Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Virol ; 86(15): 8131-8, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22623785

ABSTRACT

High-risk human papillomaviruses (HPVs) deregulate epidermal differentiation and cause anogenital and head and neck squamous cell carcinomas (SCCs). The E7 gene is considered the predominant viral oncogene and drives proliferation and genome instability. While the implementation of routine screens has greatly reduced the incidence of cervical cancers which are almost exclusively HPV positive, the proportion of HPV-positive head and neck SCCs is on the rise. High levels of HPV oncogene expression and genome load are linked to disease progression, but genetic risk factors that regulate oncogene abundance and/or genome amplification remain poorly understood. Fanconi anemia (FA) is a genome instability syndrome characterized at least in part by extreme susceptibility to SCCs. FA results from mutations in one of 15 genes in the FA pathway, whose protein products assemble in the nucleus and play important roles in DNA damage repair. We report here that loss of FA pathway components FANCA and FANCD2 stimulates E7 protein accumulation in human keratinocytes and causes increased epithelial proliferation and basal cell layer expansion in the HPV-positive epidermis. Additionally, FANCD2 loss stimulates HPV genome amplification in differentiating cells, demonstrating that the intact FA pathway functions to restrict the HPV life cycle. These findings raise the possibility that FA genes suppress HPV infection and disease and suggest possible mechanism(s) for reported associations of HPV with an FA cohort in Brazil and for allelic variation of FA genes with HPV persistence in the general population.


Subject(s)
Fanconi Anemia Complementation Group A Protein/metabolism , Fanconi Anemia Complementation Group D2 Protein/metabolism , Genome, Viral/physiology , Human papillomavirus 16/physiology , Papillomavirus E7 Proteins/metabolism , Papillomavirus Infections/metabolism , Virus Replication/physiology , Brazil/epidemiology , Carcinoma, Squamous Cell/epidemiology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/virology , Cell Line, Transformed , Fanconi Anemia/epidemiology , Fanconi Anemia/genetics , Fanconi Anemia/metabolism , Fanconi Anemia/pathology , Fanconi Anemia/virology , Fanconi Anemia Complementation Group A Protein/genetics , Fanconi Anemia Complementation Group D2 Protein/genetics , Female , Head and Neck Neoplasms/epidemiology , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/virology , Humans , Keratinocytes/metabolism , Keratinocytes/pathology , Keratinocytes/virology , Male , Papillomavirus E7 Proteins/genetics , Papillomavirus Infections/epidemiology , Papillomavirus Infections/genetics , Papillomavirus Infections/pathology
2.
Nucleic Acids Res ; 39(17): 7465-76, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21653549

ABSTRACT

The human DEK gene is frequently overexpressed and sometimes amplified in human cancer. Consistent with oncogenic functions, Dek knockout mice are partially resistant to chemically induced papilloma formation. Additionally, DEK knockdown in vitro sensitizes cancer cells to DNA damaging agents and induces cell death via p53-dependent and -independent mechanisms. Here we report that DEK is important for DNA double-strand break repair. DEK depletion in human cancer cell lines and xenografts was sufficient to induce a DNA damage response as assessed by detection of γH2AX and FANCD2. Phosphorylation of H2AX was accompanied by contrasting activation and suppression, respectively, of the ATM and DNA-PK pathways. Similar DNA damage responses were observed in primary Dek knockout mouse embryonic fibroblasts (MEFs), along with increased levels of DNA damage and exaggerated induction of senescence in response to genotoxic stress. Importantly, Dek knockout MEFs exhibited distinct defects in non-homologous end joining (NHEJ) when compared to their wild-type counterparts. Taken together, the data demonstrate new molecular links between DEK and DNA damage response signaling pathways, and suggest that DEK contributes to DNA repair.


Subject(s)
Chromosomal Proteins, Non-Histone/physiology , DNA Breaks, Double-Stranded , DNA Repair , Oncogene Proteins/physiology , Animals , Ataxia Telangiectasia Mutated Proteins , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Chromosomal Proteins, Non-Histone/antagonists & inhibitors , DNA-Activated Protein Kinase/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Female , Humans , Mice , Mice, Knockout , Mice, Nude , Oncogene Proteins/antagonists & inhibitors , Oncogene Proteins/genetics , Poly-ADP-Ribose Binding Proteins , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Tumor Suppressor Proteins/metabolism
3.
J Virol ; 85(20): 10487-98, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21835799

ABSTRACT

Expression of the high-risk human papillomavirus (HPV) E6 and E7 oncogenes is essential for the initiation and maintenance of cervical cancer. The repression of both was previously shown to result in activation of their respective tumor suppressor targets, p53 and pRb, and subsequent senescence induction in cervical cancer cells. Consequently, viral oncogene suppression is a promising approach for the treatment of HPV-positive tumors. One well-established method of E6/E7 repression involves the reexpression of the viral E2 protein which is usually deleted in HPV-positive cancer cells. Here, we show that, surprisingly, bovine papillomavirus type 1 (BPV1) E2 but not RNA interference-mediated E6/E7 repression in HPV-positive cervical cancer cells stimulates cellular motility and invasion. Migration correlated with the dynamic formation of cellular protrusions and was dependent upon cell-to-cell contact. While E2-expressing migratory cells were senescent, migration was not a general feature of cellular senescence or cell cycle arrest and was specifically observed in HPV-positive cervical cancer cells. Interestingly, E2-expressing cells not only were themselves motile but also conferred increased motility to admixed HeLa cervical cancer cells. Together, our data suggest that repression of the viral oncogenes by E2 stimulates the motility of E6/E7-targeted cells as well as adjacent nontargeted cancer cells, thus raising the possibility that E2 expression may unfavorably increase the local invasiveness of HPV-positive tumors.


Subject(s)
Bovine papillomavirus 1/pathogenicity , DNA-Binding Proteins/metabolism , Oncogene Proteins, Viral/antagonists & inhibitors , Viral Proteins/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Humans
4.
Am J Pathol ; 174(1): 71-81, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19036808

ABSTRACT

Overexpression of the DEK gene is associated with multiple human cancers, but its specific roles as a putative oncogene are not well defined. DEK transcription was previously shown to be induced by the high-risk human papillomavirus (HPV) E7 oncogene via E2F and Rb pathways. Transient DEK overexpression was able to inhibit both senescence and apoptosis in cultured cells. In at least the latter case, this mechanism involved the destabilization of p53 and the decreased expression of p53 target genes. We show here that DEK overexpression disrupts the normal differentiation program in a manner that is independent of either p53 or cell death. DEK expression was distinctly repressed upon the differentiation of cultured primary human keratinocytes, and stable DEK overexpression caused epidermal thickening in an organotypic raft model system. The observed hyperplasia involved a delay in keratinocyte differentiation toward a more undifferentiated state, and expansion of the basal cell compartment was due to increased proliferation, but not apoptosis. These phenotypes were accompanied by elevated p63 expression in the absence of p53 destabilization. In further support of bona fide oncogenic DEK activities, we report here up-regulated DEK protein levels in both human papilloma virus-positive hyperplastic murine skin and a subset of human squamous cell carcinomas. We suggest that DEK up-regulation may contribute to carcinoma development at least in part through increased proliferation and retardation of differentiation.


Subject(s)
Cell Differentiation/genetics , Cell Transformation, Neoplastic/genetics , Chromosomal Proteins, Non-Histone/biosynthesis , Epithelial Cells/cytology , Keratinocytes/cytology , Oncogene Proteins/biosynthesis , Animals , Blotting, Western , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/virology , Cell Proliferation , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Cells, Cultured , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , DNA-Binding Proteins/metabolism , Epithelial Cells/pathology , Epithelial Cells/virology , Epithelium/metabolism , Epithelium/pathology , Fluorescent Antibody Technique , Foreskin/cytology , Gene Expression , Humans , Hyperplasia/genetics , Hyperplasia/metabolism , Hyperplasia/virology , Keratinocytes/pathology , Keratinocytes/virology , Male , Membrane Proteins/metabolism , Mice , Mice, Transgenic , Oncogene Proteins/genetics , Oncogene Proteins/metabolism , Papillomavirus E7 Proteins/genetics , Poly-ADP-Ribose Binding Proteins , Proto-Oncogene Mas , Reverse Transcriptase Polymerase Chain Reaction , Up-Regulation
5.
Mol Biol Cell ; 17(5): 2401-14, 2006 May.
Article in English | MEDLINE | ID: mdl-16481397

ABSTRACT

To maintain genomic stability, reinitiation of eukaryotic DNA replication within a single cell cycle is blocked by multiple mechanisms that inactivate or remove replication proteins after G1 phase. Consistent with the prevailing notion that these mechanisms are redundant, we previously showed that simultaneous deregulation of three replication proteins, ORC, Cdc6, and Mcm2-7, was necessary to cause detectable bulk re-replication in G2/M phase in Saccharomyces cerevisiae. In this study, we used microarray comparative genomic hybridization (CGH) to provide a more comprehensive and detailed analysis of re-replication. This genome-wide analysis suggests that reinitiation in G2/M phase primarily occurs at a subset of both active and latent origins, but is independent of chromosomal determinants that specify the use and timing of these origins in S phase. We demonstrate that re-replication can be induced within S phase, but differs in amount and location from re-replication in G2/M phase, illustrating the dynamic nature of DNA replication controls. Finally, we show that very limited re-replication can be detected by microarray CGH when only two replication proteins are deregulated, suggesting that the mechanisms blocking re-replication are not redundant. Therefore we propose that eukaryotic re-replication at levels below current detection limits may be more prevalent and a greater source of genomic instability than previously appreciated.


Subject(s)
Chromosomes, Fungal/genetics , DNA Replication/genetics , Genome, Fungal , Replication Origin/genetics , Saccharomyces cerevisiae/genetics , Genomic Instability , Mutation , Oligonucleotide Array Sequence Analysis , S Phase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL