Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Mol Pharm ; 10(1): 51-8, 2013 Jan 07.
Article in English | MEDLINE | ID: mdl-22876758

ABSTRACT

Viral nanoparticles used for biomedical applications must be able to discriminate between tumor or virus-infected host cells and healthy host cells. In addition, viral nanoparticles must have the flexibility to incorporate a wide range of cargo, from inorganic metals to mRNAs to small molecules. Alphaviruses are a family of enveloped viruses for which some species are intrinsically capable of systemic tumor targeting. Alphavirus virus-like particles, or viral nanoparticles, can be generated from in vitro self-assembled core-like particles using nonviral nucleic acid. In this work, we expand on the types of cargo that can be incorporated into alphavirus core-like particles and the molecular requirements for packaging this cargo. We demonstrate that different core-like particle templates can be further enveloped to form viral nanoparticles that are capable of cell entry. We propose that alphaviruses can be selectively modified to create viral nanoparticles for biomedical applications and basic research.


Subject(s)
Alphavirus/physiology , Nanoparticles/administration & dosage , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Virus Assembly , Alphavirus/chemistry , Alphavirus/genetics , Alphavirus/metabolism , Glycoproteins/metabolism , Luminescent Proteins/metabolism
2.
Virus Res ; 177(2): 138-46, 2013 Nov 06.
Article in English | MEDLINE | ID: mdl-23916968

ABSTRACT

Fluorescent proteins (FPs) are widely used in real-time single virus particle studies to visualize, track and quantify the spatial and temporal parameters of viral pathways. However, potential functional differences between the wild type and the FP-tagged virus may specifically affect particular stages in the virus life-cycle. In this work, we genetically modified the E2 spike protein of Sindbis virus (SINV) with two FPs. We inserted mApple, a red FP, or Venus, a yellow FP, at the N-terminus of the E2 protein of SINV to make SINV-Apple and SINV-Venus. Our results indicate that SINV-Apple and SINV-Venus have similar levels of infectivity and are morphologically similar to SINV-wild-type by negative stain transmission electron microscopy. Both mutants are highly fluorescent and have excellent single-particle tracking properties. However, despite these similarities, when measuring cell entry at the single-particle level, we found that SINV-Apple and SINV-Venus are different in their interaction with the cell surface and FPs are not always interchangeable. We went on to determine that the FP changes the net surface charge on the virus particles, the folding of the spike proteins, and the conformation of the spikes on the virus particle surface, ultimately leading to different cell-binding properties between SINV-Apple and SINV-Venus. Our results are consistent with recent findings that FPs may alter the biological and cellular localization properties of bacterial proteins to which they are fused.


Subject(s)
Alphavirus Infections/virology , Luminescent Proteins/metabolism , Sindbis Virus/physiology , Viral Envelope Proteins/metabolism , Cell Line , Humans , Luminescent Proteins/genetics , Protein Binding , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sindbis Virus/genetics , Viral Envelope Proteins/genetics , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL