Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Nano Lett ; 15(7): 4356-63, 2015 Jul 08.
Article in English | MEDLINE | ID: mdl-26027677

ABSTRACT

We assemble bistable silicon quantum dots consisting of four buckled atoms (Si4-QD) using atom manipulation. We demonstrate two competing atom switching mechanisms, downward switching induced by tunneling current of scanning tunneling microscopy (STM) and opposite upward switching induced by atomic force of atomic force microscopy (AFM). Simultaneous application of competing current and force allows us to tune switching direction continuously. Assembly of the few-atom Si-QDs and controlling their states using versatile combined AFM/STM will contribute to further miniaturization of nanodevices.

2.
Phys Rev Lett ; 111(10): 106803, 2013 Sep 06.
Article in English | MEDLINE | ID: mdl-25166692

ABSTRACT

Quantum degeneracy is an important concept in quantum mechanics with large implications to many processes in condensed matter. Here, we show the consequences of electron energy level degeneracy on the conductance and the chemical force between two bodies at the atomic scale. We propose a novel way in which a scanning probe microscope can detect the presence of degenerate states in atomic-sized contacts even at room temperature. The tunneling conductance G and chemical binding force F between two bodies both tend to decay exponentially with distance in a certain distance range, usually maintaining direct proportionality G∝F. However, we show that a square relation G∝F2 arises as a consequence of quantum degeneracy between the interacting frontier states of the scanning tip and a surface atom. We demonstrate this phenomenon on the Si(111)-(7×7) surface reconstruction where the Si adatom possesses a strongly localized dangling-bond state at the Fermi level.

3.
Nature ; 446(7131): 64-7, 2007 Mar 01.
Article in English | MEDLINE | ID: mdl-17330040

ABSTRACT

Scanning probe microscopy is a versatile and powerful method that uses sharp tips to image, measure and manipulate matter at surfaces with atomic resolution. At cryogenic temperatures, scanning probe microscopy can even provide electron tunnelling spectra that serve as fingerprints of the vibrational properties of adsorbed molecules and of the electronic properties of magnetic impurity atoms, thereby allowing chemical identification. But in many instances, and particularly for insulating systems, determining the exact chemical composition of surfaces or nanostructures remains a considerable challenge. In principle, dynamic force microscopy should make it possible to overcome this problem: it can image insulator, semiconductor and metal surfaces with true atomic resolution, by detecting and precisely measuring the short-range forces that arise with the onset of chemical bonding between the tip and surface atoms and that depend sensitively on the chemical identity of the atoms involved. Here we report precise measurements of such short-range chemical forces, and show that their dependence on the force microscope tip used can be overcome through a normalization procedure. This allows us to use the chemical force measurements as the basis for atomic recognition, even at room temperature. We illustrate the performance of this approach by imaging the surface of a particularly challenging alloy system and successfully identifying the three constituent atomic species silicon, tin and lead, even though these exhibit very similar chemical properties and identical surface position preferences that render any discrimination attempt based on topographic measurements impossible.

4.
J Electron Microsc (Tokyo) ; 60 Suppl 1: S199-211, 2011.
Article in English | MEDLINE | ID: mdl-21844590

ABSTRACT

Scanning tunneling microscopy (STM) has opened up the new nanoworlds of scanning probe microscopy. STM is the first-generation atomic tool that can image, evaluate and manipulate individual atoms and consequently can create nanostructures by true bottom-up methods based on atom-by-atom manipulation. Atomic force microscopy is a second-generation atomic tool that has followed the footsteps of STM, and which is now opening doors to a new atom world based on using nanoscale forces.

5.
Phys Rev Lett ; 103(26): 266103, 2009 Dec 31.
Article in English | MEDLINE | ID: mdl-20366324

ABSTRACT

We present dynamic force-microscopy experiments and first-principles simulations that contribute to clarify the origin of atomic-scale contrast in Kelvin-probe force-microscopy (KPFM) images of semiconductor surfaces. By combining KPFM and bias-spectroscopy imaging with force and bias-distance spectroscopy, we show a significant drop of the local contact potential difference (LCPD) that correlates with the development of the tip-surface interatomic forces over distinct atomic positions. We suggest that variations of this drop in the LCPD over the different atomic sites are responsible for the atomic contrast in both KPFM and bias-spectroscopy imaging. Our simulations point towards a relation of this drop in the LCPD to variations of the surface local electronic structure due to a charge polarization induced by the tip-surface interatomic interaction.

6.
Phys Rev Lett ; 99(5): 056101, 2007 Aug 03.
Article in English | MEDLINE | ID: mdl-17930771

ABSTRACT

Surface and subsurface oxygen vacancies on the slightly reduced CeO(2)(111) surface have been studied by atomic resolution dynamic force microscopy at 80 K. Both types of defect are clearly identified by the comparison of the observed topographic features with the corresponding structures predicted from recent first-principles calculations. By combining two simultaneously acquired signals (the topography and the energy dissipated from the cantilever oscillation), we are able to unambiguously locate subsurface oxygen vacancies buried at the third surface atomic layer. We report evidence of local ordering of these subsurface defects that suggests the existence of a delicate balance between subtle interactions among adjacent subsurface oxygen vacancy structures.

7.
Nanoscale ; 9(18): 5812-5821, 2017 May 11.
Article in English | MEDLINE | ID: mdl-28225121

ABSTRACT

Noble metal nanostructures dispersed on metal oxide surfaces have applications in diverse areas such as catalysis, chemical sensing, and energy harvesting. Their reactivity, chemical selectivity, stability, and light absorption properties are controlled by the interactions at the metal/oxide interface. Single-atom metal adsorbates on the rutile TiO2(110)-(1 × 1) surface have become a paradigmatic model to characterize those interactions and to understand the unique electronic properties of these supported nanostructures. We combine Kelvin probe force microscopy (KPFM) experiments and density functional theory (DFT) calculations to investigate the atomic-scale variations in the contact potential difference of individual Pt atoms adsorbed on a hydroxylated (h) TiO2(110)-(1 × 1) surface. Our experiments show a significant drop in the local contact potential difference (LCPD) over Pt atoms with respect to the TiO2 surface, supporting the presence of an electron transfer from the Pt adsorbates to the substrate. We have identified two characteristic regimes by LCPD spectroscopy. At far tip-sample distances, LCPD values show a weak distance dependence and can be attributed to the intrinsic charge transfer from Pt to the oxide support. Beyond the onset of short-range chemical interactions, LCPD values exhibit a strong distance dependence that we ascribe to the local structural and charge rearrangements induced by the tip-sample interaction. These findings also apply to other electropositive adsorbates such as potassium and the hydrogen atoms forming the OH groups that are present on the h-TiO2(110) surface, promoting KPFM as a suitable tool for the understanding of electron transfer in catalytically active materials.

8.
Nat Commun ; 6: 6231, 2015 Feb 06.
Article in English | MEDLINE | ID: mdl-25656414

ABSTRACT

Single-atom/molecule manipulation for fabricating an atomic-scale switching device is a promising technology for nanoelectronics. So far, scanning probe microscopy studies have demonstrated several atomic-scale switches, mostly in cryogenic environments. Although a high-performance switch at room temperature is essential for practical applications, this remains a challenging obstacle to overcome. Here we report a room-temperature switch composed of a binary atom cluster on the semiconductor surface. Distinctly different types of manipulation techniques enable the construction of an atomically defined binary cluster and the electronic switching of the conformations, either unidirectionally or bidirectionally. The switching process involves a complex rearrangement of multiple atoms in concerted manner. Such a feature is strikingly different from any switches mediated by single-atom/molecule processes that have been previously reported.

9.
Nat Commun ; 5: 4360, 2014 Jul 11.
Article in English | MEDLINE | ID: mdl-25014188

ABSTRACT

Nanoclusters supported on substrates are of great importance in physics and chemistry as well as in technical applications, such as single-electron transistors and nanocatalysts. The properties of nanoclusters differ significantly from those of either the constituent atoms or the bulk solid, and are highly sensitive to size and chemical composition. Here we propose a novel atom gating technique to assemble various atom clusters composed of a defined number of atoms at room temperature. The present gating operation is based on the transfer of single diffusing atoms among nanospaces governed by gates, which can be opened in response to the chemical interaction force with a scanning probe microscope tip. This method provides an alternative way to create pre-designed atom clusters with different chemical compositions and to evaluate their chemical stabilities, thus enabling investigation into the influence that a single dopant atom incorporated into the host clusters has on a given cluster stability.

10.
ACS Nano ; 7(8): 7370-6, 2013 Aug 27.
Article in English | MEDLINE | ID: mdl-23906095

ABSTRACT

The effect of tip chemical reactivity on the lateral manipulation of intrinsic Si adatoms toward a vacancy site on a Si(111)-(7 × 7) surface has been investigated by noncontact atomic force microscopy at room temperature. Here we measure the atom-hopping probabilities associated with different manipulation processes as a function of the tip-surface distance by means of constant height scans with chemically different types of tips. The interactions between different tips and Si atoms are evaluated by force spectroscopic measurements. Our results demonstrate that the ability to manipulate Si adatoms depends extremely on the chemical nature of the tip apex and is correlated with the maximal attractive force measured over Si adatoms. We rationalize the observed dependence of the atom manipulation process on tip-apex chemical reactivity by means of density functional theory calculations. The results of these calculations suggest that the ability to reduce the energy barrier associated with the Si adatom movement depends profoundly on tip chemical reactivity and that the level of energy barrier reduction is higher with tips that exhibit high chemical reactivity with Si adatoms. The results of this study provide a better way to control the efficiency of the atomic manipulation process for chemisorption systems.

11.
J Phys Condens Matter ; 24(8): 084008, 2012 Feb 29.
Article in English | MEDLINE | ID: mdl-22310376

ABSTRACT

We simultaneously measured the force and tunneling current in three-dimensional (3D) space on the Si(111)-(7 × 7) surface using scanning force/tunneling microscopy at room temperature. The observables, the frequency shift and the time-averaged tunneling current were converted to the physical quantities of interest, i.e. the interaction force and the instantaneous tunneling current. Using the same tip, the local density of states (LDOS) was mapped on the same surface area at constant height by measuring the time-averaged tunneling current as a function of the bias voltage at every lateral position. LDOS images at negative sample voltages indicate that the tip apex is covered with Si atoms, which is consistent with the Si-Si covalent bonding mechanism for AFM imaging. A measurement technique for 3D force/current mapping and LDOS imaging on the equivalent surface area using the same tip was thus demonstrated.

12.
Nat Nanotechnol ; 4(12): 803-10, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19966795

ABSTRACT

During the past 20 years, the manipulation of atoms and molecules at surfaces has allowed the construction and characterization of model systems that could, potentially, act as building blocks for future nanoscale devices. The majority of these experiments were performed with scanning tunnelling microscopy at cryogenic temperatures. Recently, it has been shown that another scanning probe technique, the atomic force microscope, is capable of positioning single atoms even at room temperature. Here, we review progress in the manipulation of atoms and molecules with the atomic force microscope, and discuss the new opportunities presented by this technique.

13.
Science ; 322(5900): 413-7, 2008 Oct 17.
Article in English | MEDLINE | ID: mdl-18927388

ABSTRACT

The ability to incorporate individual atoms in a surface following predetermined arrangements may bring future atom-based technological enterprises closer to reality. Here, we report the assembling of complex atomic patterns at room temperature by the vertical interchange of atoms between the tip apex of an atomic force microscope and a semiconductor surface. At variance with previous methods, these manipulations were produced by exploring the repulsive part of the short-range chemical interaction between the closest tip-surface atoms. By using first-principles calculations, we clarified the basic mechanisms behind the vertical interchange of atoms, characterizing the key atomistic processes involved and estimating the magnitude of the energy barriers between the relevant atomic configurations that leads to these manipulations.

14.
J Phys Condens Matter ; 24(8): 080301, 2012 Feb 29.
Article in English | MEDLINE | ID: mdl-22311696
15.
Phys Rev Lett ; 98(10): 106104, 2007 Mar 09.
Article in English | MEDLINE | ID: mdl-17358551

ABSTRACT

Vacancy-mediated lateral manipulations of intrinsic adatoms of the Si(111)-(7x7) surface at room temperature are reported. The topographic signal during the manipulation combined with force spectroscopy measurements reveals that these manipulations can be ascribed to the so-called pulling mode, and that the Si adatoms were manipulated in the attractive tip-surface interaction regime at the relatively low short-range force value associated to the manipulation set point. First-principles calculations reveal that the presence of the tip induces structural relaxations that weaken the adatom surface bonds and manifests in a considerable local reduction of the natural diffusion barriers to adjacent adsorption positions. Close to the short-range forces measured in the experiments, these barriers are lowered near the limit that enables a thermally activated hopping at room temperature.

16.
Nanotechnology ; 17(7): S142-7, 2006 Apr 14.
Article in English | MEDLINE | ID: mdl-21727405

ABSTRACT

Experimental results on vertical manipulation on an insulator surface using non-contact atomic force microscopy are presented. Cleaved ionic KCl(100) single crystal is used as an insulator surface. With the nanoindentation method used, the vertical manipulation of a single atom in an ionic crystal surface is more difficult than in a semiconductor surface. Therefore, in many cases, more than one surface atom is manipulated while, in rare cases, single-atom manipulation is successfully performed. Lateral manipulation of a vacancy has occasionally succeeded on the KCl(100) surface. We have presumed that the lateral manipulation was induced by pulling.

17.
Nanotechnology ; 17(16): 4235-9, 2006 Aug 28.
Article in English | MEDLINE | ID: mdl-21727565

ABSTRACT

The Sn/Si(111)-([Formula: see text]) surface is observed by using non-contact atomic force microscopy (NC-AFM) at room temperature. The images at relatively far tip-surface distances show four protrusions in each ([Formula: see text]) unit cell, which are similar to previously reported scanning tunnelling microscopy (STM) images. On the other hand, it is found that, at closer tip-surface distances, eight protrusions are clearly resolved, which indicates that the spatial resolution of NC-AFM is higher than that of STM as far as imaging this surface is concerned. Our high-resolution NC-AFM images are in good agreement with a recently proposed model based on 13 Sn atoms per unit cell.

18.
Phys Rev Lett ; 96(10): 106101, 2006 Mar 17.
Article in English | MEDLINE | ID: mdl-16605762

ABSTRACT

By combining dynamic force microscopy experiments and first-principles calculations, we have studied the adhesion associated with a single atomic contact between a nanoasperity--the tip apex--and a semiconductor surface--the Ge(111)-c(2 x 8). The nanoasperity's termination has been atomically characterized by extensive comparisons of the measured short-range force at specific sites with the chemical forces calculated using many atomic models that vary in structure, composition, and relative orientation with respect to the surface. This thorough characterization has allowed us to explain the dissipation signal observed in atomic-resolution images and force spectroscopic measurements, as well as to identify a dissipation channel and the associated atomic processes.

19.
Nat Mater ; 4(2): 156-9, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15654346

ABSTRACT

The ability to manipulate single atoms and molecules laterally for creating artificial structures on surfaces is driving us closer to the ultimate limit of two-dimensional nanoengineering. However, experiments involving this level of manipulation have been performed only at cryogenic temperatures. Scanning tunnelling microscopy has proved, so far, to be a unique tool with all the necessary capabilities for laterally pushing, pulling or sliding single atoms and molecules, and arranging them on a surface at will. Here we demonstrate, for the first time, that it is possible to perform well-controlled lateral manipulations of single atoms using near-contact atomic force microscopy even at room temperature. We report the creation of 'atom inlays', that is, artificial atomic patterns formed from a few embedded atoms in the plane of a surface. At room temperature, such atomic structures remain stable on the surface for relatively long periods of time.

20.
J Electron Microsc (Tokyo) ; 53(2): 163-8, 2004.
Article in English | MEDLINE | ID: mdl-15180212

ABSTRACT

We succeeded in distinguishing between oxygen and silicon atoms on an oxygen-adsorbed Si(111)7 x 7 surface, and also distinguished between silicon and tin atoms on Si(111)7 x 7-Sn intermixed and Si(111) square root(3) x square root(3)-Sn mosaic-phase surfaces using non-contact atomic force microscopy (NC-AFM) at room temperature. Atom species of individual atoms are specified from the number of each atom in NC-AFM images, the tip-sample distance dependence of NC-AFM images and/or the surface distribution of each atom. Further, based on the NC-AFM method but using soft nanoindentation, we achieved two kinds of mechanical vertical manipulation of individual atoms: removal of a selected Si adatom and deposition of a Si atom into a selected Si adatom vacancy on the Si(111)7 x 7 surface at 78 K. Here, we carefully and slowly indented a Si atom on top of a clean Si tip apex onto a predetermined Si adatom to remove the targeted Si adatom and onto a predetermined Si adatom vacancy to deposit a Si atom, i.e. to repair the targeted Si adatom vacancy. By combining the atom-selective imaging method with two kinds of mechanical atom manipulation, i.e. by picking up a selected atom species and by depositing that atom one by one at the assigned site, we hope to construct nanomaterials and nanodevices made from more than two kinds of atom species in the near future.

SELECTION OF CITATIONS
SEARCH DETAIL