/toc mice depend on amphiregulin (Areg) and Adam17, as loss of one allele of either gene rescues the fur phenotypes. Remarkably, we found that iR1-/- iR2cub/cub mice survived, despite a lack of mature ADAM17, whereas iR2cub/cub Adam17-/- mice died perinatally, suggesting that the iR2cub gain-of-function mutation requires the presence of ADAM17, but not its catalytic activity. The iR2toc mutation did not substantially reduce the levels of mature ADAM17, but instead affected its function in a substrate-selective manner. Our findings provide new insights into the role of the cytoplasmic domain of iR2 in vivo, with implications for the treatment of TOC patients.


Subject(s)
Keratoderma, Palmoplantar, Diffuse , Keratoderma, Palmoplantar , Neoplasms , Animals , Mice , ADAM17 Protein/genetics , ADAM17 Protein/metabolism , Carrier Proteins/genetics , Keratoderma, Palmoplantar/genetics , Membrane Proteins/genetics
5.
Blood ; 139(15): 2392-2405, 2022 04 14.
Article in English | MEDLINE | ID: mdl-34653248

ABSTRACT

The intestinal microbiota is essential for the fermentation of dietary fiber into short-chain fatty acids (SCFA) such as butyrate, acetate, and propionate. SCFAs can bind to the G-protein-coupled receptors GPR43 and GPR109A (HCAR2), with varying affinities to promote cellular effects in metabolism or changes in immune function. We explored the role of GPR109A as the main receptor for butyrate in mouse models of allogeneic hematopoietic cell transplantation (allo-HCT) and graft-versus-host disease (GVHD). Deletion of GPR109A in allo-HCT recipients did not affect GVHD, but transplantation of T cells from GPR109A knockout (KO) (Gpr109a-/-) mice into allo-HCT recipient mice significantly reduced GVHD morbidity and mortality compared with recipients of wild-type (WT) T cells. Recipients of Gpr109a-/- T cells exhibited less GVHD-associated target organ pathology and decreased proliferation and homing of alloreactive T cells to target tissues. Although Gpr109a-/- T cells did not exhibit immune deficits at a steady state, following allo-activation, Gpr109a-/- T cells underwent increased apoptosis and were impaired mitochondrial oxidative phosphorylation, which was reversible through antioxidant treatment with N-acetylcysteine (NAC). In conclusion, we found that GPR109A expression by allo-activated T cells is essential for metabolic homeostasis and expansion, which are necessary features to induce GVHD after allo-HCT.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Animals , Butyrates , Fatty Acids, Volatile/physiology , Mice , T-Lymphocytes
6.
Vet Pathol ; 61(1): 145-156, 2024 01.
Article in English | MEDLINE | ID: mdl-37434451

ABSTRACT

The murine bacterial pathogen Chlamydia muridarum (Cm) has been used to study human Chlamydia infections in various mouse models. CD4+ T-cells, natural killer cells, and interferon-gamma (IFN-γ)-mediated immunity are important to control experimentally induced Cm infections. Despite its experimental use, natural infection by Cm has not been documented in laboratory mice since the 1940s. In 2022, the authors reported the discovery of natural Cm infections in numerous academic institutional laboratory mouse colonies around the globe. To evaluate the impact of Cm infection in severely immunocompromised mice, 19 NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice were cohoused with Cm shedding, naturally infected immunocompetent mice and/or their soiled bedding for 4 weeks and subsequently euthanized. Clinical disease, characterized by lethargy, dyspnea, and weight loss, was observed in 11/19 NSG mice, and 16/18 NSG mice had neutrophilia. All mice exhibited multifocal to coalescing histiocytic and neutrophilic bronchointerstitial pneumonia (17/19) or bronchiolitis (2/19) with intraepithelial chlamydial inclusions (CIs). Immunofluorescence showed CIs were often associated with bronchiolar epithelium. CIs were frequently detected by immunohistochemistry in tracheal and bronchiolar epithelium (19/19), as well as throughout the small and large intestinal epithelium without lesions (19/19). In a subset of cases, Cm colonized the surface epithelium in the nasopharynx (16/19), nasal cavity (7/19), and middle ear canal (5/19). Endometritis and salpingitis with intraepithelial CI were identified in a single mouse. These findings demonstrate that Cm infection acquired through direct contact or soiled bedding causes significant pulmonary pathology and widespread intestinal colonization in NSG mice.


Subject(s)
Chlamydia Infections , Chlamydia muridarum , Pneumonia , Female , Animals , Mice , Humans , Mice, Inbred NOD , Mice, SCID , Chlamydia Infections/veterinary , Chlamydia Infections/microbiology , Pneumonia/veterinary , DNA-Binding Proteins , DNA-Activated Protein Kinase , Interleukin Receptor Common gamma Subunit
7.
Int J Mol Sci ; 25(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892263

ABSTRACT

The cell surface metalloprotease ADAM17 (a disintegrin and metalloprotease 17) and its binding partners iRhom2 and iRhom1 (inactive Rhomboid-like proteins 1 and 2) modulate cell-cell interactions by mediating the release of membrane proteins such as TNFα (Tumor necrosis factor α) and EGFR (Epidermal growth factor receptor) ligands from the cell surface. Most cell types express both iRhoms, though myeloid cells exclusively express iRhom2, and iRhom1 is the main iRhom in the mouse brain. Here, we report that iRhom2 is uniquely expressed in olfactory sensory neurons (OSNs), highly specialized cells expressing one olfactory receptor (OR) from a repertoire of more than a thousand OR genes in mice. iRhom2-/- mice had no evident morphological defects in the olfactory epithelium (OE), yet RNAseq analysis revealed differential expression of a small subset of ORs. Notably, while the majority of ORs remain unaffected in iRhom2-/- OE, OSNs expressing ORs that are enriched in iRhom2-/- OE showed fewer gene expression changes upon odor environmental changes than the majority of OSNs. Moreover, we discovered an inverse correlation between the expression of iRhom2 compared to OSN activity genes and that odor exposure negatively regulates iRhom2 expression. Given that ORs are specialized G-protein coupled receptors (GPCRs) and many GPCRs activate iRhom2/ADAM17, we investigated if ORs could activate iRhom2/ADAM17. Activation of an olfactory receptor that is ectopically expressed in keratinocytes (OR2AT4) by its agonist Sandalore leads to ERK1/2 phosphorylation, likely via an iRhom2/ADAM17-dependent pathway. Taken together, these findings point to a mechanism by which odor stimulation of OSNs activates iRhom2/ADAM17 catalytic activity, resulting in downstream transcriptional changes to the OR repertoire and activity genes, and driving a negative feedback loop to downregulate iRhom2 expression.


Subject(s)
Olfactory Receptor Neurons , Receptors, Odorant , Animals , Receptors, Odorant/metabolism , Receptors, Odorant/genetics , Mice , Olfactory Receptor Neurons/metabolism , Smell/physiology , ADAM17 Protein/metabolism , ADAM17 Protein/genetics , Mice, Knockout , Carrier Proteins/metabolism , Carrier Proteins/genetics , Olfactory Mucosa/metabolism , Gene Expression Regulation , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice, Inbred C57BL , Humans
8.
Proc Natl Acad Sci U S A ; 117(40): 24957-24963, 2020 10 06.
Article in English | MEDLINE | ID: mdl-32963096

ABSTRACT

B lymphocytes acquire self-reactivity as an unavoidable byproduct of antibody gene diversification in the bone marrow and in germinal centers (GCs). Autoreactive B cells emerging from the bone marrow are silenced in a series of well-defined checkpoints, but less is known about how self-reactivity that develops by somatic mutation in GCs is controlled. Here, we report the existence of an apoptosis-dependent tolerance checkpoint in post-GC B cells. Whereas defective GC B cell apoptosis has no measurable effect on autoantibody development, disruption of post-GC apoptosis results in accumulation of autoreactive memory B cells and plasma cells, antinuclear antibody production, and autoimmunity. The data presented shed light on mechanisms that regulate immune tolerance and the development of autoantibodies.


Subject(s)
Apoptosis/genetics , Autoimmunity/genetics , Genes, Immunoglobulin/genetics , Immune Tolerance/genetics , Animals , Antibodies, Antinuclear/immunology , Apoptosis/immunology , Autoantibodies/immunology , Autoimmunity/immunology , B-Lymphocytes/immunology , Genes, Immunoglobulin/immunology , Germinal Center/immunology , Humans , Immunologic Memory/genetics , Immunologic Memory/immunology , Mice , Plasma Cells/immunology
9.
J Biol Chem ; 296: 100733, 2021.
Article in English | MEDLINE | ID: mdl-33957124

ABSTRACT

A disintegrin and metalloprotease 17 (ADAM17) is a cell-surface metalloprotease that serves as the principle sheddase for tumor necrosis factor α (TNFα), interleukin-6 receptor (IL-6R), and several ligands of the epidermal growth factor receptor (EGFR), regulating these crucial signaling pathways. ADAM17 activation requires its transmembrane domain, but not its cytoplasmic domain, and little is known about the role of this domain in vivo. To investigate, we used CRISPR-Cas9 to mutate the endogenous Adam17 locus in mice to produce a mutant ADAM17 lacking its cytoplasmic domain (Adam17Δcyto). Homozygous Adam17Δcyto animals were born at a Mendelian ratio and survived into adulthood with slightly wavy hair and curled whiskers, consistent with defects in ADAM17/EGFR signaling. At birth, Adam17Δcyto mice resembled Adam17-/- mice in that they had open eyes and enlarged semilunar heart valves, but they did not have bone growth plate defects. The deletion of the cytoplasmic domain resulted in strongly decreased ADAM17 protein levels in all tissues and cells examined, providing a likely cause for the hypomorphic phenotype. In functional assays, Adam17Δcyto mouse embryonic fibroblasts and bone-marrow-derived macrophages had strongly reduced ADAM17 activity, consistent with the reduced protein levels. Nevertheless, ADAM17Δcyto could be stimulated by PMA, a well-characterized posttranslational activator of ADAM17, corroborating that the cytoplasmic domain of endogenous ADAM17 is not required for its rapid response to PMA. Taken together, these results provide the first evidence that the cytoplasmic domain of ADAM17 plays a pivotal role in vivo in regulating ADAM17 levels and function.


Subject(s)
ADAM17 Protein/chemistry , ADAM17 Protein/metabolism , Cytoplasm/metabolism , ADAM17 Protein/genetics , Amino Acid Sequence , Animals , Base Sequence , CRISPR-Cas Systems , Female , Fibroblasts/metabolism , Male , Mice , Mice, Inbred C57BL , Phenotype , Protein Domains , Protein Stability , Sequence Deletion
10.
PLoS Pathog ; 16(1): e1008262, 2020 01.
Article in English | MEDLINE | ID: mdl-31971979

ABSTRACT

Mouse kidney parvovirus (MKPV) is a member of the provisional genus Chapparvovirus that causes renal disease in immune-compromised mice, with a disease course reminiscent of polyomavirus-associated nephropathy in immune-suppressed kidney transplant patients. Here we map four major MKPV transcripts, created by alternative splicing, to a common initiator region, and use mass spectrometry to identify "p10" and "p15" as novel chapparvovirus accessory proteins produced in MKPV-infected kidneys. p15 and the splicing-dependent putative accessory protein NS2 are conserved in all near-complete amniote chapparvovirus genomes currently available (from mammals, birds and a reptile). In contrast, p10 may be encoded only by viruses with >60% amino acid identity to MKPV. We show that MKPV is kidney-tropic and that the bat chapparvovirus DrPV-1 and a non-human primate chapparvovirus, CKPV, are also found in the kidneys of their hosts. We propose, therefore, that many mammal chapparvoviruses are likely to be nephrotropic.


Subject(s)
Kidney/virology , Parvoviridae Infections/veterinary , Parvoviridae Infections/virology , Parvovirinae/physiology , Rodent Diseases/virology , Viral Proteins/metabolism , Viral Tropism , Animals , Humans , Mice , Parvovirinae/genetics , Viral Proteins/genetics
11.
Vet Pathol ; 59(1): 120-126, 2022 01.
Article in English | MEDLINE | ID: mdl-34601998

