Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Nanobiotechnology ; 19(1): 158, 2021 May 28.
Article in English | MEDLINE | ID: mdl-34049570

ABSTRACT

BACKGROUND: The appearance of resistance against new treatments and the fact that HIV-1 can infect various cell types and develop reservoirs and sanctuaries makes it necessary to develop new therapeutic approaches to overcome those failures. RESULTS: Studies of cytotoxicity, genotoxicity, complexes formation, stability, resistance, release and particle size distribution confirmed that G2-SN15-PEG, G3-SN31-PEG, G2-SN15-PEG-FITC and G3-SN31-PEG-FITC dendrimers can form complexes with miRNAs being biocompatible, stable and conferring protection to these nucleic acids. Confocal microscopy and flow cytometry showed effective delivery of these four dendrimers into the target cells, confirming their applicability as delivery systems. Dendriplexes formed with the dendrimers and miRNAs significantly inhibited HIV-1 infection in PBMCs. CONCLUSIONS: These dendrimers are efficient delivery systems for miRNAs and they specifically and significantly improved the anti-R5-HIV-1 activity of these RNA molecules.


Subject(s)
Cations/pharmacology , Dendrimers/pharmacology , HIV Infections/drug therapy , MicroRNAs/pharmacology , Polyethylene Glycols/pharmacology , Cell Line , Drug Delivery Systems , HIV-1/drug effects , Humans , Leukocytes, Mononuclear , Nucleic Acids , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL