Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
Add more filters

Publication year range
1.
J Allergy Clin Immunol ; 154(2): 297-307.e13, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38485057

ABSTRACT

BACKGROUND: MUPPITS-2 was a randomized, placebo-controlled clinical trial that demonstrated mepolizumab (anti-IL-5) reduced exacerbations and blood and airway eosinophils in urban children with severe eosinophilic asthma. Despite this reduction in eosinophilia, exacerbation risk persisted in certain patients treated with mepolizumab. This raises the possibility that subpopulations of airway eosinophils exist that contribute to breakthrough exacerbations. OBJECTIVE: We aimed to determine the effect of mepolizumab on airway eosinophils in childhood asthma. METHODS: Sputum samples were obtained from 53 MUPPITS-2 participants. Airway eosinophils were characterized using mass cytometry and grouped into subpopulations using unsupervised clustering analyses of 38 surface and intracellular markers. Differences in frequency and immunophenotype of sputum eosinophil subpopulations were assessed based on treatment arm and frequency of exacerbations. RESULTS: Median sputum eosinophils were significantly lower among participants treated with mepolizumab compared with placebo (58% lower, 0.35% difference [95% CI 0.01, 0.74], P = .04). Clustering analysis identified 3 subpopulations of sputum eosinophils with varied expression of CD62L. CD62Lint and CD62Lhi eosinophils exhibited significantly elevated activation marker and eosinophil peroxidase expression, respectively. In mepolizumab-treated participants, CD62Lint and CD62Lhi eosinophils were more abundant in participants who experienced exacerbations than in those who did not (100% higher for CD62Lint, 0.04% difference [95% CI 0.0, 0.13], P = .04; 93% higher for CD62Lhi, 0.21% difference [95% CI 0.0, 0.77], P = .04). CONCLUSIONS: Children with eosinophilic asthma treated with mepolizumab had significantly lower sputum eosinophils. However, CD62Lint and CD62Lhi eosinophils were significantly elevated in children on mepolizumab who had exacerbations, suggesting that eosinophil subpopulations exist that contribute to exacerbations despite anti-IL-5 treatment.


Subject(s)
Anti-Asthmatic Agents , Antibodies, Monoclonal, Humanized , Asthma , Eosinophils , Sputum , Humans , Antibodies, Monoclonal, Humanized/therapeutic use , Eosinophils/immunology , Child , Sputum/cytology , Sputum/immunology , Male , Female , Asthma/drug therapy , Asthma/immunology , Anti-Asthmatic Agents/therapeutic use , Adolescent , Interleukin-5 , Disease Progression
2.
J Clin Immunol ; 44(2): 44, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38231408

ABSTRACT

Defining monogenic drivers of autoinflammatory syndromes elucidates mechanisms of disease in patients with these inborn errors of immunity and can facilitate targeted therapeutic interventions. Here, we describe a cohort of patients with a Behçet's- and inflammatory bowel disease (IBD)-like disorder termed "deficiency in ELF4, X-linked" (DEX) affecting males with loss-of-function variants in the ELF4 transcription factor gene located on the X chromosome. An international cohort of fourteen DEX patients was assessed to identify unifying clinical manifestations and diagnostic criteria as well as collate findings informing therapeutic responses. DEX patients exhibit a heterogeneous clinical phenotype including weight loss, oral and gastrointestinal aphthous ulcers, fevers, skin inflammation, gastrointestinal symptoms, arthritis, arthralgia, and myalgia, with findings of increased inflammatory markers, anemia, neutrophilic leukocytosis, thrombocytosis, intermittently low natural killer and class-switched memory B cells, and increased inflammatory cytokines in the serum. Patients have been predominantly treated with anti-inflammatory agents, with the majority of DEX patients treated with biologics targeting TNFα.


Subject(s)
Arthritis , Behcet Syndrome , Biological Products , Inflammatory Bowel Diseases , Male , Humans , Behcet Syndrome/diagnosis , Behcet Syndrome/genetics , Inflammatory Bowel Diseases/diagnosis , Inflammatory Bowel Diseases/genetics , Arthralgia , DNA-Binding Proteins , Transcription Factors/genetics
3.
PLoS Biol ; 19(3): e3001143, 2021 03.
Article in English | MEDLINE | ID: mdl-33730024

ABSTRACT

There are currently limited Food and Drug Administration (FDA)-approved drugs and vaccines for the treatment or prevention of Coronavirus Disease 2019 (COVID-19). Enhanced understanding of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection and pathogenesis is critical for the development of therapeutics. To provide insight into viral replication, cell tropism, and host-viral interactions of SARS-CoV-2, we performed single-cell (sc) RNA sequencing (RNA-seq) of experimentally infected human bronchial epithelial cells (HBECs) in air-liquid interface (ALI) cultures over a time course. This revealed novel polyadenylated viral transcripts and highlighted ciliated cells as a major target at the onset of infection, which we confirmed by electron and immunofluorescence microscopy. Over the course of infection, the cell tropism of SARS-CoV-2 expands to other epithelial cell types including basal and club cells. Infection induces cell-intrinsic expression of type I and type III interferons (IFNs) and interleukin (IL)-6 but not IL-1. This results in expression of interferon-stimulated genes (ISGs) in both infected and bystander cells. This provides a detailed characterization of genes, cell types, and cell state changes associated with SARS-CoV-2 infection in the human airway.


Subject(s)
Bronchi/pathology , COVID-19/diagnosis , Gene Expression , SARS-CoV-2/isolation & purification , Single-Cell Analysis/methods , Adult , Bronchi/virology , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Cells, Cultured , Epithelium/pathology , Epithelium/virology , Humans , Immunity, Innate , Longitudinal Studies , SARS-CoV-2/genetics , Transcriptome , Viral Tropism
4.
J Infect Dis ; 228(Suppl 6): S398-S413, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37849402

ABSTRACT

Flaviviruses are a genus within the Flaviviridae family of positive-strand RNA viruses and are transmitted principally through mosquito and tick vectors. These viruses are responsible for hundreds of millions of human infections worldwide per year that result in a range of illnesses from self-limiting febrile syndromes to severe neurotropic and viscerotropic diseases and, in some cases, death. A vaccine against the prototype flavivirus, yellow fever virus, has been deployed for 85 years and is highly effective. While vaccines against some medically important flaviviruses are available, others have proven challenging to develop. The emergence and spread of flaviviruses, including dengue virus and Zika virus, demonstrate their pandemic potential. This review highlights the gaps in knowledge that need to be addressed to allow for the rapid development of vaccines against emerging flaviviruses in the future.


Subject(s)
Flavivirus Infections , Flavivirus , Vaccines , Zika Virus Infection , Zika Virus , Animals , Humans , Flavivirus Infections/prevention & control , Mosquito Vectors , Zika Virus Infection/prevention & control
5.
Immunity ; 37(5): 771-83, 2012 Nov 16.
Article in English | MEDLINE | ID: mdl-23159225

ABSTRACT

Given the "inborn" nature of the innate immune system, it is surprising to find that innate immune function does in fact change with age. Similar patterns of distinct Toll-like-receptor-mediated immune responses come to light when one contrasts innate immune development at the beginning of life with that toward the end of life. Importantly, these developmental patterns of innate cytokine responses correlate with clinical patterns of susceptibility to disease: A heightened risk of suffering from excessive inflammation is often detected in prematurely born infants, disappears over the first few months of life, and reappears toward the end of life. In addition, risk periods for particular infections in early life reemerge in older adults. The near-mirror-image patterns that emerge in contrasts of early versus late innate immune ontogeny emphasize changes in host-environment interactions as the underlying molecular and teleologic drivers.


Subject(s)
Cytokines/immunology , Immunity, Innate/immunology , Toll-Like Receptors/immunology , Age Factors , Aged , Disease Susceptibility , Humans , Infant, Newborn
6.
Am J Respir Crit Care Med ; 202(10): 1419-1429, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32603604

ABSTRACT

Rationale: Cystic fibrosis (CF) is a life-shortening, multisystem hereditary disease caused by abnormal chloride transport. CF lung disease is driven by innate immune dysfunction and exaggerated inflammatory responses that contribute to tissue injury. To define the transcriptional profile of this airway immune dysfunction, we performed the first single-cell transcriptome characterization of CF sputum.Objectives: To define the transcriptional profile of sputum cells and its implication in the pathogenesis of immune function and the development of CF lung disease.Methods: We performed single-cell RNA sequencing of sputum cells from nine subjects with CF and five healthy control subjects. We applied novel computational approaches to define expression-based cell function and maturity profiles, herein called transcriptional archetypes.Measurements and Main Results: The airway immune cell repertoire shifted from alveolar macrophages in healthy control subjects to a predominance of recruited monocytes and neutrophils in CF. Recruited lung mononuclear phagocytes were abundant in CF and were separated into the following three archetypes: activated monocytes, monocyte-derived macrophages, and heat shock-activated monocytes. Neutrophils were the most prevalent in CF, with a dominant immature proinflammatory archetype. Although CF monocytes exhibited proinflammatory features, both monocytes and neutrophils showed transcriptional evidence of abnormal phagocytic and cell-survival programs.Conclusions: Our findings offer an opportunity to understand subject-specific immune dysfunction and its contribution to divergent clinical courses in CF. As we progress toward personalized applications of therapeutic and genomic developments, we hope this inflammation-profiling approach will enable further discoveries that change the natural history of CF lung disease.


Subject(s)
Airway Resistance/genetics , Cystic Fibrosis/genetics , Cystic Fibrosis/physiopathology , Inflammation/genetics , Inflammation/physiopathology , Transcriptional Activation/genetics , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Single-Cell Analysis
7.
Nucleic Acids Res ; 47(W1): W142-W150, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31114925

ABSTRACT

Humans vary considerably both in their baseline and activated immune phenotypes. We developed a user-friendly open-access web portal, ImmuneRegulation, that enables users to interactively explore immune regulatory elements that drive cell-type or cohort-specific gene expression levels. ImmuneRegulation currently provides the largest centrally integrated resource on human transcriptome regulation across whole blood and blood cell types, including (i) ∼43,000 genotyped individuals with associated gene expression data from ∼51,000 experiments, yielding genetic variant-gene expression associations on ∼220 million eQTLs; (ii) 14 million transcription factor (TF)-binding region hits extracted from 1945 ChIP-seq studies; and (iii) the latest GWAS catalog with 67,230 published variant-trait associations. Users can interactively explore associations between queried gene(s) and their regulators (cis-eQTLs, trans-eQTLs or TFs) across multiple cohorts and studies. These regulators may explain genotype-dependent gene expression variations and be critical in selecting the ideal cohorts or cell types for follow-up studies or in developing predictive models. Overall, ImmuneRegulation significantly lowers the barriers between complex immune regulation data and researchers who want rapid, intuitive and high-quality access to the effects of regulatory elements on gene expression in multiple studies to empower investigators in translating these rich data into biological insights and clinical applications, and is freely available at https://immuneregulation.mssm.edu.


Subject(s)
Blood Cells/immunology , Immune System , Internet , Regulatory Sequences, Nucleic Acid/genetics , Transcriptome/genetics , Web Browser , Databases, Genetic , Gene Expression Profiling , Genome-Wide Association Study , Humans , Immunity/genetics
8.
Proc Natl Acad Sci U S A ; 114(45): E9626-E9634, 2017 11 07.
Article in English | MEDLINE | ID: mdl-29078283

ABSTRACT

Immunodeficient mice reconstituted with a human immune system represent a promising tool for translational research as they may allow modeling and therapy of human diseases in vivo. However, insufficient development and function of human natural killer (NK) cells and T cell subsets limit the applicability of humanized mice for studying cancer biology and therapy. Here, we describe a human interleukin 15 (IL15) and human signal regulatory protein alpha (SIRPA) knock-in mouse on a Rag2-/- Il2rg-/- background (SRG-15). Transplantation of human hematopoietic stem and progenitor cells into SRG-15 mice dramatically improved the development and functional maturation of circulating and tissue-resident human NK and CD8+ T cells and promoted the development of tissue-resident innate lymphoid cell (ILC) subsets. Profiling of human NK cell subsets by mass cytometry revealed a highly similar expression pattern of killer inhibitory receptors and other candidate molecules in NK cell subpopulations between SRG-15 mice and humans. In contrast to nonobese diabetic severe combined immunodeficient Il2rg-/- (NSG) mice, human NK cells in SRG-15 mice did not require preactivation but infiltrated a Burkitt's lymphoma xenograft and efficiently inhibited tumor growth following treatment with the therapeutic antibody rituximab. Our humanized mouse model may thus be useful for preclinical testing of novel human NK cell-targeted and combinatory cancer immunotherapies and for studying how they elicit human antitumor immune responses in vivo.


Subject(s)
Killer Cells, Natural/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , Disease Models, Animal , Humans , Immunity, Innate/immunology , Interleukin Receptor Common gamma Subunit/immunology , Interleukin-15/immunology , Lymphocytes/immunology , Mice , Mice, SCID , Receptors, Immunologic/immunology , Rituximab/immunology
9.
Clin Immunol ; 200: 24-30, 2019 03.
Article in English | MEDLINE | ID: mdl-30659916

ABSTRACT

We investigated the effect of aging on the multi-dimensional characteristics and heterogeneity of human peripheral CD8+ T cells defined by the expression of a set of molecules at the single cell level using the recently developed mass cytometry or Cytometry by Time-Of-Flight (CyTOF) and computational algorithms. CD8+ T cells of young and older adults had differential expression of molecules, especially those related to cell activation and migration, permitting the clustering of young and older adults through an unbiased approach. The changes in the expression of individual molecules were collectively reflected in the altered high-dimensional profiles of CD8+ T cells in older adults as visualized by the dimensionality reduction analysis tools principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE). A combination of PhenoGraph clustering and t-SNE analysis revealed heterogeneous subsets of CD8+ T cells that altered with aging. Furthermore, intermolecular quantitative relationships in CD8+ T cells appeared to change with age as determined by the computational algorithm conditional-Density Resampled Estimate of Mutual Information (DREMI). The results of our study showed that heterogeneity, multidimensional characteristics, and intermolecular quantitative relationships in human CD8+ T cells altered with age, distinctively clustering young and older adults through an unbiased approach.


Subject(s)
Aging/immunology , CD8-Positive T-Lymphocytes/immunology , T-Lymphocyte Subsets/immunology , Adult , Aged , Aging/metabolism , Algorithms , CD8-Positive T-Lymphocytes/metabolism , Cell Movement , Cluster Analysis , Female , Flow Cytometry , Humans , Lymphocyte Activation , Male , Principal Component Analysis , Single-Cell Analysis , T-Lymphocyte Subsets/metabolism , Young Adult
11.
Cytometry A ; 95(9): 1019-1030, 2019 09.
Article in English | MEDLINE | ID: mdl-31364278

ABSTRACT

Mass cytometry is a powerful tool for high-dimensional single cell characterization. Since the introduction of the first commercial CyTOF mass cytometer by DVS Sciences in 2009, mass cytometry technology has matured and become more widely utilized, with sequential platform upgrades designed to address specific limitations and to expand the capabilities of the platform. Fluidigm's third-generation Helios mass cytometer introduced a number of upgrades over the previous CyTOF2. One of these new features is a modified narrow bore sample injector that generates smaller ion clouds, which is expected to improve sensitivity and throughput. However, following rigorous testing, we find that the narrow-bore sample injector may have unintended negative consequences on data quality and result in lower median and higher coefficients of variation in many antibody-associated signal intensities. We describe an alternative Helios acquisition protocol using a wider bore injector, which largely mitigates these data quality issues. We directly compare these two protocols in a multisite study of 10 Helios instruments across 7 institutions and show that the modified protocol improves data quality and reduces interinstrument variability. These findings highlight and address an important source of technical variability in mass cytometry experiments that is of particular relevance in the setting of multicenter studies. © 2019 International Society for Advancement of Cytometry.


Subject(s)
Flow Cytometry/methods , Single-Cell Analysis/instrumentation , Antibodies , Flow Cytometry/instrumentation , Humans , Immunophenotyping/standards , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/metabolism , Lymphocytes/cytology , Lymphocytes/metabolism , Reproducibility of Results , Single-Cell Analysis/methods
12.
Bioinformatics ; 33(21): 3423-3430, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-29036374

ABSTRACT

MOTIVATION: Mass cytometry or CyTOF is an emerging technology for high-dimensional multiparameter single cell analysis that overcomes many limitations of fluorescence-based flow cytometry. New methods for analyzing CyTOF data attempt to improve automation, scalability, performance and interpretation of data generated in large studies. Assigning individual cells into discrete groups of cell types (gating) involves time-consuming sequential manual steps, untenable for larger studies. RESULTS: We introduce DeepCyTOF, a standardization approach for gating, based on deep learning techniques. DeepCyTOF requires labeled cells from only a single sample. It is based on domain adaptation principles and is a generalization of previous work that allows us to calibrate between a target distribution and a source distribution in an unsupervised manner. We show that DeepCyTOF is highly concordant (98%) with cell classification obtained by individual manual gating of each sample when applied to a collection of 16 biological replicates of primary immune blood cells, even when measured across several instruments. Further, DeepCyTOF achieves very high accuracy on the semi-automated gating challenge of the FlowCAP-I competition as well as two CyTOF datasets generated from primary immune blood cells: (i) 14 subjects with a history of infection with West Nile virus (WNV), (ii) 34 healthy subjects of different ages. We conclude that deep learning in general, and DeepCyTOF specifically, offers a powerful computational approach for semi-automated gating of CyTOF and flow cytometry data. AVAILABILITY AND IMPLEMENTATION: Our codes and data are publicly available at https://github.com/KlugerLab/deepcytof.git. CONTACT: yuval.kluger@yale.edu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Computational Biology/methods , Flow Cytometry/standards , Machine Learning , Single-Cell Analysis/standards , Blood Cells/classification , Calibration/standards , Cell Separation/standards , Humans , Reference Standards , Reproducibility of Results
13.
PLoS Pathog ; 12(11): e1005943, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27812211

ABSTRACT

Leptospirosis causes significant morbidity and mortality worldwide; however, the role of the host immune response in disease progression and high case fatality (>10-50%) is poorly understood. We conducted a multi-parameter investigation of patients with acute leptospirosis to identify mechanisms associated with case fatality. Whole blood transcriptional profiling of 16 hospitalized Brazilian patients with acute leptospirosis (13 survivors, 3 deceased) revealed fatal cases had lower expression of the antimicrobial peptide, cathelicidin, and chemokines, but more abundant pro-inflammatory cytokine receptors. In contrast, survivors generated strong adaptive immune signatures, including transcripts relevant to antigen presentation and immunoglobulin production. In an independent cohort (23 survivors, 22 deceased), fatal cases had higher bacterial loads (P = 0.0004) and lower anti-Leptospira antibody titers (P = 0.02) at the time of hospitalization, independent of the duration of illness. Low serum cathelicidin and RANTES levels during acute illness were independent risk factors for higher bacterial loads (P = 0.005) and death (P = 0.04), respectively. To investigate the mechanism of cathelicidin in patients surviving acute disease, we administered LL-37, the active peptide of cathelicidin, in a hamster model of lethal leptospirosis and found it significantly decreased bacterial loads and increased survival. Our findings indicate that the host immune response plays a central role in severe leptospirosis disease progression. While drawn from a limited study size, significant conclusions include that poor clinical outcomes are associated with high systemic bacterial loads, and a decreased antibody response. Furthermore, our data identified a key role for the antimicrobial peptide, cathelicidin, in mounting an effective bactericidal response against the pathogen, which represents a valuable new therapeutic approach for leptospirosis.


Subject(s)
Antimicrobial Cationic Peptides/immunology , Antimicrobial Cationic Peptides/metabolism , Leptospirosis/immunology , Animals , Brazil , Cluster Analysis , Cricetinae , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Humans , Mesocricetus , Oligonucleotide Array Sequence Analysis , Risk Factors , Cathelicidins
14.
Immunity ; 30(2): 242-53, 2009 Feb 20.
Article in English | MEDLINE | ID: mdl-19200759

ABSTRACT

West Nile virus (WNV), a mosquito-transmitted single-stranded RNA (ssRNA) flavivirus, causes human disease of variable severity. We investigated Toll-like receptor 7-deficient (Tlr7(-/-)) and myeloid differentiation factor 88-deficient (Myd88(-/-)) mice, which both have defective recognition of ssRNA, and found increased viremia and susceptibility to lethal WNV infection. Despite increased tissue concentrations of most innate cytokines, CD45(+) leukocytes and CD11b(+) macrophages failed to home to WNV-infected cells and infiltrate into target organs of Tlr7(-/-) mice. Tlr7(-/-) mice and macrophages had reduced interleukin-12 (IL-12) and IL-23 responses after WNV infection, and mice deficient in IL-12 p40 and IL-23 p40 (Il12b(-/-)) or IL-23 p19 (Il23a(-/-)), but not IL-12 p35 (Il12a(-/-)), responded similarly to Tlr7(-/-) mice, with increased susceptibility to lethal WNV encephalitis. Collectively, these results demonstrate that TLR7 and IL-23-dependent WNV responses represent a vital host defense mechanism that operates by affecting immune cell homing to infected target cells.


Subject(s)
Cell Movement/immunology , Membrane Glycoproteins/metabolism , Toll-Like Receptor 7/metabolism , West Nile Fever/immunology , West Nile Fever/metabolism , Animals , Cytokines/immunology , Disease Susceptibility , Interleukin-23/deficiency , Interleukin-23/genetics , Interleukin-23/metabolism , Macrophages/cytology , Macrophages/immunology , Membrane Glycoproteins/deficiency , Membrane Glycoproteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid Differentiation Factor 88/deficiency , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Signal Transduction/immunology , Toll-Like Receptor 7/deficiency , Toll-Like Receptor 7/genetics , West Nile Fever/genetics , West Nile Fever/virology
15.
BMC Infect Dis ; 18(1): 282, 2018 06 22.
Article in English | MEDLINE | ID: mdl-29929468

ABSTRACT

BACKGROUND: Dengue and West Nile viruses are highly cross-reactive and have numerous parallels in geography, potential vector host (Aedes family of mosquitoes), and initial symptoms of infection. While the vast majority (> 80%) of both dengue and West Nile virus infections result in asymptomatic infections, a minority of individuals experience symptomatic infection and an even smaller proportion develop severe disease. The mechanisms by which these infections lead to severe disease in a subset of infected individuals is incompletely understood, but individual host differences including genetic factors and immune responses have been proposed. We sought to identify genetic risk factors that are associated with more severe disease outcomes for both viruses in order to shed light on possible shared mechanisms of resistance and potential therapeutic interventions. METHODS: We applied a search strategy using four major databases (Medline, PubMed, Embase, and Global Health) to find all known genetic associations identified to date with dengue or West Nile virus disease. Here we present a review of our findings and a meta-analysis of genetic variants identified. RESULTS: We found genetic variations that are significantly associated with infections of these viruses. In particular we found variation within the OAS1 (meta-OR = 0.83, 95% CI: 0.69-1.00) and CCR5 (meta-OR = 1.29, 95% CI: 1.08-1.53) genes is significantly associated with West Nile virus disease, while variation within MICB (meta-OR = 2.35, 95% CI: 1.68-3.29), PLCE1 (meta-OR = 0.55, 95% CI: 0.42-0.71), MBL2 (meta-OR = 1.54, 95% CI: 1.02-2.31), and IFN-γ (meta-OR = 2.48, 95% CI: 1.30-4.71), is associated with dengue disease. CONCLUSIONS: Despite substantial heterogeneity in populations studied, genes examined, and methodology, significant associations with genetic variants were found across studies within both diseases. These gene associations suggest a key role for immune mechanisms in susceptibility to severe disease. Further research is needed to elucidate the role of these genes in disease pathogenesis and may reveal additional genetic factors associated with disease severity.


Subject(s)
Dengue/genetics , West Nile Fever/genetics , 2',5'-Oligoadenylate Synthetase/genetics , Genetic Predisposition to Disease , Histocompatibility Antigens Class I/genetics , Humans , Interferon-gamma/genetics , Mannose-Binding Lectin/genetics , Phosphoinositide Phospholipase C/genetics , Receptors, CCR5/genetics
16.
Proc Natl Acad Sci U S A ; 112(47): E6535-43, 2015 Nov 24.
Article in English | MEDLINE | ID: mdl-26554018

ABSTRACT

Copy number variations (CNVs) have been implicated in human diseases. However, it remains unclear how they affect immune dysfunction and autoimmune diseases, including rheumatoid arthritis (RA). Here, we identified a novel leukocyte-specific protein 1 (LSP1) deletion variant for RA susceptibility located in 11p15.5. We replicated that the copy number of LSP1 gene is significantly lower in patients with RA, which correlates positively with LSP1 protein expression levels. Differentially expressed genes in Lsp1-deficient primary T cells represent cell motility and immune and cytokine responses. Functional assays demonstrated that LSP1, induced by T-cell receptor activation, negatively regulates T-cell migration by reducing ERK activation in vitro. In mice with T-cell-dependent chronic inflammation, loss of Lsp1 promotes migration of T cells into the target tissues as well as draining lymph nodes, exacerbating disease severity. Moreover, patients with RA show diminished expression of LSP1 in peripheral T cells with increased migratory capacity, suggesting that the defect in LSP1 signaling lowers the threshold for T-cell activation. To our knowledge, our work is the first to demonstrate how CNVs result in immune dysfunction and a disease phenotype. Particularly, our data highlight the importance of LSP1 CNVs and LSP1 insufficiency in the pathogenesis of RA and provide previously unidentified insights into the mechanisms underlying T-cell migration toward the inflamed synovium in RA.


Subject(s)
Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/pathology , Calcium-Binding Proteins/metabolism , Cell Movement , Microfilament Proteins/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/pathology , Animals , Arthritis, Experimental/immunology , Arthritis, Experimental/pathology , Arthritis, Rheumatoid/genetics , Calcium-Binding Proteins/deficiency , Cells, Cultured , Chronic Disease , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Dosage , Gene Expression Profiling , Genetic Predisposition to Disease , Humans , Hypersensitivity, Delayed/immunology , Hypersensitivity, Delayed/pathology , Inflammation/pathology , Mice , Microfilament Proteins/genetics , Phosphorylation , Receptors, Antigen, T-Cell/metabolism
17.
Emerg Infect Dis ; 23(4): 708-710, 2017 04.
Article in English | MEDLINE | ID: mdl-28322715

ABSTRACT

West Nile virus (WNV) infection is mainly asymptomatic but can be severe in elderly persons. As part of studies on immunity and aging in Connecticut, USA, we detected WNV seroconversion in 8.5% of nonimmunosuppressed and 16.8% of immunosuppressed persons. Age was not a significant seroconversion factor. Our findings suggest that immune factors affect seroconversion.


Subject(s)
Antibodies, Viral/blood , Seroepidemiologic Studies , West Nile Fever/blood , Adult , Aged , Connecticut/epidemiology , Female , Humans , Immunocompromised Host , Male , Middle Aged , Risk Factors
18.
J Immunol ; 195(6): 2861-9, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26276874

ABSTRACT

DNA methylation is an epigenetic mechanism that modulates gene expression in mammalian cells including T cells. Memory T cells are heterogeneous populations. Human effector memory (EM) CD8(+) T cells in peripheral blood contain two cell subsets with distinct traits that express low and high levels of the IL-7Rα. However, epigenetic mechanisms involved in defining such cellular traits are largely unknown. In this study, we use genome-wide DNA methylation and individual gene expression to show the possible role of DNA methylation in conferring distinct traits of chemotaxis and inflammatory responses in human IL-7Rα(low) and IL-7Rα(high) EM CD8(+) T cells. In particular, IL-7Rα(low) EM CD8(+) T cells had increased expression of CX3CR1 along with decreased DNA methylation in the CX3CR1 gene promoter compared with IL-7Rα(high) EM CD8(+) T cells. Altering the DNA methylation status of the CX3CR1 gene promoter changed its activity and gene expression. IL-7Rα(low) EM CD8(+) T cells had an increased migratory capacity to the CX3CR1 ligand fractalkine compared with IL-7Rα(high) EM CD8(+) T cells, suggesting an important biological outcome of the differential expression of CX3CR1. Moreover, IL-7Rα(low) EM CD8(+) T cells induced fractalkine expression on endothelial cells by producing IFN-γ and TNF-α, forming an autocrine amplification loop. Overall, our study shows the role of DNA methylation in generating unique cellular traits in human IL-7Rα(low) and IL-7Rα(high) EM CD8(+) T cells, including differential expression of CX3CR1, as well as potential biological implications of this differential expression.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Chemokine CX3CL1/immunology , DNA Methylation/genetics , Receptors, Chemokine/biosynthesis , Receptors, Interleukin-7/metabolism , CD8-Positive T-Lymphocytes/immunology , CX3C Chemokine Receptor 1 , Cell Adhesion/genetics , Cells, Cultured , Chemotaxis/genetics , Chemotaxis/immunology , Humans , Immunologic Memory/immunology , Interferon-gamma/metabolism , Promoter Regions, Genetic/genetics , T-Lymphocyte Subsets/immunology , Tumor Necrosis Factor-alpha/metabolism
19.
Cytokine ; 78: 51-4, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26638028

ABSTRACT

Infection with mosquito-borne West Nile virus (WNV) is usually asymptomatic but can lead to severe WNV encephalitis. The innate cytokine, macrophage migration inhibitory factor (MIF), is elevated in patients with WNV encephalitis and promotes viral neuroinvasion and mortality in animal models. In a case-control study, we examined functional polymorphisms in the MIF locus in a cohort of 454 North American patients with neuroinvasive WNV disease and found patients homozygous for high-expression MIF alleles to be >20-fold (p=0.008) more likely to have WNV encephalitis. These data indicate that MIF is an important determinant of severity of WNV neuropathogenesis and may be a therapeutic target.


Subject(s)
Alleles , Intramolecular Oxidoreductases/genetics , Macrophage Migration-Inhibitory Factors/genetics , West Nile Fever/immunology , Adult , Aged , Case-Control Studies , Female , Gene Expression , Genetic Association Studies , Genetic Predisposition to Disease , Genotype , Humans , Male , Middle Aged , West Nile Fever/complications , West Nile Fever/genetics , West Nile Fever/virology , West Nile virus/immunology , West Nile virus/pathogenicity , Young Adult
20.
Am J Respir Crit Care Med ; 190(12): 1383-94, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25390970

ABSTRACT

RATIONALE: Cytokine receptors can be markers defining different T-cell subsets and considered as therapeutic targets. The association of IL-6 and IL-6 receptor α (IL-6Rα) with asthma was reported, suggesting their involvement in asthma. OBJECTIVES: To determine whether and how IL-6Rα defines a distinct effector memory (EM) CD8+ T-cell population in health and disease. METHODS: EM CD8+ T cells expressing IL-6Rα (IL-6Rα(high)) were identified in human peripheral blood and analyzed for function, gene, and transcription factor expression. The relationship of these cells with asthma was determined using blood and sputum. MEASUREMENTS AND MAIN RESULTS: A unique population of IL-6Rα(high) EM CD8+ T cells was found in peripheral blood. These cells that potently proliferated, survived, and produced high levels of the Th2-type cytokines IL-5 and IL-13 had increased levels of GATA3 and decreased levels of T-bet and Blimp-1 in comparison with other EM CD8+ T cells. In fact, GATA3 was required for IL-6Rα expression. Patients with asthma had an increased frequency of IL-6Rα(high) EM CD8+ T cells in peripheral blood compared with healthy control subjects. Also, IL-6Rα(high) EM CD8+ T cells exclusively produced IL-5 and IL-13 in response to asthma-associated respiratory syncytial virus and bacterial superantigens. CONCLUSIONS: Human IL-6Rα(high) EM CD8+ T cells is a unique cell subset that may serve as a reservoir for effector CD8+ T cells, particularly the ones producing Th2-type cytokines, and expand in asthma.


Subject(s)
Asthma/physiopathology , CD8-Positive T-Lymphocytes/physiology , Interleukin-13/physiology , Interleukin-5/physiology , Interleukin-6 Receptor alpha Subunit/physiology , Female , Flow Cytometry , Fluorescent Antibody Technique , Humans , Male , Middle Aged , Oligonucleotide Array Sequence Analysis , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL