Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Environ Sci Technol ; 56(23): 16940-16951, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36379054

ABSTRACT

Interactions among multiple stressors, legacies of past perturbations, and the lack of historical information make it difficult to determine the influence of individual anthropogenic impacts on lakes and separate them from natural ecosystem variability. In the present study, we coupled paleolimnological approaches, historical data, and ecological experiments to disentangle the impacts of multiple long-term stressors on lake ecosystem structure and function. We found that the lake structure and function remained resistant to the impacts of catchment deforestation and erosion, and the introduction of several exotic fish species. Changes in ecosystem structure and function were consistent, with nutrient enrichment being the primary driver of change. Significant and sustained changes in the lake diatom community structure (and their nutrient requirements), bacterial community function, and paleolimnological proxies of ecosystem function coincided with nitrogen and phosphorus fertilizers in the catchment. The results highlight that the effects of increased nutrient inputs are much stronger than the influence of other, potentially significant, drivers of ecosystem change, and that the degree of nutrient impact can be underestimated by environmental monitoring due to its diffuse and accumulative nature. Delineating the effects of multiple anthropogenic drivers requires long-term records of both impacts and lake ecosystem change across multiple trophic levels.


Subject(s)
Ecosystem , Lakes , Animals , Lakes/chemistry , Anthropogenic Effects , Phosphorus , Nutrients
2.
Sci Total Environ ; 922: 171266, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38417515

ABSTRACT

Freshwater fish biodiversity and abundance are decreasing globally. The drivers of decline are primarily anthropogenic; however, the causative links between disturbances and fish community change are complex and challenging to investigate. We used a suite of sedimentary DNA methods (droplet digital PCR and metabarcoding) and traditional paleolimnological approaches, including pollen and trace metal analysis, ITRAX X-ray fluorescence and hyperspectral core scanning to explore changes in fish abundance and drivers over 1390 years in a small lake. This period captured a disturbance trajectory from pre-human settlement through subsistence living to intensive agriculture. Generalized additive mixed models explored the relationships between catchment inputs, internal drivers, and fish community structure. Fish community composition distinctly shifted around 1350 CE, with the decline of a sensitive Galaxias species concomitant with early land use changes. Total fish abundance significantly declined around 1950 CE related to increases in ruminant bacterial DNA (a proxy for ruminant abundance) and cadmium flux (a proxy for phosphate fertilizers), implicating land use intensification as a key driver. Concurrent shifts in phytoplankton and zooplankton suggested that fish communities were likely impacted by food web dynamics. This study highlights the potential of sedDNA to elucidate the long-term disturbance impacts on biological communities in lakes.


Subject(s)
DNA, Ancient , Lakes , Animals , Humans , Biodiversity , DNA , Fishes , Ruminants , Ecosystem
3.
Harmful Algae ; 131: 102563, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38212085

ABSTRACT

Cyanobacterial blooms are one of the most significant threats to global water security and freshwater biodiversity. Interactions among multiple stressors, including habitat degradation, species invasions, increased nutrient runoff, and climate change, are key drivers. However, assessing the role of anthropogenic activity on the onset of cyanobacterial blooms and exploring response variation amongst lakes of varying size and depth is usually limited by lack of historical records. In the present study we applied molecular, paleolimnological (trace metal, Itrax-µ-XRF and hyperspectral scanning, chronology), paleobotanical (pollen) and historical data to reconstruct cyanobacterial abundance and community composition and anthropogenic impacts in two dune lakes over a period of up to 1200 years. Metabarcoding and droplet digital PCR results showed very low levels of picocyanobacteria present in the lakes prior to about CE 1854 (1839-1870 CE) in the smaller shallow Lake Alice and CE 1970 (1963-1875 CE) in the larger deeper Lake Wiritoa. Hereafter bloom-forming cyanobacteria were detected and increased notably in abundance post CE 1984 (1982-1985 CE) in Lake Alice and CE 1997 (1990-2007 CE) in Lake Wiritoa. Currently, the magnitude of blooms is more pronounced in Lake Wiritoa, potentially attributable to hypoxia-induced release of phosphorus from sediment, introducing an additional source of nutrients. Generalized linear modelling was used to investigate the contribution of nutrients (proxy = bacterial functions), temperature, redox conditions (Mn:Fe), and erosion (Ti:Inc) in driving the abundance of cyanobacteria (ddPCR). In Lake Alice nutrients and erosion had a statistically significant effect, while in Lake Wiritoa nutrients and redox conditions were significant.


Subject(s)
Cyanobacteria , Lakes , Lakes/microbiology , Cyanobacteria/physiology , Phosphorus/analysis , Ecosystem , Biodiversity
4.
Sci Total Environ ; 812: 152385, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34942258

ABSTRACT

Lakes and their catchments have been subjected to centuries to millennia of exploitation by humans. Efficient monitoring methods are required to promote proactive protection and management. Traditional monitoring is time consuming and expensive, which limits the number of lakes monitored. Lake surface sediments provide a temporally integrated representation of environmental conditions and contain high microbial biomass. Based on these attributes, we hypothesized that bacteria associated with lake trophic states could be identified and used to develop an index that would not be confounded by non-nutrient stressor gradients. Metabarcoding (16S rRNA gene) was used to assess bacterial communities present in surface sediments from 259 non-saline lakes in New Zealand encompassing a range of trophic states from alpine microtrophic lakes to lowland hypertrophic lakes. A subset of lakes (n = 96) with monitoring data was used to identify indicator amplicon sequence variants (ASVs) associated with different trophic states. A total of 10,888 indicator taxa were identified and used to develop a Sediment Bacterial Trophic Index (SBTI), which signficantly correlated (r2 = 0.842, P < 0.001) with the Trophic Lake Index. The SBTI was then derived for the remaining 163 lakes, providing new knowledge of the trophic state of these unmonitored lakes. This new, robust DNA-based tool provides a rapid and cost-effective method that will allow a greater number of lakes to be monitored and more effectively managed in New Zealand and globally. The SBTI could also be applied in a paleolimnological context to investigate changes in trophic status over centuries to millennia.


Subject(s)
Bacteria , Lakes , Bacteria/genetics , Geologic Sediments , Humans , New Zealand , RNA, Ribosomal, 16S
SELECTION OF CITATIONS
SEARCH DETAIL