ABSTRACT

Chronic kidney disease (CKD) is a common cause of morbidity and mortality in domestic cats, but the cause is still largely elusive. While some viruses have been associated with this disease, none have been definitively implicated as causative. Recently, Rodent chaphamaparvovirus 1 was recognized as the cause of murine inclusion body nephropathy, a disease reported for over 40 years in laboratory mice. A novel virus belonging to the same genus, Carnivore chaphamaparvovirus 2, was recently identified in the feces of cats with diarrhea. The goal of this study was to investigate the possible role of chaphamaparvoviruses including members of Rodent chaphamaparvovirus 1 and Carnivore chaphamaparvovirus 2 in the development of feline CKD. The presence of these viruses was retrospectively investigated in formalin-fixed paraffin-embedded feline kidney samples using polymerase chain reaction, in situ hybridization, and immunohistochemistry. Cats were divided into 3 groups: normal (N = 24), CKD (N = 26), and immunocompromised (N = 25). None of the kidney tissues from any of the 75 cats revealed the presence of chaphamaparvovirus DNA, RNA, or antigen. We conclude that viruses belonging to the chaphamaparvovirus genus are unlikely to contribute to the occurrence of feline CKD.


Subject(s)
Cat Diseases , Nucleic Acids , Renal Insufficiency, Chronic , Rodent Diseases , Animals , Cats , Kidney , Mice , Polymerase Chain Reaction/veterinary , Renal Insufficiency, Chronic/veterinary , Retrospective Studies
12.
Vet Pathol ; 59(1): 143-151, 2022 01.
Article in English | MEDLINE | ID: mdl-34794345

ABSTRACT

Xanthogranulomatosis is an inflammatory lesion characterized by lipid-containing macrophages, extracellular lipid, hemorrhage, and necrosis. We describe disseminated intracoelomic xanthogranulomatosis in 5 eclectus parrots (Eclectus roratus) and 2 budgerigars (Melopsittacus undulatus). Postmortem, clinicopathologic, and historical case material was reviewed. Ages ranged from 3 to 24 years; there were 5 males and 2 females. Table food was included in the diet of 3/5 cases, and animal products were included in 2/3 cases. Common clinicopathologic abnormalities included leukocytosis (4/5 cases) and elevated concentrations of bile acids (3/4 cases) and cholesterol within 6 months prior to death (2/4 cases). At postmortem examination, all 7 birds had grossly visible, irregular, soft, tan to yellow, amorphous plaques distributed on the surfaces of the viscera and body wall. Histologic evaluation and oil red O stain revealed xanthogranulomatous inflammation with phagocytized and extracellular lipid, necrosis, cholesterol clefts, fibrosis, and mineralization. Infectious agents were not identified with special stains in all cases. Concurrent hepatobiliary disease was present in 6/7 cases, and 6/7 had lipid accumulation within the parenchyma of various visceral organs. Five cases had atherosclerosis of great vessels. We describe a unique form of disseminated coelomic xanthogranulomatosis in 2 psittacine species. This condition should be recognized as a differential diagnosis in cases of disseminated coelomic mass formation and coelomic distension in psittacine birds, particularly in eclectus parrots and budgerigars.


Subject(s)
Bird Diseases , Melopsittacus , Parrots , Animals , Bird Diseases/diagnosis , Diagnosis, Differential , Female , Male
13.
J Res Adolesc ; 32(1): 355-371, 2022 03.
Article in English | MEDLINE | ID: mdl-33645875

ABSTRACT

During runaway episodes, adolescents engage in various high-risk behaviors and are exposed to various dangers. This situation is even more pronounced among runaway youths from residential care centers, given their personal and familial backgrounds that place them at risk. The current study attempted to disentangle the heterogeneous characteristics of runaway youths while considering the adolescent risk-taking literature. A latent profile analysis was performed among 112 runaway youths from residential care centers based on runaway characteristics (number, duration, context of return). The Parent involvement, Independent and Police involvement runaway youth profiles were compared on various characteristics involved in risk-taking, their high-risk behaviors and mental health problems. The clinical implications for these three runaway profiles are discussed.


Subject(s)
Homeless Youth , Runaway Behavior , Adolescent , Homeless Youth/psychology , Humans , Risk-Taking
14.
Minim Invasive Ther Allied Technol ; 31(1): 89-93, 2022 Jan.
Article in English | MEDLINE | ID: mdl-32491939

ABSTRACT

INTRODUCTION: Image-guided non-invasive high-intensity focused ultrasound (HIFU) has been gaining recognition in treating musculoskeletal tumors and desmoids. However, there is no consensus on the appropriate perioperative management for patients on ongoing anticoagulation who undergo HIFU ablation. MATERIAL AND METHODS: Image-guided HIFU treatment was performed in swine on an ongoing oral anticoagulation protocol (N = 5) in two treatment sessions seven days apart. On day one, a total of twenty locations were ablated, and on day eight, ten more muscle ablations were performed, and the animals were euthanized. Imaging, clinical examination, and histopathology were performed to investigate treated tissue for bleeding. RESULTS: Imaging, clinical examination, and histopathology revealed either no bleeding or, in some samples, only small scattered cavities (0.2-2 mm in diameter) filled with blood. CONCLUSION: Noninvasive HIFU ablation of muscle may not require a coagulation profile within normal limits.


Subject(s)
High-Intensity Focused Ultrasound Ablation , Animals , Humans , Muscles , Swine
15.
Bioconjug Chem ; 32(4): 649-654, 2021 04 21.
Article in English | MEDLINE | ID: mdl-33819023

ABSTRACT

Pretargeted imaging and radioimmunotherapy approaches are designed to have superior targeting properties over directly targeted antibodies but impose more complex pharmacology, which hinders efforts to optimize the ligands prior to human applications. Human embryonic kidney 293T cells expressing the humanized single-chain variable fragment (scFv) C825 (huC825) with high-affinity for DOTA-haptens (293T-huC825) in a transmembrane-anchored format eliminated the requirement to use other pretargeting reagents and provided a simplified, accelerated assay of radiohapten capture while offering normalized cell surface expression of the molecular target of interest. Using binding assays, ex vivo biodistribution, and in vivo imaging, we demonstrated that radiohaptens based on benzyl-DOTA and a second generation "Proteus" DOTA-platform effectively and specifically engaged membrane-bound huC825, achieving favorable tumor-to-normal tissue uptake ratios in mice. Furthermore, [86Y]Y-DOTA-Bn predicted absorbed dose to critical organs with reasonable accuracy for both [177Lu]Lu-DOTA-Bn and [225Ac]Ac-Pr, which highlights the benefit of a dosimetry-based treatment approach.


Subject(s)
Cell Engineering , Haptens , Radioimmunotherapy/methods , Radiopharmaceuticals/chemistry , Animals , Autoradiography , HEK293 Cells , Humans , Mice , Positron Emission Tomography Computed Tomography , Radiopharmaceuticals/pharmacokinetics , Tissue Distribution , Xenograft Model Antitumor Assays
16.
J Vasc Interv Radiol ; 32(4): 510-517.e3, 2021 04.
Article in English | MEDLINE | ID: mdl-33500185

ABSTRACT

PURPOSE: To develop and characterize a porcine model of liver cancer that could be used to test new locoregional therapies. MATERIALS AND METHODS: Liver tumors were induced in 18 Oncopigs (transgenic pigs with Cre-inducible TP53R167H and KRASG12D mutations) by using an adenoviral vector encoding the Cre-recombinase gene. The resulting 60 tumors were characterized on multiphase contrast-enhanced CT, angiography, perfusion, micro-CT, and necropsy. Transarterial embolization was performed using 40-120 µm (4 pigs) or 100-300 µm (4 pigs) Embosphere microspheres. Response to embolization was evaluated on imaging. Complications were determined based on daily clinical evaluation, laboratory results, imaging, and necropsy. RESULTS: Liver tumors developed at 60/70 (86%) inoculated sites. Mean tumor size was 2.1 cm (range, 0.3-4 cm) at 1 week. Microscopically, all animals developed poorly differentiated to undifferentiated carcinomas accompanied by a major inflammatory component, which resembled undifferentiated carcinomas of the human pancreatobiliary tract. Cytokeratin and vimentin expression confirmed epithelioid and mesenchymal differentiation, respectively. Lymph node, lung, and peritoneal metastases were seen in some cases. On multiphase CT, all tumors had a hypovascular center, and 17/60 (28%) had a hypervascular rim. After transarterial embolization, noncontrast CT showed retained contrast medium in the tumors. Follow-up contrast-enhanced scan showed reduced size of tumors after embolization using either 40-120 µm or 100-300 µm Embosphere microspheres, while untreated tumors showed continued growth. CONCLUSIONS: Liver tumors can be induced in a transgenic pig and can be successfully treated using bland embolization.


Subject(s)
Acrylic Resins/administration & dosage , Embolization, Therapeutic , Gelatin/administration & dosage , Liver Neoplasms/therapy , Acrylic Resins/toxicity , Animals , Animals, Genetically Modified , Cell Line , Disease Models, Animal , Embolization, Therapeutic/adverse effects , Gelatin/toxicity , Genes, p53 , Genes, ras , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Sus scrofa/genetics , Time Factors , Tumor Burden , X-Ray Microtomography
17.
Blood ; 132(10): 1064-1074, 2018 09 06.
Article in English | MEDLINE | ID: mdl-29776906

ABSTRACT

Hemophilic arthropathy (HA) is a debilitating degenerative joint disease that is a major manifestation of the bleeding disorder hemophilia A. HA typically begins with hemophilic synovitis that resembles inflammatory arthritides, such as rheumatoid arthritis, and frequently results in bone loss in patients. A major cause of rheumatoid arthritis is inappropriate release of the proinflammatory cytokine tumor necrosis factor-α (TNF-α) by the TNF-α convertase (TACE; also referred to as ADAM17) and its regulator, iRhom2. Therefore, we hypothesized that iRhom2/ADAM17-dependent shedding of TNF-α also has a pivotal role in mediating HA. Here, we show that addition of blood or its components to macrophages activates iRhom2/ADAM17-dependent TNF-α shedding, providing the premise to study the activation of this pathway by blood in the joint in vivo. For this, we turned to hemophilic FVIII-deficient mice (F8-/- mice), which develop a hemarthrosis following needle puncture injury with synovial inflammation and significant osteopenia adjacent to the affected joint. We found that needle puncture-induced bleeding leads to increased TNF-α levels in the affected joint of F8-/- mice. Moreover, inactivation of TNF-α or iRhom2 in F8-/- mice reduced the osteopenia and synovial inflammation that develops in this mouse model for HA. Taken together, our results suggest that blood entering the joint activates the iRhom2/ADAM17/TNF-α pathway, thereby contributing to osteopenia and synovitis in mice. Therefore, this proinflammatory signaling pathway could emerge as an attractive new target to prevent osteoporosis and joint damage in HA patients.


Subject(s)
ADAM17 Protein/metabolism , Bone Resorption/metabolism , Carrier Proteins/metabolism , Hemarthrosis/metabolism , Hemophilia A/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism , ADAM17 Protein/genetics , Animals , Bone Resorption/genetics , Bone Resorption/pathology , Carrier Proteins/genetics , Disease Models, Animal , Factor VIII/genetics , Female , Hemarthrosis/genetics , Hemarthrosis/pathology , Hemophilia A/genetics , Hemophilia A/pathology , Mice , Mice, Knockout , Tumor Necrosis Factor-alpha/genetics
18.
J Am Anim Hosp Assoc ; 56(4): 215-225, 2020.
Article in English | MEDLINE | ID: mdl-32412337

ABSTRACT

The purpose of this study was to determine if clinical findings, histologic grade, or other histologic features were associated with clinical outcome in dogs with subcutaneous mast cell tumors (MCTs). Medical records of 43 client-owned dogs were retrospectively reviewed, and follow-up information was gathered via phone or follow-up examination. Progression-free survival (PFS), disease-free interval (DFI), and overall survival were calculated. Forty-two and twenty-two dogs, respectively, had grade 2 (Patnaik grading system) or low-grade tumors (two-tier grading system). Median PFS was 1474 days. Median DFI was not reached at >1968 days. Overall median survival time was not reached at >1968 days. In univariate analysis, argyrophilic nucleolar organizer regions (AgNORs), proliferating cell nuclear antigen, and mitotic index were negatively prognostic for PFS whereas Ki-67, proliferating cell nuclear antigen, and microvessel density were negatively prognostic for DFI. In multivariate analysis, AgNORs remained negatively prognostic for PFS. Results suggest that proliferation indices, especially AgNORs, may be useful in predicting the rare poor outcomes in dogs with subcutaneous MCTs. The vast majority of subcutaneous MCTs appear to be low or intermediate grade with excellent outcomes from good local tumor control.


Subject(s)
Dog Diseases/surgery , Mastocytoma/veterinary , Soft Tissue Neoplasms/veterinary , Animals , Antigens, Nuclear/metabolism , Dog Diseases/pathology , Dogs , Female , Male , Mastocytoma/pathology , Mastocytoma/surgery , Proliferating Cell Nuclear Antigen/metabolism , Retrospective Studies , Risk Factors , Soft Tissue Neoplasms/pathology , Soft Tissue Neoplasms/surgery , Treatment Outcome
19.
Angiogenesis ; 22(2): 237-250, 2019 05.
Article in English | MEDLINE | ID: mdl-30446855

ABSTRACT

The coronary vasculature is crucial for normal heart function, yet much remains to be learned about its development, especially the maturation of coronary arterial endothelium. Here, we show that endothelial inactivation of ADAM10, a key regulator of Notch signaling, leads to defects in coronary arterial differentiation, as evidenced by dysregulated genes related to Notch signaling and arterial identity. Moreover, transcriptome analysis indicated reduced EGFR signaling in A10ΔEC coronary endothelium. Further analysis revealed that A10ΔEC mice have enlarged dysfunctional hearts with abnormal myocardial compaction, and increased expression of venous and immature endothelium markers. These findings provide the first evidence for a potential role for endothelial ADAM10 in cardioprotective homeostatic EGFR signaling and implicate ADAM10/Notch signaling in coronary arterial cell specification, which is vital for normal heart development and function. The ADAM10/Notch signaling pathway thus emerges as a potential therapeutic target for improving the regenerative capacity and maturation of the coronary vasculature.


Subject(s)
ADAM10 Protein/physiology , Amyloid Precursor Protein Secretases/physiology , Cell Differentiation/genetics , Coronary Vessels/physiology , Endothelial Cells/physiology , Endothelium, Vascular/physiology , Membrane Proteins/physiology , Animals , Coronary Vessels/cytology , Coronary Vessels/growth & development , Endothelium, Vascular/growth & development , Female , Heart/growth & development , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Transgenic , Receptors, Notch/genetics , Receptors, Notch/metabolism , Signal Transduction/genetics
20.
J Cell Sci ; 130(5): 868-878, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28104813

ABSTRACT

A disintegrin and metalloproteinase 17 (ADAM17) controls the release of the pro-inflammatory cytokine tumor necrosis factor α (TNFα, also known as TNF) and is crucial for protecting the skin and intestinal barrier by proteolytic activation of epidermal growth factor receptor (EGFR) ligands. The seven-membrane-spanning protein called inactive rhomboid 2 (Rhbdf2; also known as iRhom2) is required for ADAM17-dependent TNFα shedding and crosstalk with the EGFR, and a point mutation (known as sinecure, sin) in the first transmembrane domain (TMD) of Rhbdf2 (Rhbdf2sin) blocks TNFα shedding, yet little is known about the underlying mechanism. Here, we used a structure-function analysis informed by structural modeling to evaluate the interaction between the TMD of ADAM17 and the first TMD of Rhbdf2, and the role of this interaction in Rhbdf2-ADAM17-dependent shedding. Moreover, we show that double mutant mice that are homozygous for Rhbdf2sin/sin and lack Rhbdf1 closely resemble Rhbdf1/2-/- double knockout mice, highlighting the severe functional impact of the Rhbdf2sin/sin mutation on ADAM17 during mouse development. Taken together, these findings provide new mechanistic and conceptual insights into the critical role of the TMDs of ADAM17 and Rhbdf2 in the regulation of the ADAM17 and EGFR, and ADAM17 and TNFα signaling pathways.


Subject(s)
ADAM17 Protein/chemistry , ADAM17 Protein/metabolism , Carrier Proteins/metabolism , Models, Molecular , Proteolysis , Amino Acid Sequence , Amino Acids/metabolism , Animals , Bone Marrow Cells/cytology , Carrier Proteins/chemistry , Carrier Proteins/genetics , Cell Membrane/metabolism , Embryo, Mammalian/cytology , Fibroblasts/metabolism , Growth Plate/metabolism , Heart Valves/metabolism , Macrophages/metabolism , Mice, Inbred C57BL , Mice, Mutant Strains , Molecular Docking Simulation , Molecular Dynamics Simulation , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Mutation/genetics , Protein Binding , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL