Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 161
Filter
Add more filters

Country/Region as subject
Publication year range
1.
EMBO Rep ; 24(8): e55884, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37366231

ABSTRACT

Recent studies highlight the importance of baseline functional immunity for immune checkpoint blockade therapies. High-dimensional systemic immune profiling is performed in a cohort of non-small-cell lung cancer patients undergoing PD-L1/PD-1 blockade immunotherapy. Responders show high baseline myeloid phenotypic diversity in peripheral blood. To quantify it, we define a diversity index as a potential biomarker of response. This parameter correlates with elevated activated monocytic cells and decreased granulocytic phenotypes. High-throughput profiling of soluble factors in plasma identifies fractalkine (FKN), a chemokine involved in immune chemotaxis and adhesion, as a biomarker of response to immunotherapy that also correlates with myeloid cell diversity in human patients and murine models. Secreted FKN inhibits lung adenocarcinoma growth in vivo through a prominent contribution of systemic effector NK cells and increased tumor immune infiltration. FKN sensitizes murine lung cancer models refractory to anti-PD-1 treatment to immune checkpoint blockade immunotherapy. Importantly, recombinant FKN and tumor-expressed FKN are efficacious in delaying tumor growth in vivo locally and systemically, indicating a potential therapeutic use of FKN in combination with immunotherapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Humans , Mice , B7-H1 Antigen/genetics , Biomarkers , Carcinoma, Non-Small-Cell Lung/drug therapy , Chemokine CX3CL1/genetics , Chemokine CX3CL1/therapeutic use , Lung Neoplasms/genetics
2.
Int J Mol Sci ; 23(19)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36232859

ABSTRACT

Activation of WNT/ß-catenin signaling has been associated with a non-T-cell-inflamed tumor microenvironment (TME) in several cancers. The aim of this work was to investigate the relationship between ß-catenin signaling and TME inflammation in head and neck squamous cell carcinomas (HNSCCs). Membrane and nuclear ß-catenin expression, PD-L1 expression, and CD8+ tumor-infiltrating lymphocyte (TIL) density were jointly evaluated by immunohistochemistry in a series of 372 HPV-negative HNSCCs. Membrane ß-catenin levels decreased in carcinomas compared to the normal epithelium. Positive nuclear ß-catenin was detected in 50 tumors (14.3%) and was significantly associated with a low CD8+ TIL density (168 cells/mm2 versus 293 cells/mm2 in nuclear-ß-catenin-negative cases; p = 0.01) and a tendency for a lower expression of PD-L1, resulting in association with a noninflamed TME (i.e., type II, immunological ignorance). Multivariate Cox analysis further demonstrated that low infiltration by CD8+ TILs (HR = 1.6, 95% CI = 1.19-2.14, p = 0.002) and nuclear ß-catenin expression (HR = 1.47, 95% CI = 1.01-2.16, p = 0.04) were both independently associated with a poorer disease-specific survival. In conclusion, tumor-intrinsic nuclear ß-catenin activation is associated with a non-inflamed TME phenotype and a poorer prognosis, thereby suggesting a possible implication as an immune exclusion mechanism for a subset of HNSCC patients.


Subject(s)
B7-H1 Antigen , Head and Neck Neoplasms , B7-H1 Antigen/metabolism , CD8-Positive T-Lymphocytes , Head and Neck Neoplasms/metabolism , Humans , Lymphocytes, Tumor-Infiltrating , Phenotype , Squamous Cell Carcinoma of Head and Neck/metabolism , Tumor Microenvironment , beta Catenin/metabolism
3.
Cancer Immunol Immunother ; 69(10): 2089-2100, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32448984

ABSTRACT

INTRODUCTION: The importance of immune tumor microenvironment in the prognosis of patients with head and neck squamous carcinomas (HNSCC) is increasingly recognized. We analyzed the prognostic relevance of PD-L1 and PD-1 expressions in relation to the infiltration by CD8+ and FOXP3+ tumor-infiltrating lymphocytes (TILs). METHODS: Samples from 372 surgically treated HPV-negative HNSCC patients were evaluated by immunohistochemistry for PD-L1 expression [both tumor proportion score (TPS) and combined proportion score (CPS)], PD-1 expression in immune cells, and density of infiltrating CD8+ and FOXP3+ TILs. PD-L1 expression and CD8+ TIL density were combined to establish the type of tumor microenvironment. RESULTS: 29.5% cases exhibited PD-L1 TPS positivity (≥ 1%), whereas PD-L1 CPS positivity (≥ 1%) was observed in 40% cases. 47.5% cases showed positive PD-1 expression (≥ 1%). PD-L1 and PD-1 positivity correlated with a high density of both CD8+ and FOXP3+ TILs. In univariate analysis, PD-L1 TPS positivity (P = 0.026), PD-L1 CPS positivity (P = 0.004), high density of CD8+ TIL (P = 0.001), and high density of FOXP3+ TIL (P = 0.004) were associated with a better disease-specific survival (DSS). However, in multivariate analysis, only high density of CD8+ TIL was associated with a better DSS (P = 0.002). The type of tumor microenvironment correlated with DSS (P = .008), with the better DSS observed in cases with type I (PD-L1 CPS positivity and high density of CD8+ TIL). CONCLUSIONS: High infiltration by CD8+ TIL is associated with better survival outcomes. Positive PD-L1 expression correlates with a high infiltration by TILs, explaining its association with better prognosis.


Subject(s)
B7-H1 Antigen/metabolism , Head and Neck Neoplasms/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Papillomaviridae/immunology , Papillomavirus Infections/complications , Squamous Cell Carcinoma of Head and Neck/immunology , Tumor Microenvironment/immunology , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/metabolism , Female , Follow-Up Studies , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/virology , Humans , Male , Middle Aged , Papillomavirus Infections/immunology , Papillomavirus Infections/virology , Prognosis , Retrospective Studies , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/virology , Survival Rate
4.
Am J Respir Crit Care Med ; 200(7): 888-899, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31166114

ABSTRACT

Rationale: The characterization of new genetic alterations is essential to assign effective personalized therapies in non-small cell lung cancer (NSCLC). Furthermore, finding stratification biomarkers is essential for successful personalized therapies. Molecular alterations of YES1, a member of the SRC (proto-oncogene tyrosine-protein kinase Src) family kinases (SFKs), can be found in a significant subset of patients with lung cancer.Objectives: To evaluate YES1 (v-YES-1 Yamaguchi sarcoma viral oncogene homolog 1) genetic alteration as a therapeutic target and predictive biomarker of response to dasatinib in NSCLC.Methods: Functional significance was evaluated by in vivo models of NSCLC and metastasis and patient-derived xenografts. The efficacy of pharmacological and genetic (CRISPR [clustered regularly interspaced short palindromic repeats]/Cas9 [CRISPR-associated protein 9]) YES1 abrogation was also evaluated. In vitro functional assays for signaling, survival, and invasion were also performed. The association between YES1 alterations and prognosis was evaluated in clinical samples.Measurements and Main Results: We demonstrated that YES1 is essential for NSCLC carcinogenesis. Furthermore, YES1 overexpression induced metastatic spread in preclinical in vivo models. YES1 genetic depletion by CRISPR/Cas9 technology significantly reduced tumor growth and metastasis. YES1 effects were mainly driven by mTOR (mammalian target of rapamycin) signaling. Interestingly, cell lines and patient-derived xenograft models with YES1 gene amplifications presented a high sensitivity to dasatinib, an SFK inhibitor, pointing out YES1 status as a stratification biomarker for dasatinib response. Moreover, high YES1 protein expression was an independent predictor for poor prognosis in patients with lung cancer.Conclusions: YES1 is a promising therapeutic target in lung cancer. Our results provide support for the clinical evaluation of dasatinib treatment in a selected subset of patients using YES1 status as predictive biomarker for therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/genetics , Cell Proliferation/genetics , Dasatinib/pharmacology , Lung Neoplasms/genetics , Proto-Oncogene Proteins c-yes/genetics , A549 Cells , Animals , Antineoplastic Agents/therapeutic use , CRISPR-Cas Systems , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Line, Tumor , Cell Proliferation/drug effects , Dasatinib/therapeutic use , Gene Amplification , Gene Knockdown Techniques , Gene Knockout Techniques , Humans , Lung Neoplasms/drug therapy , Mice , Prognosis , Proto-Oncogene Mas , Proto-Oncogene Proteins c-yes/antagonists & inhibitors , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Xenograft Model Antitumor Assays
5.
Thorax ; 74(4): 371-379, 2019 04.
Article in English | MEDLINE | ID: mdl-30472670

ABSTRACT

INTRODUCTION: Prognostic biomarkers have been very elusive in the lung squamous cell carcinoma (SCC) and none is currently being used in the clinical setting. We aimed to identify and validate the clinical utility of a protein-based prognostic signature to stratify patients with early lung SCC according to their risk of recurrence or death. METHODS: Patients were staged following the new International Association for the Study of Lung Cancer (IASLC) staging criteria (eighth edition, 2018). Three independent retrospective cohorts of 117, 96 and 105 patients with lung SCC were analysed to develop and validate a prognostic signature based on immunohistochemistry for five proteins. RESULTS: We identified a five protein-based signature whose prognostic index (PI) was an independent and significant predictor of disease-free survival (DFS) (p<0.001; HR=4.06, 95% CI 2.18 to 7.56) and overall survival (OS) (p=0.004; HR=2.38, 95% CI 1.32 to 4.31). The prognostic capability of PI was confirmed in an external multi-institutional cohort for DFS (p=0.042; HR=2.01, 95% CI 1.03 to 3.94) and for OS (p=0.031; HR=2.29, 95% CI 1.08 to 4.86). Moreover, PI added complementary information to the newly established IASLC TNM 8th edition staging system. A combined prognostic model including both molecular and anatomical (TNM) criteria improved the risk stratification in both cohorts (p<0.05). CONCLUSION: We have identified and validated a clinically feasible protein-based prognostic model that complements the updated TNM system allowing more accurate risk stratification. This signature may be used as an advantageous tool to improve the clinical management of the patients, allowing the reduction of lung SCC mortality through a more accurate knowledge of the patient's potential outcome.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma, Squamous Cell/diagnosis , Lung Neoplasms/diagnosis , Neoplasm Proteins/metabolism , Aged , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Female , Humans , Kaplan-Meier Estimate , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Male , Middle Aged , Neoplasm Staging , Prognosis , Reproducibility of Results , Retrospective Studies , Risk Assessment/methods
6.
J Pathol ; 244(4): 479-484, 2018 04.
Article in English | MEDLINE | ID: mdl-29405336

ABSTRACT

Imaging mass cytometry is a novel imaging modality that enables simultaneous antibody-based detection of >40 epitopes and molecules in tissue sections at subcellular resolution by the use of isotopically pure metal tags. Essential for any imaging approach in which antigen detection is performed is counterstaining, which reveals the overall structure of the tissue. Counterstaining is necessary because antigens of interest are often present in only a small subset of cells, and the rest of the tissue structures are not visible. As most biological tissues are nearly transparent or non-fluorescent, chromogenic reagents such as haematoxylin (for immunohistochemistry) or fluorescent dyes such as 4',6-diamidino-2-phenylindole (which stains nuclei for epifluorescence and confocal microscopy) are utilized. Here, we describe a metal-based counterstain for imaging mass cytometry based on simple oxidation and subsequent covalent binding of the tissue components to ruthenium tetroxide (RuO4 ). RuO4 counterstaining reveals general tissue structure both in areas with high cell content and in stromal areas with low cellularity and fibrous or hyaline material in a manner analogous to haematoxylin in immunohistochemical counterstaining or eosin or other anionic dyes in conventional histology. Our new counterstain approach is applicable to any metal-based imaging technique, and will facilitate the adaptation of imaging mass cytometry for routine applications in clinical and research laboratories. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Biomarkers, Tumor/analysis , Carcinoma, Non-Small-Cell Lung/chemistry , Coloring Agents/chemistry , High-Throughput Screening Assays/methods , Immunohistochemistry/methods , Lung Neoplasms/chemistry , Ruthenium Compounds/chemistry , Staining and Labeling/methods , Carcinoma, Non-Small-Cell Lung/pathology , Humans , Lung Neoplasms/pathology , Oxidation-Reduction , Predictive Value of Tests , Tissue Array Analysis
7.
J Pathol ; 245(4): 421-432, 2018 08.
Article in English | MEDLINE | ID: mdl-29756233

ABSTRACT

Each of the pathological stages (I-IIIa) of surgically resected non-small-cell lung cancer has hidden biological heterogeneity, manifested as heterogeneous outcomes within each stage. Thus, the finding of robust and precise molecular classifiers with which to assess individual patient risk is an unmet medical need. Here, we identified and validated the clinical utility of a new prognostic signature based on three proteins (BRCA1, QKI, and SLC2A1) to stratify early-stage lung adenocarcinoma patients according to their risk of recurrence or death. Patients were staged according to the new International Association for the Study of Lung Cancer (IASLC) staging criteria (8th edition, 2018). A test cohort (n = 239) was used to assess the value of this new prognostic index (PI) based on the three proteins. The prognostic signature was developed by Cox regression with the use of stringent statistical criteria (TRIPOD: Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis). The model resulted in a highly significant predictor of 5-year outcome for disease-free survival (p < 0.001) and overall survival (p < 0.001). The prognostic ability of the model was externally validated in an independent multi-institutional cohort of patients (n = 114, p = 0.021). We also demonstrated that this molecular classifier adds relevant information to the gold standard TNM-based pathological staging, with a highly significant improvement of the likelihood ratio. We subsequently developed a combined PI including both the molecular and the pathological data that improved the risk stratification in both cohorts (p ≤ 0.001). Moreover, the signature may help to select stage I-IIA patients who might benefit from adjuvant chemotherapy. In summary, this protein-based signature accurately identifies those patients with a high risk of recurrence and death, and adds further prognostic information to the TNM-based clinical staging, even when the new IASLC 8th edition staging criteria are applied. More importantly, it may be a valuable tool for selecting patients for adjuvant therapy. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Adenocarcinoma of Lung/chemistry , BRCA1 Protein/analysis , Biomarkers, Tumor/analysis , Clinical Decision-Making , Decision Support Techniques , Glucose Transporter Type 1/analysis , Immunohistochemistry , Lung Neoplasms/chemistry , RNA-Binding Proteins/analysis , A549 Cells , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/mortality , Adenocarcinoma of Lung/therapy , Aged , BRCA1 Protein/genetics , Biomarkers, Tumor/genetics , Disease Progression , Disease-Free Survival , Female , Glucose Transporter Type 1/genetics , Humans , Lung Neoplasms/genetics , Lung Neoplasms/mortality , Lung Neoplasms/therapy , Male , Middle Aged , Neoplasm Recurrence, Local , Neoplasm Staging , Predictive Value of Tests , RNA-Binding Proteins/genetics , Reproducibility of Results , Risk Assessment , Risk Factors , Spain , Texas , Time Factors
8.
Am J Respir Crit Care Med ; 197(9): 1164-1176, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29327939

ABSTRACT

RATIONALE: C5aR1 (CD88), a receptor for complement anaphylatoxin C5a, is a potent immune mediator. Its impact on malignant growth and dissemination of non-small cell lung cancer cells is poorly understood. OBJECTIVES: To investigate the contribution of the C5a/C5aR1 axis to the malignant phenotype of non-small cell lung cancer cells, particularly in skeletal colonization, a preferential lung metastasis site. METHODS: Association between C5aR1 expression and clinical outcome was assessed in silico and validated by immunohistochemistry. Functional significance was evaluated by lentiviral gene silencing and ligand l-aptamer inhibition in in vivo models of lung cancer bone metastasis. In vitro functional assays for signaling, migration, invasion, metalloprotease activity, and osteoclastogenesis were also performed. MEASUREMENTS AND MAIN RESULTS: High levels of C5aR1 in human lung tumors were significantly associated with shorter recurrence-free survival, overall survival, and bone metastasis. Silencing of C5aR1 in lung cancer cells led to a substantial reduction in skeletal metastatic burden and osteolysis in in vivo models. Furthermore, metalloproteolytic, migratory, and invasive tumor cell activities were modulated in vitro by C5aR1 stimulation or gene silencing. l-Aptamer blockade or C5aR1 silencing significantly reduced the osseous metastatic activity of lung cancer cells in vivo. This effect was associated with decreased osteoclastogenic activity in vitro and was rescued by the exogenous addition of the chemokine CXCL16. CONCLUSIONS: Disruption of C5aR1 signaling in lung cancer cells abrogates their tumor-associated osteoclastogenic activity, impairing osseous colonization. This study unveils the role played by the C5a/C5aR1 axis in lung cancer dissemination and supports its potential use as a novel therapeutic target.


Subject(s)
Carcinoma, Non-Small-Cell Lung/immunology , Chemokine CXCL16/immunology , Lung Neoplasms/complications , Lung Neoplasms/immunology , Neoplasm Metastasis/immunology , Receptor, Anaphylatoxin C5a/immunology , Signal Transduction/immunology , Adult , Aged , Aged, 80 and over , Bone Neoplasms/immunology , Female , Humans , Male , Middle Aged
9.
BMC Genomics ; 19(1): 703, 2018 Sep 25.
Article in English | MEDLINE | ID: mdl-30253752

ABSTRACT

BACKGROUND: RNA-seq is a reference technology for determining alternative splicing at genome-wide level. Exon arrays remain widely used for the analysis of gene expression, but show poor validation rate with regard to splicing events. Commercial arrays that include probes within exon junctions have been developed in order to overcome this problem. We compare the performance of RNA-seq (Illumina HiSeq) and junction arrays (Affymetrix Human Transcriptome array) for the analysis of transcript splicing events. Three different breast cancer cell lines were treated with CX-4945, a drug that severely affects splicing. To enable a direct comparison of the two platforms, we adapted EventPointer, an algorithm that detects and labels alternative splicing events using junction arrays, to work also on RNA-seq data. Common results and discrepancies between the technologies were validated and/or resolved by over 200 PCR experiments. RESULTS: As might be expected, RNA-seq appears superior in cases where the technologies disagree and is able to discover novel splicing events beyond the limitations of physical probe-sets. We observe a high degree of coherence between the two technologies, however, with correlation of EventPointer results over 0.90. Through decimation, the detection power of the junction arrays is equivalent to RNA-seq with up to 60 million reads. CONCLUSIONS: Our results suggest, therefore, that exon-junction arrays are a viable alternative to RNA-seq for detection of alternative splicing events when focusing on well-described transcriptional regions.


Subject(s)
Algorithms , Alternative Splicing , Gene Expression Profiling , Oligonucleotide Array Sequence Analysis , Sequence Analysis, RNA , Cell Line, Tumor , Humans , Polymerase Chain Reaction
10.
Lab Invest ; 98(12): 1562-1574, 2018 12.
Article in English | MEDLINE | ID: mdl-30181552

ABSTRACT

In recent years, the relevance of RNA metabolism has been increasingly recognized in a variety of diseases. Modifications in the levels of RNA-binding proteins elicit changes in the expression of cancer-related genes. Here we evaluate whether SRSF1 regulates the expression of DNA repair genes, and whether this regulation has a relevant role in lung carcinogenesis. An in silico analysis was performed to evaluate the association between the expression of SRSF1 and DNA repair genes. In vitro functional analyses were conducted in SRSF1 or DNA ligase 1 (LIG1)-downregulated non-small cell lung cancer (NSCLC) cell lines. In addition, the prognostic value of LIG1 was evaluated in NSCLC patients by immunohistochemistry. We found a significant correlation between the DNA repair gene LIG1 and SRSF1 in NSCLC cell lines. Moreover, SRSF1 binds to LIG1 mRNA and regulates its expression by increasing its mRNA stability and enhancing its translation in an mTOR-dependent manner. Furthermore, siRNA-mediated LIG1 inhibition reduced proliferation and increased apoptosis of NSCLC cells. Finally, the expression of LIG1 was an independent prognostic factor for NSCLC, as confirmed in a series of 210 patients. These results show that LIG1 is regulated by the oncoprotein SRSF1 and plays a relevant role in lung cancer cell proliferation and progression. LIG1 is associated with poor prognosis in non-small lung cancer patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung/etiology , DNA Ligase ATP/metabolism , Lung Neoplasms/etiology , Serine-Arginine Splicing Factors/metabolism , A549 Cells , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/mortality , Cell Proliferation , DNA Ligase ATP/genetics , Gene Expression Regulation , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/mortality , Spain/epidemiology
11.
Br J Cancer ; 118(12): 1596-1608, 2018 06.
Article in English | MEDLINE | ID: mdl-29795310

ABSTRACT

BACKGROUND: While lung adenocarcinoma patients can somewhat benefit from anti-angiogenic therapies, patients with squamous cell lung carcinoma (SQLC) cannot. The reasons for this discrepancy remain largely unknown. Soluble VEGF receptor-1, namely sVEGFR1-i13, is a truncated splice variant of the cell membrane-spanning VEGFR1 that has no transmembrane or tyrosine kinase domain. sVEGFR1-i13 is mainly viewed as an anti-angiogenic factor which counteracts VEGF-A/VEGFR signalling in endothelial cells. However, its role in tumour cells is poorly known. METHODS: mRNA and protein status were analysed by Real-Time qPCR, western blotting, ELISA assay, proximity ligation assay or immunohistochemistry in human tumour cell lines, murine tumourgrafts and non small cell lung carcinoma patients samples. RESULTS: We show that anti-angiogenic therapies specifically increase the levels of sVEGFR1-i13 in SQLC cell lines and chemically induced SQLC murine tumourgrafts. At the molecular level, we characterise a sVEGFR1-i13/ß1 integrin/VEGFR autocrine loop which determines whether SQLC cells proliferate or go into apoptosis, in response to anti-angiogenic therapies. Furthermore, we show that high levels of both sVEGFR1-i13 and ß1 integrin mRNAs and proteins are associated with advanced stages in SQLC patients and with a poor clinical outcome in patients with early stage SQLC. CONCLUSIONS: Overall, these results reveal an unexpected pro-tumoural function of sVEGFR1-i13 in SQLC tumour cells, which contributes to their progression and escape from anti-angiogenic therapies. These data might help to understand why some SQLC patients do not respond to anti-angiogenic therapies.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Squamous Cell/metabolism , Integrin beta1/metabolism , Lung Neoplasms/metabolism , Vascular Endothelial Growth Factor Receptor-1/metabolism , Animals , Autocrine Communication/drug effects , Carcinoma, Non-Small-Cell Lung/blood supply , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Squamous Cell/blood supply , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/genetics , Disease Progression , Humans , Lung Neoplasms/blood supply , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mice , Protein Isoforms , Receptor Cross-Talk/drug effects , Tumor Cells, Cultured , Vascular Endothelial Growth Factor Receptor-1/genetics , Xenograft Model Antitumor Assays
12.
BMC Genomics ; 17: 467, 2016 06 17.
Article in English | MEDLINE | ID: mdl-27315794

ABSTRACT

BACKGROUND: Alternative splicing (AS) is a major source of variability in the transcriptome of eukaryotes. There is an increasing interest in its role in different pathologies. Before sequencing technology appeared, AS was measured with specific arrays. However, these arrays did not perform well in the detection of AS events and provided very large false discovery rates (FDR). Recently the Human Transcriptome Array 2.0 (HTA 2.0) has been deployed. It includes junction probes. However, the interpretation software provided by its vendor (TAC 3.0) does not fully exploit its potential (does not study jointly the exons and junctions involved in a splicing event) and can only be applied to case-control studies. New statistical algorithms and software must be developed in order to exploit the HTA 2.0 array for event detection. RESULTS: We have developed EventPointer, an R package (built under the aroma.affymetrix framework) to search and analyze Alternative Splicing events using HTA 2.0 arrays. This software uses a linear model that broadens its application from plain case-control studies to complex experimental designs. Given the CEL files and the design and contrast matrices, the software retrieves a list of all the detected events indicating: 1) the type of event (exon cassette, alternative 3', etc.), 2) its fold change and its statistical significance, and 3) the potential protein domains affected by the AS events and the statistical significance of the possible enrichment. Our tests have shown that EventPointer has an extremely low FDR value (only 1 false positive within the tested top-200 events). This software is publicly available and it has been uploaded to GitHub. CONCLUSIONS: This software empowers the HTA 2.0 arrays for AS event detection as an alternative to RNA-seq: simplifying considerably the required analysis, speeding it up and reducing the required computational power.


Subject(s)
Alternative Splicing , Computational Biology/methods , Oligonucleotide Array Sequence Analysis , Software , Algorithms , Gene Expression Profiling , Molecular Sequence Annotation , Reproducibility of Results , Transcriptome , User-Computer Interface
13.
J Transl Med ; 14(1): 244, 2016 08 23.
Article in English | MEDLINE | ID: mdl-27549759

ABSTRACT

BACKGROUND: Muscle wasting negatively impacts the progress of chronic diseases such as lung cancer (LC) and emphysema, which are in turn interrelated. OBJECTIVES: We hypothesized that muscle atrophy and body weight loss may develop in an experimental mouse model of lung carcinogenesis, that the profile of alterations in muscle fiber phenotype (fiber type composition and morphometry, muscle structural alterations, and nuclear apoptosis), and in muscle metabolism are similar in both respiratory and limb muscles of the tumor-bearing mice, and that the presence of underlying emphysema may influence those events. METHODS: Diaphragm and gastrocnemius muscles of mice with urethane-induced lung cancer (LC-U) with and without elastase-induced emphysema (E-U) and non-exposed controls (N = 8/group) were studied: fiber type composition, morphometry, muscle abnormalities, apoptotic nuclei (immunohistochemistry), and proteolytic and autophagy markers (immunoblotting) at 20- and 35-week exposure times. In the latter cohort, structural contractile proteins, creatine kinase (CK), peroxisome proliferator-activated receptor (PPAR) expression, oxidative stress, and inflammation were also measured. Body and muscle weights were quantified (baseline, during follow-up, and sacrifice). RESULTS: Compared to controls, in U and E-U mice, whole body, diaphragm and gastrocnemius weights were reduced. Additionally, both in diaphragm and gastrocnemius, muscle fiber cross-sectional areas were smaller, structural abnormalities, autophagy and apoptotic nuclei were increased, while levels of actin, myosin, CK, PPARs, and antioxidants were decreased, and muscle proteolytic markers did not vary among groups. CONCLUSIONS: In this model of lung carcinogenesis with and without emphysema, reduced body weight gain and muscle atrophy were observed in respiratory and limb muscles of mice after 20- and 35-week exposure times most likely through increased nuclear apoptosis and autophagy. Underlying emphysema induced a larger reduction in the size of slow- and fast-twitch fibers in the diaphragm of U and E-U mice probably as a result of the greater inspiratory burden imposed onto this muscle.


Subject(s)
Carcinogenesis/metabolism , Carcinogenesis/pathology , Diaphragm/metabolism , Diaphragm/pathology , Emphysema/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Animals , Apoptosis , Autophagy , Body Weight , Cytokines/metabolism , Diaphragm/physiopathology , Emphysema/diagnostic imaging , Emphysema/pathology , In Situ Nick-End Labeling , Inflammation/metabolism , Inflammation/pathology , Lung Neoplasms/diagnostic imaging , Male , Malondialdehyde/metabolism , Mice , Muscle Contraction , Muscle Development , Muscle Fibers, Skeletal/pathology , Muscle Proteins/metabolism , Oxidation-Reduction , Phenotype , Proteolysis , Ubiquitination , X-Ray Microtomography
14.
Am J Respir Crit Care Med ; 191(8): 924-31, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25668622

ABSTRACT

RATIONALE: Lung cancer (LC) screening using low-dose chest computed tomography is now recommended in several guidelines using the National Lung Screening Trial (NLST) entry criteria (age, 55-74; ≥30 pack-years; tobacco cessation within the previous 15 yr for former smokers). Concerns exist about their lack of sensitivity. OBJECTIVES: To evaluate the performance of NLST criteria in two different LC screening studies from Europe and the United States, and to explore the effect of using emphysema as a complementary criterion. METHODS: Participants from the Pamplona International Early Lung Action Detection Program (P-IELCAP; n = 3,061) and the Pittsburgh Lung Screening Study (PLuSS; n = 3,638) were considered. LC cumulative frequencies, incidence densities, and annual detection rates were calculated in three hypothetical cohorts, including subjects who met NLST criteria alone, those with computed tomography-detected emphysema, and those who met NLST criteria and/or had emphysema. MEASUREMENTS AND MAIN RESULTS: Thirty-six percent and 59% of P-IELCAP and PLuSS participants, respectively, met NLST criteria. Among these, higher LC incidence densities and detection rates were observed. However, applying NLST criteria to our original cohorts would miss as many as 39% of all LC. Annual screening of subjects meeting either NLST criteria or having emphysema detected most cancers (88% and 95% of incident LC of P-IELCAP and PLuSS, respectively) despite reducing the number of screened participants by as much as 52%. CONCLUSIONS: LC screening based solely on NLST criteria could miss a significant number of LC cases. Combining NLST criteria and emphysema to select screening candidates results in higher LC detection rates and a lower number of cancers missed.


Subject(s)
Lung Neoplasms/diagnostic imaging , Lung Neoplasms/epidemiology , Mass Screening/methods , Patient Selection , Pulmonary Emphysema/diagnostic imaging , Pulmonary Emphysema/epidemiology , Aged , Comorbidity , Early Detection of Cancer/methods , Europe/epidemiology , Female , Humans , Incidence , Male , Mass Screening/statistics & numerical data , Middle Aged , Tomography, X-Ray Computed/methods , Tomography, X-Ray Computed/statistics & numerical data , United States/epidemiology
15.
BMC Genomics ; 16: 752, 2015 Oct 06.
Article in English | MEDLINE | ID: mdl-26444668

ABSTRACT

BACKGROUND: The development of a more refined prognostic methodology for early non-small cell lung cancer (NSCLC) is an unmet clinical need. An accurate prognostic tool might help to select patients at early stages for adjuvant therapies. RESULTS: A new integrated bioinformatics searching strategy, that combines gene copy number alterations and expression, together with clinical parameters was applied to derive two prognostic genomic signatures. The proposed methodology combines data from patients with and without clinical data with a priori information on the ability of a gene to be a prognostic marker. Two initial candidate sets of 513 and 150 genes for lung adenocarcinoma (ADC) and squamous cell carcinoma (SCC), respectively, were generated by identifying genes which have both: a) significant correlation between copy number and gene expression, and b) significant prognostic value at the gene expression level in external databases. From these candidates, two panels of 7 (ADC) and 5 (SCC) genes were further identified via semi-supervised learning. These panels, together with clinical data (stage, age and sex), were used to construct the ADC and SCC hazard scores combining clinical and genomic data. The signatures were validated in two independent datasets (n = 73 for ADC, n = 97 for SCC), confirming that the prognostic value of both clinical-genomic models is robust, statistically significant (P = 0.008 for ADC and P = 0.019 for SCC) and outperforms both the clinical models (P = 0.060 for ADC and P = 0.121 for SCC) and the genomic models applied separately (P = 0.350 for ADC and P = 0.269 for SCC). CONCLUSION: The present work provides a methodology to generate a robust signature using copy number data that can be potentially used to any cancer. Using it, we found new prognostic scores based on tumor DNA that, jointly with clinical information, are able to predict overall survival (OS) in patients with early-stage ADC and SCC.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Gene Dosage/genetics , Neoplasm Proteins/genetics , Prognosis , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/surgery , Female , Gene Expression Regulation, Neoplastic , Genome, Human , Genomics , Humans , Kaplan-Meier Estimate , Male , Neoplasm Proteins/biosynthesis , Neoplasm Staging
16.
Int J Cancer ; 135(11): 2516-27, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-24473991

ABSTRACT

New mouse models with specific drivers of genetic alterations are needed for preclinical studies. Herein, we created and characterized at the genetic level a new syngeneic model for lung cancer and metastasis in Balb-c mice. Tumor cell lines were obtained from a silica-mediated airway chronic inflammation that promotes tumorigenesis when combined with low doses of N-nitrosodimethylamine, a tobacco smoke carcinogen. Orthotopic transplantation of these cells induced lung adenocarcinomas, and their intracardiac injection led to prominent colonization of various organs (bone, lung, liver and brain). Driver gene alterations included a mutation in the codon 12 of KRAS (G-A transition), accompanied by a homozygous deletion of the WW domain-containing oxidoreductase (WWOX) gene. The mutant form of WWOX lacked exons 5-8 and displayed reduced protein expression level and activity. WWOX gene restoration decreased the in vitro and in vivo tumorigenicity, confirming the tumor suppressor function of this gene in this particular model. Interestingly, we found that cells displayed remarkable sphere formation ability with expression of specific lung cancer stem cell markers. Study of non-small-cell lung cancer patient cohorts demonstrated a deletion of WWOX in 30% of cases, with significant reduction in protein levels as compared to normal tissues. Overall, our new syngeneic mouse model provides a most valuable tool to study lung cancer metastasis in balb-c mice background and highlights the importance of WWOX deletion in lung carcinogenesis.


Subject(s)
Carcinoma, Non-Small-Cell Lung/secondary , Disease Models, Animal , Inflammation/pathology , Lung Neoplasms/pathology , Neoplasm Recurrence, Local/pathology , Oxidoreductases/genetics , Proto-Oncogene Proteins/genetics , Tumor Suppressor Proteins/genetics , ras Proteins/genetics , Adenocarcinoma/genetics , Adenocarcinoma/mortality , Adenocarcinoma/secondary , Animals , Apoptosis , Blotting, Western , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/mortality , Carcinoma, Squamous Cell/secondary , Cell Proliferation , Comparative Genomic Hybridization , Epithelial-Mesenchymal Transition , Flow Cytometry , Humans , Immunoenzyme Techniques , Inflammation/genetics , Inflammation/mortality , Lung Neoplasms/genetics , Lung Neoplasms/mortality , Mice , Mice, Inbred BALB C , Mice, Nude , Mutation/genetics , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/mortality , Neoplasm Staging , Oxidoreductases/metabolism , Prognosis , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins p21(ras) , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Survival Rate , Tumor Cells, Cultured , Tumor Suppressor Proteins/metabolism , WW Domain-Containing Oxidoreductase , Xenograft Model Antitumor Assays , ras Proteins/metabolism
17.
J Immunol ; 189(9): 4674-83, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-23028051

ABSTRACT

The complement system contributes to various immune and inflammatory diseases, including cancer. In this study, we investigated the capacity of lung cancer cells to activate complement and characterized the consequences of complement activation on tumor progression. We focused our study on the production and role of the anaphylatoxin C5a, a potent immune mediator generated after complement activation. We first measured the capacity of lung cancer cell lines to deposit C5 and release C5a. C5 deposition, after incubation with normal human serum, was higher in lung cancer cell lines than in nonmalignant bronchial epithelial cells. Notably, lung malignant cells produced complement C5a even in the absence of serum. We also found a significant increase of C5a in plasma from patients with non-small cell lung cancer, suggesting that the local production of C5a is followed by its systemic diffusion. The contribution of C5a to lung cancer growth in vivo was evaluated in the Lewis lung cancer model. Syngeneic tumors of 3LL cells grew slower in mice treated with an antagonist of the C5a receptor. C5a did not modify 3LL cell proliferation in vitro but induced endothelial cell chemotaxis and blood-vessels formation. C5a also contributed to the immunosuppressive microenvironment required for tumor growth. In particular, blockade of C5a receptor significantly reduced myeloid-derived suppressor cells and immunomodulators ARG1, CTLA-4, IL-6, IL-10, LAG3, and PDL1 (B7H1). In conclusion, lung cancer cells have the capacity to generate C5a, a molecule that creates a favorable tumor microenvironment for lung cancer progression.


Subject(s)
Carcinoma, Lewis Lung/immunology , Carcinoma, Lewis Lung/pathology , Complement C5a/physiology , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Tumor Microenvironment/immunology , Adenocarcinoma/blood , Adenocarcinoma/immunology , Adenocarcinoma/pathology , Animals , Carcinoma, Lewis Lung/prevention & control , Carcinoma, Non-Small-Cell Lung/blood , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Squamous Cell/blood , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/pathology , Cell Line, Transformed , Cell Line, Tumor , Complement Activation/genetics , Complement Activation/immunology , Complement C5a/biosynthesis , Complement C5a/genetics , Disease Models, Animal , Disease Progression , Female , Human Umbilical Vein Endothelial Cells , Humans , Immune Tolerance/genetics , Lung Neoplasms/prevention & control , Mice , Mice, Inbred C57BL , Neovascularization, Pathologic/immunology , Neovascularization, Pathologic/pathology , Neovascularization, Pathologic/therapy , Receptor, Anaphylatoxin C5a/antagonists & inhibitors , Receptor, Anaphylatoxin C5a/physiology , Respiratory Mucosa/cytology , Respiratory Mucosa/immunology , Respiratory Mucosa/metabolism , Tumor Microenvironment/genetics
18.
Transl Res ; 269: 1-13, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38395390

ABSTRACT

While numerous membrane-bound complement inhibitors protect the body's cells from innate immunity's autoaggression, soluble inhibitors like complement factor I (FI) are rarely produced outside the liver. Previously, we reported the expression of FI in non-small cell lung cancer (NSCLC) cell lines. Now, we assessed the content of FI in cancer biopsies from lung cancer patients and associated the results with clinicopathological characteristics and clinical outcomes. Immunohistochemical staining intensity did not correlate with age, smoking status, tumor size, stage, differentiation grade, and T cell infiltrates, but was associated with progression-free survival (PFS), overall survival (OS) and disease-specific survival (DSS). Multivariate Cox analysis of low vs. high FI content revealed HR 0.55, 95 % CI 0.32-0.95, p=0.031 for PFS, HR 0.51, 95 % CI 0.25-1.02, p=0.055 for OS, and HR 0.32, 95 % CI 0.12-0.84, p=0.021 for DSS. Unfavorable prognosis might stem from the non-canonical role of FI, as the staining pattern did not correlate with C4d - the product of FI-supported degradation of active complement component C4b. To elucidate that, we engineered three human NSCLC cell lines naturally expressing FI with CRISPR/Cas9 technology, and compared the transcriptome of FI-deficient and FI-sufficient clones in each cell line. RNA sequencing revealed differentially expressed genes engaged in intracellular signaling pathways controlling proliferation, apoptosis, and responsiveness to growth factors. Moreover, in vitro colony-formation assays showed that FI-deficient cells formed smaller foci than FI-sufficient NSCLC cells, but their size increased when purified FI protein was added to the medium. We postulate that a non-canonical activity of FI influences cellular physiology and contributes to the poor prognosis of lung cancer patients.


Subject(s)
Complement Factor I , Lung Neoplasms , Humans , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/mortality , Lung Neoplasms/genetics , Male , Complement Factor I/metabolism , Complement Factor I/genetics , Female , Middle Aged , Cell Line, Tumor , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/mortality , Aged , Prognosis , Gene Expression Regulation, Neoplastic
19.
Arch Bronconeumol ; 2024 Jul 17.
Article in English, Spanish | MEDLINE | ID: mdl-39079848

ABSTRACT

Lung cancer remains the leading cause of cancer-related deaths worldwide, mainly due to late diagnosis and the presence of metastases. Several countries around the world have adopted nation-wide LDCT-based lung cancer screening that will benefit patients, shifting the stage at diagnosis to earlier stages with more therapeutic options. Biomarkers can help to optimize the screening process, as well as refine the TNM stratification of lung cancer patients, providing information regarding prognostics and recommending management strategies. Moreover, novel adjuvant strategies will clearly benefit from previous knowledge of the potential aggressiveness and biological traits of a given early-stage surgically resected tumor. This review focuses on proteins as promising biomarkers in the context of lung cancer screening. Despite great efforts, there are still no successful examples of biomarkers in lung cancer that have reached the clinics to be used in early detection and early management. Thus, the field of biomarkers in early lung cancer remains an evident unmet need. A more specific objective of this review is to present an up-to-date technical assessment of the potential use of protein biomarkers in early lung cancer detection and management. We provide an overview regarding the benefits, challenges, pitfalls and constraints in the development process of protein-based biomarkers. Additionally, we examine how a number of emerging protein analytical technologies may contribute to the optimization of novel robust biomarkers for screening and effective management of lung cancer.

20.
Antioxidants (Basel) ; 13(2)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38397754

ABSTRACT

Lung cancer (LC) constitutes an important cause of death among patients with Chronic Obstructive Pulmonary Disease (COPD). Both diseases may share pathobiological mechanisms related to oxidative damage and cellular senescence. In this study, the potential value of leucocyte telomere length, a hallmark of aging, and 8-OHdG concentrations, indicative of oxidative DNA damage, as risk biomarkers of LC was evaluated in COPD patients three years prior to LC diagnosis. Relative telomere length measured using qPCR and serum levels of 8-OHdG were determined at the baseline in 99 COPD smokers (33 with LC and 66 age-matched COPD without LC as controls). Of these, 21 COPD with LC and 42 controls had the biomarkers measured 3 years before. Single nucleotide variants (SNVs) in TERT, RTEL, and NAF1 genes were also determined. COPD cases were evaluated, which showed greater telomere length (p < 0.001) and increased serum 8-OHdG levels (p = 0.004) three years prior to LC diagnosis compared to the controls. This relationship was confirmed at the time of LC diagnosis. No significant association was found between the studied SNVs in cases vs. controls. In conclusion, this preliminary study shows that longer leucocyte telomere length and increased 8-OHdG serum levels can be useful as early biomarkers of the risk for future lung cancer development among COPD patients.

SELECTION OF CITATIONS
SEARCH DETAIL