Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Inorg Chem ; 59(6): 3387-3393, 2020 Mar 16.
Article in English | MEDLINE | ID: mdl-32013421

ABSTRACT

Bismuth-based perovskites are of interest as safer alternatives to lead-based optoelectronic materials. Prior studies have reported on the compounds Cs3Bi2Cl9, Cs3Bi2I9, and Cs3Bi2Cl3I6. Here we examine a range of compounds of the formula Cs3Bi2(Cl1-xIx)9, where x takes values from 0.09 to 0.52. Powder and single-crystal X-ray diffraction were used to determine that all of these compounds adopt the layered vacancy-ordered perovskite structure observed for Cs3Bi2Cl3I6, which is also the high-temperature phase of Cs3Bi2Cl9. We find that, even with very small iodine incorporation, the structure is switched to that of Cs3Bi2Cl3I6, with I atoms displaying a distinct preference for the capping sites on the BiX6 octahedra. Optical absorption spectroscopy was employed to study the evolution of optical properties of these materials, and this is complemented by density functional theory electronic structure calculations. Three main absorption features were observed for these compounds, and with increasing x, the lowest-energy features are red-shifted.

2.
Inorg Chem ; 59(20): 15487-15494, 2020 Oct 19.
Article in English | MEDLINE | ID: mdl-32989988

ABSTRACT

Hybrid materials are increasingly demonstrating their utility across several optical, electrical, and magnetic applications. Cu(I) halide-based hybrids have attracted attention due to their strong luminescence in the absence of rare-earths. Here, we report three Cu(I) and Ag(I) hybrid iodides with 1,5-naphthyridine and additional triphenylphosphine (Ph3P) ligands. The compounds are built on (Cu/Ag)-I staircase chains or on a rhomboid Cu2I2 dimer and display intense and tunable luminescence. Replacing Cu with Ag, and adding the second kind of organic ligand (Ph3P) tunes the emission color from red to yellow and results in significantly enhanced quantum yield. Density functional theory-based electronic structure calculations reveal the separate effects of the inorganic module and organic ligand on the electronic structure, confirming that bandgap, optical absorption, and emission properties of these phosphors can be systemically and deliberately tuned by metal substitution and organic ligands cooperation. The emerging understanding of composition-structure-property relations in this family provides powerful design tools toward new compounds for general lighting applications.

3.
Environ Sci Technol ; 49(5): 2675-84, 2015 Mar 03.
Article in English | MEDLINE | ID: mdl-25643125

ABSTRACT

Flood-damaged homes typically have elevated microbial loads, and their occupants have an increased incidence of allergies, asthma, and other respiratory ailments, yet the microbial communities in these homes remain under-studied. Using culture-independent approaches, we characterized bacterial and fungal communities in homes in Boulder, CO, USA 2-3 months after the historic September, 2013 flooding event. We collected passive air samples from basements in 50 homes (36 flood-damaged, 14 non-flooded), and we sequenced the bacterial 16S rRNA gene (V4-V5 region) and the fungal ITS1 region from these samples for community analyses. Quantitative PCR was used to estimate the abundances of bacteria and fungi in the passive air samples. Results indicate significant differences in bacterial and fungal community composition between flooded and non-flooded homes. Fungal abundances were estimated to be three times higher in flooded, relative to non-flooded homes, but there were no significant differences in bacterial abundances. Penicillium (fungi) and Pseudomonadaceae and Enterobacteriaceae (bacteria) were among the most abundant taxa in flooded homes. Our results suggest that bacterial and fungal communities continue to be affected by flooding, even after relative humidity has returned to baseline levels and remediation has removed any visible evidence of flood damage.


Subject(s)
Air Microbiology , Bacteria/growth & development , Disasters , Floods , Fungi/growth & development , Bacteria/genetics , Colorado , Fungi/genetics , Humans , RNA, Bacterial/genetics , RNA, Fungal/genetics , RNA, Ribosomal, 16S/genetics
4.
Chem Mater ; 34(9): 4029-4038, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35573109

ABSTRACT

Natrium super ionic conductor (NASICON) compounds form a rich and highly chemically tunable family of crystalline materials that are of widespread interest because they include exemplars with high ionic conductivity, low thermal expansion, and redox tunability. This makes them suitable candidates for applications ranging from solid-state batteries to nuclear waste storage materials. The key to an understanding of these properties, including the origins of effective cation transport and low, anisotropic (and sometimes negative) thermal expansion, lies in the lattice dynamics associated with specific details of the crystal structure. Here we closely examine the prototypical NASICON compound, NaZr2(PO4)3, and obtain detailed insights into such behavior via variable-temperature neutron diffraction and 23Na and 31P solid-state NMR studies, coupled with comprehensive density functional theory-based calculations of NMR parameters. Temperature-dependent NMR studies yield some surprising trends in the chemical shifts and the quadrupolar coupling constants that are not captured by computation unless the underlying vibrational modes of the crystal are explicitly taken into account. Furthermore, the trajectories of the sodium, zirconium, and oxygen atoms in our dynamical simulations show good qualitative agreement with the anisotropic thermal parameters obtained at higher temperatures by neutron diffraction. The work presented here widens the utility of NMR crystallography to include thermal effects as a unique probe of interesting lattice dynamics in functional materials.

5.
Nat Microbiol ; 2: 16242, 2016 Dec 19.
Article in English | MEDLINE | ID: mdl-27991881

ABSTRACT

Extracellular DNA from dead microorganisms can persist in soil for weeks to years1-3. Although it is implicitly assumed that the microbial DNA recovered from soil predominantly represents intact cells, it is unclear how extracellular DNA affects molecular analyses of microbial diversity. We examined a wide range of soils using viability PCR based on the photoreactive DNA-intercalating dye propidium monoazide4. We found that, on average, 40% of both prokaryotic and fungal DNA was extracellular or from cells that were no longer intact. Extracellular DNA inflated the observed prokaryotic and fungal richness by up to 55% and caused significant misestimation of taxon relative abundances, including the relative abundances of taxa integral to key ecosystem processes. Extracellular DNA was not found in measurable amounts in all soils; it was more likely to be present in soils with low exchangeable base cation concentrations, and the effect of its removal on microbial community structure was more profound in high-pH soils. Together, these findings imply that this 'relic DNA' remaining in soil after cell death can obscure treatment effects, spatiotemporal patterns and relationships between microbial taxa and environmental conditions.

SELECTION OF CITATIONS
SEARCH DETAIL