Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
J Anim Ecol ; 87(3): 660-671, 2018 05.
Article in English | MEDLINE | ID: mdl-29446081

ABSTRACT

For ectotherms such as lizards, the importance of behavioural thermoregulation in avoiding thermal extremes is well-established and is increasingly acknowledged in modern studies of climate warming and its impacts. Less appreciated and understood are the buffering roles of retreat sites and activity phase, in part because of logistical challenges of studying below-ground activity. Burrowing and nocturnal activity are key behavioural adaptations that have enabled a diverse range of reptiles to survive extreme environmental temperatures within hot desert regions. Yet, the direct impact of recent global warming on activity potential has been hypothesised to have caused extinctions in desert lizards, including the Australian arid zone skink Liopholis kintorei. We test the relevance of this hypothesis through a detailed characterisation of the above- and below-ground thermal and hydric microclimates available to, and used by, L. kintorei. We integrate operative temperatures with observed body temperatures to construct daily activity budgets, including the inference of subterranean behaviour. We then assess the likelihood that contemporary and future local extinctions in this species, and those of similar burrowing habits, could be explained by the direct effects of warming on its activity budget and exposure to thermal extremes. We found that L. kintorei spent only 4% of its time active on the surface, primarily at dusk, and that overall potential surface activity will be increased, not restricted, with climate warming. The burrow system provides an exceptional buffer to current and future maximum extremes of temperature (≈40°C reduction from potential surface temperatures), and desiccation (burrows near 100% humidity). Therefore, any climate warming impacts on this species are likely to be indirect. Our findings reflect the general buffering capacity of underground microclimates, therefore, our conclusions for L. kintorei are more generally applicable to nocturnal and crepuscular ectotherms, and highlight the need to consider the buffering properties of retreat sites and activity phase when forecasting climate change impacts.


Subject(s)
Desert Climate , Global Warming , Hot Temperature/adverse effects , Life History Traits , Lizards/physiology , Animals , Australia , Circadian Rhythm , Climate Change , Endangered Species , Soil
2.
Nat Ecol Evol ; 7(4): 610-622, 2023 04.
Article in English | MEDLINE | ID: mdl-37012380

ABSTRACT

In the past, when scientists encountered and studied 'new' environmental phenomena, they rarely considered the existing knowledge of First Peoples (also known as Indigenous or Aboriginal people). The scientific debate over the regularly spaced bare patches (so-called fairy circles) in arid grasslands of Australian deserts is a case in point. Previous researchers used remote sensing, numerical modelling, aerial images and field observations to propose that fairy circles arise from plant self-organization. Here we present Australian Aboriginal art and narratives, and soil excavation data, that suggest these regularly spaced, bare and hard circles in grasslands are pavement nests occupied by Drepanotermes harvester termites. These circles, called linyji (Manyjilyjarra language) or mingkirri (Warlpiri language), have been used by Aboriginal people in their food economies and for other domestic and sacred purposes across generations. Knowledge of the linyji has been encoded in demonstration and oral transmission, ritual art and ceremony and other media. While the exact origins of the bare circles are unclear, being buried in deep time and Jukurrpa, termites need to be incorporated as key players in a larger system of interactions between soil, water and grass. Ecologically transformative feedbacks across millennia of land use and manipulation by Aboriginal people must be accounted for. We argue that the co-production of knowledge can both improve the care and management of those systems and support intergenerational learning within and across diverse cultures.


Subject(s)
Isoptera , Humans , Animals , Australia , Soil , Plants , Poaceae
SELECTION OF CITATIONS
SEARCH DETAIL