Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 228
Filter
Add more filters

Publication year range
1.
Clin Infect Dis ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836601

ABSTRACT

BACKGROUND: Data on the true prevalence of RSV among medically-attended acute respiratory illnesses (MAARI) has been limited by the lack of regular clinical testing of mild to moderate illnesses. Here we present a prospective evaluation of the epidemiology of RSV-associated MAARI across age groups and multimorbidity status over three seasons, which is informative in light of the recommendations for shared decision-making for vaccination in older adults. METHODS: Ambulatory patients ≥6 months of age meeting a common MAARI case definition were prospectively enrolled in the Michigan Ford Influenza Vaccine Effectiveness (MFIVE) study, a subsite of the US Influenza Vaccine Effectiveness Network. All participants were tested by nasal-throat swab for RSV and influenza, including subtype, independently from clinician-directed testing. Participant illness characteristics and calculated Multimorbidity-Weighted Index (MWI) were collected by in-person survey and electronic medical record review. RESULTS: Over three surveillance seasons (fall 2017 to spring 2020), 9.9% (n=441) of 4,442 participants had RSV detected. RSV-associated MAARI was more prevalent than influenza for participants 6 months-4 years of age. Adults with RSV-MAARI had higher median MWI scores overall compared to influenza-MAARI and controls with neither virus (1.62, 0.40, and 0.64, respectively). CONCLUSIONS: RSV is a significant, underrecognized cause of MAARI in both children and adults presenting for ambulatory care. Multimorbidity is an important contributor to RSV-associated MAARI in outpatient adults, providing information to support shared clinical decision-making for vaccination.

2.
BMC Infect Dis ; 24(1): 300, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38454352

ABSTRACT

BACKGROUND: Symptoms of COVID-19 including fatigue and dyspnea, may persist for weeks to months after SARS-CoV-2 infection. This study compared self-reported disability among SARS-CoV-2-positive and negative persons with mild to moderate COVID-19-like illness who presented for outpatient care before widespread COVID-19 vaccination. METHODS: Unvaccinated adults with COVID-19-like illness enrolled within 10 days of illness onset at three US Flu Vaccine Effectiveness Network sites were tested for SARS-CoV-2 by molecular assay. Enrollees completed an enrollment questionnaire and two follow-up surveys (7-24 days and 2-7 months after illness onset) online or by phone to assess illness characteristics and health status. The second follow-up survey included questions measuring global health, physical function, fatigue, and dyspnea. Scores in the four domains were compared by participants' SARS-CoV-2 test results in univariate analysis and multivariable Gamma regression. RESULTS: During September 22, 2020 - February 13, 2021, 2712 eligible adults were enrolled, 1541 completed the first follow-up survey, and 650 completed the second follow-up survey. SARS-CoV-2-positive participants were more likely to report fever at acute illness but were otherwise comparable to SARS-CoV-2-negative participants. At first follow-up, SARS-CoV-2-positive participants were less likely to have reported fully or mostly recovered from their illness compared to SARS-CoV-2-negative participants. At second follow-up, no differences by SARS-CoV-2 test results were detected in the four domains in the multivariable model. CONCLUSION: Self-reported disability was similar among outpatient SARS-CoV-2-positive and -negative adults 2-7 months after illness onset.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Humans , Outpatients , COVID-19/diagnosis , COVID-19 Testing , COVID-19 Vaccines , Dyspnea , Fatigue
3.
JAMA ; 331(5): 408-416, 2024 02 06.
Article in English | MEDLINE | ID: mdl-38319331

ABSTRACT

Importance: Bivalent mRNA COVID-19 vaccines were recommended in the US for children and adolescents aged 12 years or older on September 1, 2022, and for children aged 5 to 11 years on October 12, 2022; however, data demonstrating the effectiveness of bivalent COVID-19 vaccines are limited. Objective: To assess the effectiveness of bivalent COVID-19 vaccines against SARS-CoV-2 infection and symptomatic COVID-19 among children and adolescents. Design, Setting, and Participants: Data for the period September 4, 2022, to January 31, 2023, were combined from 3 prospective US cohort studies (6 sites total) and used to estimate COVID-19 vaccine effectiveness among children and adolescents aged 5 to 17 years. A total of 2959 participants completed periodic surveys (demographics, household characteristics, chronic medical conditions, and COVID-19 symptoms) and submitted weekly self-collected nasal swabs (irrespective of symptoms); participants submitted additional nasal swabs at the onset of any symptoms. Exposure: Vaccination status was captured from the periodic surveys and supplemented with data from state immunization information systems and electronic medical records. Main Outcome and Measures: Respiratory swabs were tested for the presence of the SARS-CoV-2 virus using reverse transcriptase-polymerase chain reaction. SARS-CoV-2 infection was defined as a positive test regardless of symptoms. Symptomatic COVID-19 was defined as a positive test and 2 or more COVID-19 symptoms within 7 days of specimen collection. Cox proportional hazards models were used to estimate hazard ratios for SARS-CoV-2 infection and symptomatic COVID-19 among participants who received a bivalent COVID-19 vaccine dose vs participants who received no vaccine or monovalent vaccine doses only. Models were adjusted for age, sex, race, ethnicity, underlying health conditions, prior SARS-CoV-2 infection status, geographic site, proportion of circulating variants by site, and local virus prevalence. Results: Of the 2959 participants (47.8% were female; median age, 10.6 years [IQR, 8.0-13.2 years]; 64.6% were non-Hispanic White) included in this analysis, 25.4% received a bivalent COVID-19 vaccine dose. During the study period, 426 participants (14.4%) had laboratory-confirmed SARS-CoV-2 infection. Among these 426 participants, 184 (43.2%) had symptomatic COVID-19, 383 (89.9%) were not vaccinated or had received only monovalent COVID-19 vaccine doses (1.38 SARS-CoV-2 infections per 1000 person-days), and 43 (10.1%) had received a bivalent COVID-19 vaccine dose (0.84 SARS-CoV-2 infections per 1000 person-days). Bivalent vaccine effectiveness against SARS-CoV-2 infection was 54.0% (95% CI, 36.6%-69.1%) and vaccine effectiveness against symptomatic COVID-19 was 49.4% (95% CI, 22.2%-70.7%). The median observation time after vaccination was 276 days (IQR, 142-350 days) for participants who received only monovalent COVID-19 vaccine doses vs 50 days (IQR, 27-74 days) for those who received a bivalent COVID-19 vaccine dose. Conclusion and Relevance: The bivalent COVID-19 vaccines protected children and adolescents against SARS-CoV-2 infection and symptomatic COVID-19. These data demonstrate the benefit of COVID-19 vaccine in children and adolescents. All eligible children and adolescents should remain up to date with recommended COVID-19 vaccinations.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adolescent , Child , Female , Humans , Male , COVID-19/diagnosis , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Prospective Studies , SARS-CoV-2 , mRNA Vaccines/therapeutic use , Vaccines, Combined/therapeutic use , Child, Preschool , Vaccine Efficacy , United States
4.
Clin Infect Dis ; 76(3): 540-549, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36219562

ABSTRACT

The 10 years between the last influenza pandemic and start of the severe acute respiratory syndrome coronavirus 2 pandemic have been marked by great advances in our ability to follow influenza occurrence and determine vaccine effectiveness (VE), largely based on widespread use of the polymerase chain reaction assay. We examine the results, focusing mainly on data from the United States and inactivated vaccines. Surveillance has expanded, resulting in increased ability to characterize circulating viruses and their impact. The surveillance has often confirmed previous observations on timing of outbreaks and age groups affected, which can now be examined in greater detail. Selection of strains for vaccines is now based on enhanced viral characterization using immunologic, virologic, and computational techniques not previously available. Vaccine coverage has been largely stable, but VE has remained modest and, in some years, very low. We discuss ways to improve VE based on existing technology while we work toward supraseasonal vaccines.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Humans , United States/epidemiology , Infant , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Seasons , Influenza A Virus, H3N2 Subtype , COVID-19/epidemiology , Disease Outbreaks/prevention & control , Vaccination
5.
Clin Infect Dis ; 76(8): 1358-1363, 2023 04 17.
Article in English | MEDLINE | ID: mdl-36504336

ABSTRACT

BACKGROUND: In the United States, influenza activity during the 2021-2022 season was modest and sufficient enough to estimate influenza vaccine effectiveness (VE) for the first time since the beginning of the coronavirus disease 2019 pandemic. We estimated influenza VE against laboratory-confirmed outpatient acute illness caused by predominant A(H3N2) viruses. METHODS: Between October 2021 and April 2022, research staff across 7 sites enrolled patients aged ≥6 months seeking outpatient care for acute respiratory illness with cough. Using a test-negative design, we assessed VE against influenza A(H3N2). Due to strong correlation between influenza and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination, participants who tested positive for SARS-CoV-2 were excluded from VE estimations. Estimates were adjusted for site, age, month of illness, race/ethnicity, and general health status. RESULTS: Among 6260 participants, 468 (7%) tested positive for influenza only, including 440 (94%) for A(H3N2). All 206 sequenced A(H3N2) viruses were characterized as belonging to genetic group 3C.2a1b subclade 2a.2, which has antigenic differences from the 2021-2022 season A(H3N2) vaccine component that belongs to clade 3C.2a1b subclade 2a.1. After excluding 1948 SARS-CoV-2-positive patients, 4312 patients were included in analyses of influenza VE; 2463 (57%) were vaccinated against influenza. Effectiveness against A(H3N2) for all ages was 36% (95% confidence interval, 20%-49%) overall. CONCLUSIONS: Influenza vaccination in 2021-2022 provided protection against influenza A(H3N2)-related outpatient visits among young persons.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Humans , United States/epidemiology , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Influenza A Virus, H3N2 Subtype , Seasons , Vaccine Efficacy , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , Vaccination , Influenza B virus
6.
Clin Infect Dis ; 76(11): 1980-1988, 2023 06 08.
Article in English | MEDLINE | ID: mdl-36694363

ABSTRACT

BACKGROUND: Current understanding of severe respiratory syncytial virus (RSV) infections in adults is limited by clinical underrecognition. We compared the prevalence, clinical characteristics, and outcomes of RSV infections vs influenza in adults hospitalized with acute respiratory illnesses (ARIs) in a prospective national surveillance network. METHODS: Hospitalized adults who met a standardized ARI case definition were prospectively enrolled across 3 respiratory seasons from hospitals participating across all sites of the US Hospitalized Adult Influenza Vaccine Effectiveness Network (2016-2019). All participants were tested for RSV and influenza using real-time reverse-transcription polymerase chain reaction assay. Multivariable logistic regression was used to test associations between laboratory-confirmed infection and characteristics and clinical outcomes. RESULTS: Among 10 311 hospitalized adults, 6% tested positive for RSV (n = 622), 18.8% for influenza (n = 1940), and 75.1% negative for RSV and influenza (n = 7749). Congestive heart failure (CHF) or chronic obstructive pulmonary disease (COPD) was more frequent with RSV than influenza (CHF: 37.3% vs 28.8%, P < .0001; COPD: 47.6% vs 35.8%, P < .0001). Patients with RSV more frequently had longer admissions (odds ratio [OR], 1.38; 95% confidence interval [CI], 1.06-1.80) for stays >1 week) and mechanical ventilation (OR, 1.45; 95% CI, 1.09-1.93) compared with influenza but not compared with the influenza-negative group (OR, 1.03; 95% CI, .82-1.28 and OR, 1.17; 95% CI, .91-1.49, respectively). CONCLUSIONS: The prevalence of RSV across 3 seasons was considerable. Our findings suggest that those with RSV have worse outcomes compared with influenza and frequently have cardiopulmonary conditions. This study informs future vaccination strategies and underscores a need for RSV surveillance among adults with severe ARI.


Subject(s)
Heart Failure , Influenza, Human , Pulmonary Disease, Chronic Obstructive , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Humans , Adult , Influenza, Human/complications , Influenza, Human/epidemiology , Prospective Studies , Prevalence , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/complications , Hospitalization , Pulmonary Disease, Chronic Obstructive/complications , Heart Failure/complications , Respiratory Tract Infections/epidemiology
7.
Clin Infect Dis ; 76(3): e460-e468, 2023 02 08.
Article in English | MEDLINE | ID: mdl-35580849

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) messenger RNA (mRNA) vaccines were authorized in the United States in December 2020. Although vaccine effectiveness (VE) against mild infection declines markedly after several months, limited understanding exists on the long-term durability of protection against COVID-19-associated hospitalization. METHODS: Case-control analysis of adults (≥18 years) hospitalized at 21 hospitals in 18 states 11 March-15 December 2021, including COVID-19 case patients and reverse transcriptase-polymerase chain reaction-negative controls. We included adults who were unvaccinated or vaccinated with 2 doses of a mRNA vaccine before the date of illness onset. VE over time was assessed using logistic regression comparing odds of vaccination in cases versus controls, adjusting for confounders. Models included dichotomous time (<180 vs ≥180 days since dose 2) and continuous time modeled using restricted cubic splines. RESULTS: A total of 10 078 patients were included, 4906 cases (23% vaccinated) and 5172 controls (62% vaccinated). Median age was 60 years (interquartile range, 46-70), 56% were non-Hispanic White, and 81% had ≥1 medical condition. Among immunocompetent adults, VE <180 days was 90% (95% confidence interval [CI], 88-91) versus 82% (95% CI, 79-85) at ≥180 days (P < .001). VE declined for Pfizer-BioNTech (88% to 79%, P < .001) and Moderna (93% to 87%, P < .001) products, for younger adults (18-64 years) (91% to 87%, P = .005), and for adults ≥65 years of age (87% to 78%, P < .001). In models using restricted cubic splines, similar changes were observed. CONCLUSIONS: In a period largely predating Omicron variant circulation, effectiveness of 2 mRNA doses against COVID-19-associated hospitalization was largely sustained through 9 months.


Subject(s)
COVID-19 , Humans , Middle Aged , COVID-19/prevention & control , COVID-19 Vaccines , Hospitalization , mRNA Vaccines , RNA, Messenger , SARS-CoV-2/genetics , United States/epidemiology , Aged
8.
Emerg Infect Dis ; 29(2): 278-285, 2023 02.
Article in English | MEDLINE | ID: mdl-36599411

ABSTRACT

Persons with COVID-19-like illnesses are advised to stay home to reduce the spread of SARS-CoV-2. We assessed relationships between telework experience and COVID-19 illness with work attendance when ill. Adults experiencing fever, cough, or loss of taste or smell who sought healthcare or COVID-19 testing in the United States during March-November 2020 were enrolled. Adults with telework experience before illness were more likely to work at all (onsite or remotely) during illness (87.8%) than those with no telework experience (49.9%) (adjusted odds ratio 5.48, 95% CI 3.40-8.83). COVID-19 case-patients were less likely to work onsite (22.1%) than were persons with other acute respiratory illnesses (37.3%) (adjusted odds ratio 0.36, 95% CI 0.24-0.53). Among COVID-19 case-patients with telework experience, only 6.5% worked onsite during illness. Telework experience before illness gave mildly ill workers the option to work and improved compliance with public health recommendations to stay home during illness.


Subject(s)
COVID-19 , Adult , Humans , United States/epidemiology , COVID-19/epidemiology , COVID-19 Testing , SARS-CoV-2 , Pandemics , Presenteeism
9.
Emerg Infect Dis ; 29(12): 2442-2450, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37917142

ABSTRACT

Both SARS-CoV-2 and influenza virus can be transmitted by asymptomatic, presymptomatic, or symptomatic infected persons. We assessed effects on work attendance while ill before and during the COVID-19 pandemic in the United States by analyzing data collected prospectively from persons with acute respiratory illnesses enrolled in a multistate study during 2018-2022. Persons with previous hybrid work experience were significantly less likely to work onsite on the day before through the first 3 days of illness than those without that experience, an effect more pronounced during the COVID-19 pandemic than during prepandemic influenza seasons. Persons with influenza or COVID-19 were significantly less likely to work onsite than persons with other acute respiratory illnesses. Among persons with positive COVID-19 test results available by the second or third day of illness, few worked onsite. Hybrid and remote work policies might reduce workplace exposures and help reduce spread of respiratory viruses.


Subject(s)
COVID-19 , Influenza, Human , United States/epidemiology , Humans , COVID-19/epidemiology , SARS-CoV-2 , Influenza, Human/epidemiology , Pandemics , COVID-19 Testing
10.
Lancet ; 400(10353): 693-706, 2022 08 27.
Article in English | MEDLINE | ID: mdl-36030813

ABSTRACT

Annual seasonal influenza epidemics of variable severity caused by influenza A and B virus infections result in substantial disease burden worldwide. Seasonal influenza virus circulation declined markedly in 2020-21 after SARS-CoV-2 emerged but increased in 2021-22. Most people with influenza have abrupt onset of respiratory symptoms and myalgia with or without fever and recover within 1 week, but some can experience severe or fatal complications. Prevention is primarily by annual influenza vaccination, with efforts underway to develop new vaccines with improved effectiveness. Sporadic zoonotic infections with novel influenza A viruses of avian or swine origin continue to pose pandemic threats. In this Seminar, we discuss updates of key influenza issues for clinicians, in particular epidemiology, virology, and pathogenesis, diagnostic testing including multiplex assays that detect influenza viruses and SARS-CoV-2, complications, antiviral treatment, influenza vaccines, infection prevention, and non-pharmaceutical interventions, and highlight gaps in clinical management and priorities for clinical research.


Subject(s)
COVID-19 , Influenza A virus , Influenza Vaccines , Influenza, Human , Animals , Humans , SARS-CoV-2 , Swine
11.
J Virol ; 96(11): e0220021, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35588275

ABSTRACT

An H1N1 influenza virus caused a pandemic in 2009, and descendants of this virus continue to circulate seasonally in humans. Upon infection with the 2009 H1N1 pandemic strain (pH1N1), many humans produced antibodies against epitopes in the hemagglutinin (HA) stalk. HA stalk-focused antibody responses were common among pH1N1-infected individuals because HA stalk epitopes were conserved between the pH1N1 strain and previously circulating H1N1 strains. Here, we completed a series of experiments to determine if the pH1N1 HA stalk has acquired substitutions since 2009 that prevent the binding of human antibodies. We identified several amino acid substitutions that accrued in the pH1N1 HA stalk from 2009 to 2019. We completed enzyme-linked immunosorbent assays, absorption-based binding assays, and surface plasmon resonance experiments to determine if these substitutions affect antibody binding. Using sera collected from 230 humans (aged 21 to 80 years), we found that pH1N1 HA stalk substitutions that have emerged since 2009 do not affect antibody binding. Our data suggest that the HA stalk domain of pH1N1 viruses remained antigenically stable after circulating in humans for a decade. IMPORTANCE In 2009, a new pandemic H1N1 (pH1N1) virus began circulating in humans. Many individuals mounted hemagglutinin (HA) stalk-focused antibody responses upon infection with the 2009 pH1N1 strain, since the HA stalk of this virus was relatively conserved with other seasonal H1N1 strains. Here, we completed a series of studies to determine if the 2009 pH1N1 strain has undergone antigenic drift in the HA stalk domain over the past decade. We found that serum antibodies from 230 humans could not antigenically distinguish the 2009 and 2019 HA stalk. These data suggest that the HA stalk of pH1N1 has remained antigenically stable, despite the presence of high levels of HA stalk antibodies within the human population.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H1N1 Subtype , Influenza, Human , Adult , Aged , Aged, 80 and over , Amino Acid Substitution , Antibodies, Viral/immunology , Antigens, Viral/genetics , Epitopes , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza, Human/virology , Middle Aged , Young Adult
12.
MMWR Morb Mortal Wkly Rep ; 72(17): 463-468, 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37104244

ABSTRACT

As of April 2023, the COVID-19 pandemic has resulted in 1.1 million deaths in the United States, with approximately 75% of deaths occurring among adults aged ≥65 years (1). Data on the durability of protection provided by monovalent mRNA COVID-19 vaccination against critical outcomes of COVID-19 are limited beyond the Omicron BA.1 lineage period (December 26, 2021-March 26, 2022). In this case-control analysis, the effectiveness of 2-4 monovalent mRNA COVID-19 vaccine doses was evaluated against COVID-19-associated invasive mechanical ventilation (IMV) and in-hospital death among immunocompetent adults aged ≥18 years during February 1, 2022-January 31, 2023. Vaccine effectiveness (VE) against IMV and in-hospital death was 62% among adults aged ≥18 years and 69% among those aged ≥65 years. When stratified by time since last dose, VE was 76% at 7-179 days, 54% at 180-364 days, and 56% at ≥365 days. Monovalent mRNA COVID-19 vaccination provided substantial, durable protection against IMV and in-hospital death among adults during the Omicron variant period. All adults should remain up to date with recommended COVID-19 vaccination to prevent critical COVID-19-associated outcomes.


Subject(s)
COVID-19 , Humans , Adult , Adolescent , COVID-19/prevention & control , COVID-19 Vaccines , Hospital Mortality , Pandemics , Respiration, Artificial , SARS-CoV-2 , RNA, Messenger
13.
J Infect Dis ; 227(1): 4-8, 2022 12 28.
Article in English | MEDLINE | ID: mdl-36424890

ABSTRACT

When first approved, many hoped that the SARS-CoV-2 vaccine would provide long-term protection after a primary series. Waning of immunity and continued appearance of new variants has made booster inoculations necessary. The process is becoming increasingly similar to that used for annual updating of the influenza vaccine. The similarity has become even more apparent with selection of BA.4/BA.5 as the Omicron strain of the updated bivalent (Original + Omicron) COVID-19 vaccines. It is hoped that, if COVID-19 develops winter seasonality, SARS-CoV-2 vaccines will require only annual review to determine if updates are necessary. Recommendations on whom should receive the booster would be based on conditions at that time.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Humans , Influenza, Human/prevention & control , COVID-19 Vaccines , COVID-19/prevention & control , SARS-CoV-2
14.
Clin Infect Dis ; 74(3): 532-540, 2022 02 11.
Article in English | MEDLINE | ID: mdl-34245250

ABSTRACT

Prompt antiviral treatment has the potential to reduce influenza virus transmission to close contacts, but rigorous data on the magnitude of treatment effects on transmission are limited. Animal model data indicate that rapid reductions in viral replication after antiviral treatment reduce the risk of transmission. Observational and clinical trial data with oseltamivir and other neuraminidase inhibitors indicate that prompt treatment of household index patients seems to reduce the risk of illness in contacts, although the magnitude of the reported effects has varied widely across studies. In addition, the potential risk of transmitting drug-resistant variants exists with all approved classes of influenza antivirals. A controlled trial examining baloxavir treatment efficacy to reduce transmission, including the risk of transmitting virus with reduced baloxavir susceptibility, is currently in progress. If reduced transmission risk is confirmed, modeling studies indicate that early treatment could have major epidemiologic benefits in seasonal and pandemic influenza.


Subject(s)
Antiviral Agents , Influenza, Human , Orthomyxoviridae , Animals , Antiviral Agents/therapeutic use , Drug Resistance, Viral , Humans , Influenza, Human/drug therapy , Influenza, Human/prevention & control , Neuraminidase , Oseltamivir/therapeutic use , Virus Replication
15.
Clin Infect Dis ; 74(8): 1329-1337, 2022 04 28.
Article in English | MEDLINE | ID: mdl-34320171

ABSTRACT

BACKGROUND: Evidence for vaccine effectiveness (VE) against influenza-associated pneumonia has varied by season, location, and strain. We estimate VE against hospitalization for radiographically identified influenza-associated pneumonia during 2015-2016 to 2017-2018 seasons in the US Hospitalized Adult Influenza Vaccine Effectiveness Network (HAIVEN). METHODS: Among adults aged ≥18 years admitted to 10 US hospitals for acute respiratory illness (ARI), clinician-investigators used keywords from reports of chest imaging performed during 3 days around hospital admission to assign a diagnosis of "definite/probable pneumonia." We used a test-negative design to estimate VE against hospitalization for radiographically identified laboratory-confirmed influenza-associated pneumonia, comparing reverse transcriptase-polymerase chain reaction-confirmed influenza cases with test-negative subjects. Influenza vaccination status was documented in immunization records or self-reported, including date and location. Multivariable logistic regression models were used to adjust for age, site, season, calendar-time, and other factors. RESULTS: Of 4843 adults hospitalized with ARI included in the primary analysis, 266 (5.5%) had "definite/probable pneumonia" and confirmed influenza. Adjusted VE against hospitalization for any radiographically confirmed influenza-associated pneumonia was 38% (95% confidence interval [CI], 17-53%); by type/subtype, it was 74% (95% CI, 52-87%) influenza A (H1N1)pdm09, 25% (95% CI, -15% to 50%) A (H3N2), and 23% (95% CI, -32% to 54%) influenza B. Adjusted VE against intensive care for any influenza was 57% (95% CI, 19-77%). CONCLUSIONS: Influenza vaccination was modestly effective among adults in preventing hospitalizations and the need for intensive care associated with influenza pneumonia. VE was significantly higher against A (H1N1)pdm09 and was low against A (H3N2) and B.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Pneumonia , Adolescent , Adult , Case-Control Studies , Hospitalization , Humans , Influenza A Virus, H3N2 Subtype , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Pneumonia/epidemiology , Pneumonia/prevention & control , Seasons , Vaccination , Vaccine Efficacy
16.
Clin Infect Dis ; 75(Suppl 2): S159-S166, 2022 10 03.
Article in English | MEDLINE | ID: mdl-35675695

ABSTRACT

Background . Adults in the United States (US) began receiving the adenovirus vector coronavirus disease 2019 (COVID-19) vaccine, Ad26.COV2.S (Johnson & Johnson [Janssen]), in February 2021. We evaluated Ad26.COV2.S vaccine effectiveness (VE) against COVID-19 hospitalization and high disease severity during the first 10 months of its use. Methods . In a multicenter case-control analysis of US adults (≥18 years) hospitalized 11 March to 15 December 2021, we estimated VE against susceptibility to COVID-19 hospitalization (VEs), comparing odds of prior vaccination with a single dose Ad26.COV2.S vaccine between hospitalized cases with COVID-19 and controls without COVID-19. Among hospitalized patients with COVID-19, we estimated VE against disease progression (VEp) to death or invasive mechanical ventilation (IMV), comparing odds of prior vaccination between patients with and without progression. Results . After excluding patients receiving mRNA vaccines, among 3979 COVID-19 case-patients (5% vaccinated with Ad26.COV2.S) and 2229 controls (13% vaccinated with Ad26.COV2.S), VEs of Ad26.COV2.S against COVID-19 hospitalization was 70% (95% confidence interval [CI]: 63-75%) overall, including 55% (29-72%) among immunocompromised patients, and 72% (64-77%) among immunocompetent patients, for whom VEs was similar at 14-90 days (73% [59-82%]), 91-180 days (71% [60-80%]), and 181-274 days (70% [54-81%]) postvaccination. Among hospitalized COVID-19 case-patients, VEp was 46% (18-65%) among immunocompetent patients. Conclusions . The Ad26.COV2.S COVID-19 vaccine reduced the risk of COVID-19 hospitalization by 72% among immunocompetent adults without waning through 6 months postvaccination. After hospitalization for COVID-19, vaccinated immunocompetent patients were less likely to require IMV or die compared to unvaccinated immunocompetent patients.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Ad26COVS1 , Adult , COVID-19/prevention & control , COVID-19 Vaccines , Hospitalization , Humans , Influenza, Human/prevention & control , Severity of Illness Index , United States/epidemiology
17.
Clin Infect Dis ; 74(9): 1515-1524, 2022 05 03.
Article in English | MEDLINE | ID: mdl-34358310

ABSTRACT

BACKGROUND: As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination coverage increases in the United States, there is a need to understand the real-world effectiveness against severe coronavirus disease 2019 (COVID-19) and among people at increased risk for poor outcomes. METHODS: In a multicenter case-control analysis of US adults hospitalized March 11-May 5, 2021, we evaluated vaccine effectiveness to prevent COVID-19 hospitalizations by comparing odds of prior vaccination with a messenger RNA (mRNA) vaccine (Pfizer-BioNTech or Moderna) between cases hospitalized with COVID-19 and hospital-based controls who tested negative for SARS-CoV-2. RESULTS: Among 1212 participants, including 593 cases and 619 controls, median age was 58 years, 22.8% were Black, 13.9% were Hispanic, and 21.0% had immunosuppression. SARS-CoV-2 lineage B0.1.1.7 (Alpha) was the most common variant (67.9% of viruses with lineage determined). Full vaccination (receipt of 2 vaccine doses ≥14 days before illness onset) had been received by 8.2% of cases and 36.4% of controls. Overall vaccine effectiveness was 87.1% (95% confidence interval [CI], 80.7-91.3). Vaccine effectiveness was similar for Pfizer-BioNTech and Moderna vaccines, and highest in adults aged 18-49 years (97.4%; 95% CI, 79.3-9.7). Among 45 patients with vaccine-breakthrough COVID hospitalizations, 44 (97.8%) were ≥50 years old and 20 (44.4%) had immunosuppression. Vaccine effectiveness was lower among patients with immunosuppression (62.9%; 95% CI,20.8-82.6) than without immunosuppression (91.3%; 95% CI, 85.6-94.8). CONCLUSION: During March-May 2021, SARS-CoV-2 mRNA vaccines were highly effective for preventing COVID-19 hospitalizations among US adults. SARS-CoV-2 vaccination was beneficial for patients with immunosuppression, but effectiveness was lower in the immunosuppressed population.


Subject(s)
COVID-19 , Adult , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Hospitalization , Humans , Middle Aged , RNA , SARS-CoV-2 , United States/epidemiology , mRNA Vaccines
18.
Am J Epidemiol ; 191(3): 465-471, 2022 02 19.
Article in English | MEDLINE | ID: mdl-34274963

ABSTRACT

Intraseason timing of influenza infection among persons of different ages could reflect relative contributions to propagation of seasonal epidemics and has not been examined among ambulatory patients. Using data from the US Influenza Vaccine Effectiveness Network, we calculated risk ratios derived from comparing weekly numbers of influenza cases prepeak with those postpeak during the 2010-2011 through 2018-2019 influenza seasons. We sought to determine age-specific differences during the ascent versus descent of an influenza season by influenza virus type and subtype. We estimated 95% credible intervals around the risk ratios using Bayesian joint posterior sampling of weekly cases. Our population consisted of ambulatory patients with laboratory-confirmed influenza who enrolled in an influenza vaccine effectiveness study at 5 US sites during 9 influenza seasons after the 2009 influenza A virus subtype H1N1 (H1N1) pandemic. We observed that young children aged <5 years tended to more often be infected with H1N1 during the prepeak period, while adults aged ≥65 years tended to more often be infected with H1N1 during the postpeak period. However, for influenza A virus subtype H3N2, children aged <5 years were more often infected during the postpeak period. These results may reflect a contribution of different age groups to seasonal spread, which may differ by influenza virus type and subtype.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Adult , Bayes Theorem , Child , Child, Preschool , Humans , Influenza A Virus, H3N2 Subtype , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Seasons , Vaccination , Vaccine Efficacy
20.
MMWR Morb Mortal Wkly Rep ; 71(10): 365-370, 2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35271561

ABSTRACT

In the United States, annual vaccination against seasonal influenza is recommended for all persons aged ≥6 months except when contraindicated (1). Currently available influenza vaccines are designed to protect against four influenza viruses: A(H1N1)pdm09 (the 2009 pandemic virus), A(H3N2), B/Victoria lineage, and B/Yamagata lineage. Most influenza viruses detected this season have been A(H3N2) (2). With the exception of the 2020-21 season, when data were insufficient to generate an estimate, CDC has estimated the effectiveness of seasonal influenza vaccine at preventing laboratory-confirmed, mild/moderate (outpatient) medically attended acute respiratory infection (ARI) each season since 2004-05. This interim report uses data from 3,636 children and adults with ARI enrolled in the U.S. Influenza Vaccine Effectiveness Network during October 4, 2021-February 12, 2022. Overall, vaccine effectiveness (VE) against medically attended outpatient ARI associated with influenza A(H3N2) virus was 16% (95% CI = -16% to 39%), which is considered not statistically significant. This analysis indicates that influenza vaccination did not reduce the risk for outpatient medically attended illness with influenza A(H3N2) viruses that predominated so far this season. Enrollment was insufficient to generate reliable VE estimates by age group or by type of influenza vaccine product (1). CDC recommends influenza antiviral medications as an adjunct to vaccination; the potential public health benefit of antiviral medications is magnified in the context of reduced influenza VE. CDC routinely recommends that health care providers continue to administer influenza vaccine to persons aged ≥6 months as long as influenza viruses are circulating, even when VE against one virus is reduced, because vaccine can prevent serious outcomes (e.g., hospitalization, intensive care unit (ICU) admission, or death) that are associated with influenza A(H3N2) virus infection and might protect against other influenza viruses that could circulate later in the season.


Subject(s)
Influenza A Virus, H3N2 Subtype/immunology , Influenza A virus/immunology , Influenza Vaccines/administration & dosage , Influenza, Human/prevention & control , Vaccine Efficacy , Adolescent , Adult , Aged , Child , Child, Preschool , Humans , Infant , Influenza A Virus, H1N1 Subtype/immunology , Influenza B virus/immunology , Middle Aged , Population Surveillance , Seasons , United States/epidemiology , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL