Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 204
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 186(7): 1478-1492.e15, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36870331

ABSTRACT

Lungs undergo mechanical strain during breathing, but how these biophysical forces affect cell fate and tissue homeostasis are unclear. We show that biophysical forces through normal respiratory motion actively maintain alveolar type 1 (AT1) cell identity and restrict these cells from reprogramming into AT2 cells in the adult lung. AT1 cell fate is maintained at homeostasis by Cdc42- and Ptk2-mediated actin remodeling and cytoskeletal strain, and inactivation of these pathways causes a rapid reprogramming into the AT2 cell fate. This plasticity induces chromatin reorganization and changes in nuclear lamina-chromatin interactions, which can discriminate AT1 and AT2 cell identity. Unloading the biophysical forces of breathing movements leads to AT1-AT2 cell reprogramming, revealing that normal respiration is essential to maintain alveolar epithelial cell fate. These data demonstrate the integral function of mechanotransduction in maintaining lung cell fate and identifies the AT1 cell as an important mechanosensor in the alveolar niche.


Subject(s)
Alveolar Epithelial Cells , Mechanotransduction, Cellular , Alveolar Epithelial Cells/metabolism , Cells, Cultured , Lung , Cell Differentiation/physiology , Respiration
2.
Cell ; 170(6): 1134-1148.e10, 2017 Sep 07.
Article in English | MEDLINE | ID: mdl-28886382

ABSTRACT

The lung is an architecturally complex organ comprising a heterogeneous mixture of various epithelial and mesenchymal lineages. We use single-cell RNA sequencing and signaling lineage reporters to generate a spatial and transcriptional map of the lung mesenchyme. We find that each mesenchymal lineage has a distinct spatial address and transcriptional profile leading to unique niche regulatory functions. The mesenchymal alveolar niche cell is Wnt responsive, expresses Pdgfrα, and is critical for alveolar epithelial cell growth and self-renewal. In contrast, the Axin2+ myofibrogenic progenitor cell preferentially generates pathologically deleterious myofibroblasts after injury. Analysis of the secretome and receptome of the alveolar niche reveals functional pathways that mediate growth and self-renewal of alveolar type 2 progenitor cells, including IL-6/Stat3, Bmp, and Fgf signaling. These studies define the cellular and molecular framework of lung mesenchymal niches and reveal the functional importance of developmental pathways in promoting self-renewal versus a pathological response to tissue injury.


Subject(s)
Lung/cytology , Mesoderm/cytology , Algorithms , Animals , Epithelial Cells/metabolism , Fibrosis/metabolism , Gene Expression Profiling , Lung/pathology , Lung/physiology , Lung Injury/pathology , Mice , Organoids/cytology , Paracrine Communication , Regeneration , Signal Transduction , Single-Cell Analysis , Stem Cells/metabolism
3.
Cell ; 171(3): 573-587.e14, 2017 Oct 19.
Article in English | MEDLINE | ID: mdl-29033129

ABSTRACT

Progenitor cells differentiate into specialized cell types through coordinated expression of lineage-specific genes and modification of complex chromatin configurations. We demonstrate that a histone deacetylase (Hdac3) organizes heterochromatin at the nuclear lamina during cardiac progenitor lineage restriction. Specification of cardiomyocytes is associated with reorganization of peripheral heterochromatin, and independent of deacetylase activity, Hdac3 tethers peripheral heterochromatin containing lineage-relevant genes to the nuclear lamina. Deletion of Hdac3 in cardiac progenitor cells releases genomic regions from the nuclear periphery, leading to precocious cardiac gene expression and differentiation into cardiomyocytes; in contrast, restricting Hdac3 to the nuclear periphery rescues myogenesis in progenitors otherwise lacking Hdac3. Our results suggest that availability of genomic regions for activation by lineage-specific factors is regulated in part through dynamic chromatin-nuclear lamina interactions and that competence of a progenitor cell to respond to differentiation signals may depend upon coordinated movement of responding gene loci away from the nuclear periphery.


Subject(s)
Chromatin/metabolism , Gene Expression Regulation, Developmental , Histone Deacetylases/metabolism , Nuclear Lamina/metabolism , Stem Cells/cytology , Animals , Genome , Mice , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Stem Cells/metabolism
4.
Nat Rev Mol Cell Biol ; 20(9): 551-566, 2019 09.
Article in English | MEDLINE | ID: mdl-31217577

ABSTRACT

The respiratory system, including the peripheral lungs, large airways and trachea, is one of the most recently evolved adaptations to terrestrial life. To support the exchange of respiratory gases, the respiratory system is interconnected with the cardiovascular system, and this interconnective nature requires a complex interplay between a myriad of cell types. Until recently, this complexity has hampered our understanding of how the respiratory system develops and responds to postnatal injury to maintain homeostasis. The advent of new single-cell sequencing technologies, developments in cellular and tissue imaging and advances in cell lineage tracing have begun to fill this gap. The view that emerges from these studies is that cellular and functional heterogeneity of the respiratory system is even greater than expected and also highly adaptive. In this Review, we explore the cellular crosstalk that coordinates the development and regeneration of the respiratory system. We discuss both the classic cell and developmental biology studies and recent single-cell analysis to provide an integrated understanding of the cellular niches that control how the respiratory system develops, interacts with the external environment and responds to injury.


Subject(s)
Cell Communication/physiology , Cell Differentiation/physiology , Homeostasis/physiology , Regeneration , Respiratory Physiological Phenomena , Respiratory System/embryology , Animals , Humans , Oxygen Consumption/physiology
5.
Annu Rev Cell Dev Biol ; 31: 553-73, 2015.
Article in English | MEDLINE | ID: mdl-26359777

ABSTRACT

The respiratory endoderm develops from a small cluster of cells located on the ventral anterior foregut. This population of progenitors generates the myriad epithelial lineages required for proper lung function in adults through a complex and delicately balanced series of developmental events controlled by many critical signaling and transcription factor pathways. In the past decade, understanding of this process has grown enormously, helped in part by cell lineage fate analysis and deep sequencing of the transcriptomes of various progenitors and differentiated cell types. This review explores how these new techniques, coupled with more traditional approaches, have provided a detailed picture of development of the epithelial lineages in the lung and insight into how aberrant development can lead to lung disease.


Subject(s)
Endoderm/physiology , Gene Expression Regulation, Developmental/physiology , Lung/physiology , Morphogenesis/physiology , Animals , Cell Lineage/physiology , Humans , Organogenesis/physiology
6.
Nature ; 610(7931): 381-388, 2022 10.
Article in English | MEDLINE | ID: mdl-36198800

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged at the end of 2019 and caused the devastating global pandemic of coronavirus disease 2019 (COVID-19), in part because of its ability to effectively suppress host cell responses1-3. In rare cases, viral proteins dampen antiviral responses by mimicking critical regions of human histone proteins4-8, particularly those containing post-translational modifications required for transcriptional regulation9-11. Recent work has demonstrated that SARS-CoV-2 markedly disrupts host cell epigenetic regulation12-14. However, how SARS-CoV-2 controls the host cell epigenome and whether it uses histone mimicry to do so remain unclear. Here we show that the SARS-CoV-2 protein encoded by ORF8 (ORF8) functions as a histone mimic of the ARKS motifs in histone H3 to disrupt host cell epigenetic regulation. ORF8 is associated with chromatin, disrupts regulation of critical histone post-translational modifications and promotes chromatin compaction. Deletion of either the ORF8 gene or the histone mimic site attenuates the ability of SARS-CoV-2 to disrupt host cell chromatin, affects the transcriptional response to infection and attenuates viral genome copy number. These findings demonstrate a new function of ORF8 and a mechanism through which SARS-CoV-2 disrupts host cell epigenetic regulation. Further, this work provides a molecular basis for the finding that SARS-CoV-2 lacking ORF8 is associated with decreased severity of COVID-19.


Subject(s)
COVID-19 , Epigenesis, Genetic , Histones , Host Microbial Interactions , Molecular Mimicry , SARS-CoV-2 , Viral Proteins , COVID-19/genetics , COVID-19/metabolism , COVID-19/virology , Chromatin/genetics , Chromatin/metabolism , Chromatin Assembly and Disassembly , Epigenome/genetics , Histones/chemistry , Histones/metabolism , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism
7.
Nature ; 604(7904): 120-126, 2022 04.
Article in English | MEDLINE | ID: mdl-35355013

ABSTRACT

The human lung differs substantially from its mouse counterpart, resulting in a distinct distal airway architecture affected by disease pathology in chronic obstructive pulmonary disease. In humans, the distal branches of the airway interweave with the alveolar gas-exchange niche, forming an anatomical structure known as the respiratory bronchioles. Owing to the lack of a counterpart in mouse, the cellular and molecular mechanisms that govern respiratory bronchioles in the human lung remain uncharacterized. Here we show that human respiratory bronchioles contain a unique secretory cell population that is distinct from cells in larger proximal airways. Organoid modelling reveals that these respiratory airway secretory (RAS) cells act as unidirectional progenitors for alveolar type 2 cells, which are essential for maintaining and regenerating the alveolar niche. RAS cell lineage differentiation into alveolar type 2 cells is regulated by Notch and Wnt signalling. In chronic obstructive pulmonary disease, RAS cells are altered transcriptionally, corresponding to abnormal alveolar type 2 cell states, which are associated with smoking exposure in both humans and ferrets. These data identify a distinct progenitor in a region of the human lung that is not found in mouse that has a critical role in maintaining the gas-exchange compartment and is altered in chronic lung disease.


Subject(s)
Bronchioles , Ferrets , Multipotent Stem Cells , Pulmonary Alveoli , Animals , Bronchioles/cytology , Cell Lineage , Humans , Lung/pathology , Mice , Multipotent Stem Cells/cytology , Pulmonary Alveoli/cytology , Pulmonary Disease, Chronic Obstructive
8.
Genes Dev ; 33(11-12): 656-668, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30923168

ABSTRACT

Transcription factors (TFs) are dosage-sensitive master regulators of gene expression, with haploinsufficiency frequently leading to life-threatening disease. Numerous mechanisms have evolved to tightly regulate the expression and activity of TFs at the transcriptional, translational, and posttranslational levels. A subset of long noncoding RNAs (lncRNAs) is spatially correlated with transcription factors in the genome, but the regulatory relationship between these lncRNAs and their neighboring TFs is unclear. We identified a regulatory feedback loop between the TF Foxa2 and a downstream lncRNA, Falcor (Foxa2-adjacent long noncoding RNA). Foxa2 directly represses Falcor expression by binding to its promoter, while Falcor functions in cis to positively regulate the expression of Foxa2. In the lung, loss of Falcor is sufficient to lead to chronic inflammatory changes and defective repair after airway epithelial injury. Moreover, disruption of the Falcor-Foxa2 regulatory feedback loop leads to altered cell adhesion and migration, in turn resulting in chronic peribronchial airway inflammation and goblet cell metaplasia. These data reveal that the lncRNA Falcor functions within a regulatory feedback loop to fine-tune the expression of Foxa2, maintain airway epithelial homeostasis, and promote regeneration.


Subject(s)
Epithelial Cells/metabolism , Hepatocyte Nuclear Factor 3-beta/genetics , Lung/cytology , Lung/metabolism , RNA, Long Noncoding/genetics , Animals , Cell Adhesion , Cell Line , Cell Movement , Female , Gene Expression Regulation , Hepatocyte Nuclear Factor 3-beta/metabolism , Homeostasis , Humans , Male , Mice , Promoter Regions, Genetic , Regeneration , Transcription, Genetic
9.
Am J Hum Genet ; 110(10): 1735-1749, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37734371

ABSTRACT

Emphysema and chronic obstructive pulmonary disease (COPD) most commonly result from the effects of environmental exposures in genetically susceptible individuals. Genome-wide association studies have implicated ADGRG6 in COPD and reduced lung function, and a limited number of studies have examined the role of ADGRG6 in cells representative of the airway. However, the ADGRG6 locus is also associated with DLCO/VA, an indicator of gas exchange efficiency and alveolar function. Here, we sought to evaluate the mechanistic contributions of ADGRG6 to homeostatic function and disease in type 2 alveolar epithelial cells. We applied an inducible CRISPR interference (CRISPRi) human induced pluripotent stem cell (iPSC) platform to explore ADGRG6 function in iPSC-derived AT2s (iAT2s). We demonstrate that ADGRG6 exerts pleiotropic effects on iAT2s including regulation of focal adhesions, cytoskeleton, tight junctions, and proliferation. Moreover, we find that ADGRG6 knockdown in cigarette smoke-exposed iAT2s alters cellular responses to injury, downregulating apical complexes in favor of proliferation. Our work functionally characterizes the COPD GWAS gene ADGRG6 in human alveolar epithelium.


Subject(s)
Induced Pluripotent Stem Cells , Pulmonary Disease, Chronic Obstructive , Receptors, G-Protein-Coupled , Humans , Alveolar Epithelial Cells/metabolism , Epithelial Cells/metabolism , Genome-Wide Association Study , Induced Pluripotent Stem Cells/metabolism , Lung/metabolism , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/metabolism , Receptors, G-Protein-Coupled/genetics
10.
PLoS Biol ; 21(2): e3001989, 2023 02.
Article in English | MEDLINE | ID: mdl-36745682

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) is the cell-surface receptor for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). While its central role in Coronavirus Disease 2019 (COVID-19) pathogenesis is indisputable, there remains significant debate regarding the role of this transmembrane carboxypeptidase in the disease course. These include the role of soluble versus membrane-bound ACE2, as well as ACE2-independent mechanisms that may contribute to viral spread. Testing these roles requires in vivo models. Here, we report humanized ACE2-floxed mice in which hACE2 is expressed from the mouse Ace2 locus in a manner that confers lethal disease and permits cell-specific, Cre-mediated loss of function, and LSL-hACE2 mice in which hACE2 is expressed from the Rosa26 locus enabling cell-specific, Cre-mediated gain of function. Following exposure to SARS-CoV-2, hACE2-floxed mice experienced lethal cachexia, pulmonary infiltrates, intravascular thrombosis and hypoxemia-hallmarks of severe COVID-19. Cre-mediated loss and gain of hACE2 demonstrate that neuronal infection confers lethal cachexia, hypoxemia, and respiratory failure in the absence of lung epithelial infection. In this series of genetic experiments, we demonstrate that ACE2 is absolutely and cell-autonomously required for SARS-CoV-2 infection in the olfactory epithelium, brain, and lung across diverse cell types. Therapies inhibiting or blocking ACE2 at these different sites are likely to be an effective strategy towards preventing severe COVID-19.


Subject(s)
COVID-19 , Mice , Animals , Angiotensin-Converting Enzyme 2/genetics , SARS-CoV-2/metabolism , Cachexia , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Hypoxia
11.
Genes Dev ; 32(23-24): 1461-1471, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30509948

ABSTRACT

Tissue regeneration involves various types of cellular and molecular responses depending on the type of tissue and the injury or disease that is inflicted. While many tissues contain dedicated stem/progenitor cell lineages, many others contain cells that, during homeostasis, are considered physiologically functional and fully differentiated but, after injury or in disease states, exhibit stem/progenitor-like activity. Recent identification of subsets of defined cell types as facultative stem/progenitor cells has led to a re-examination of how certain tissues respond to injury to mount a regenerative response. In this review, we focus on lung regeneration to explore the importance of facultative regeneration controlled by functional and differentiated cell lineages as well as how they are positioned and regulated by distinct tissue niches. Additionally, we discuss the molecular signals to which cells respond in their differentiated state during homeostasis and those signals that promote effective regeneration of damaged or lost cells and structures after injury.


Subject(s)
Lung/physiology , Regeneration , Animals , Cell Differentiation , Cell Lineage , Homeostasis , Humans , Lung/cytology , Regeneration/genetics , Signal Transduction , Stem Cells/cytology
12.
Proc Natl Acad Sci U S A ; 119(43): e2123187119, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36252035

ABSTRACT

Disruption of alveolar type 2 cell (AEC2) protein quality control has been implicated in chronic lung diseases, including pulmonary fibrosis (PF). We previously reported the in vivo modeling of a clinical surfactant protein C (SP-C) mutation that led to AEC2 endoplasmic reticulum (ER) stress and spontaneous lung fibrosis, providing proof of concept for disruption to proteostasis as a proximal driver of PF. Using two clinical SP-C mutation models, we have now discovered that AEC2s experiencing significant ER stress lose quintessential AEC2 features and develop a reprogrammed cell state that heretofore has been seen only as a response to lung injury. Using single-cell RNA sequencing in vivo and organoid-based modeling, we show that this state arises de novo from intrinsic AEC2 dysfunction. The cell-autonomous AEC2 reprogramming can be attenuated through inhibition of inositol-requiring enzyme 1 (IRE1α) signaling as the use of an IRE1α inhibitor reduced the development of the reprogrammed cell state and also diminished AEC2-driven recruitment of granulocytes, alveolitis, and lung injury. These findings identify AEC2 proteostasis, and specifically IRE1α signaling through its major product XBP-1, as a driver of a key AEC2 phenotypic change that has been identified in lung fibrosis.


Subject(s)
Alveolar Epithelial Cells , Cellular Reprogramming , Lung Injury , Membrane Proteins , Protein Serine-Threonine Kinases , Pulmonary Fibrosis , Alveolar Epithelial Cells/metabolism , Endoplasmic Reticulum Stress , Endoribonucleases/genetics , Endoribonucleases/metabolism , Inositol/metabolism , Lung Injury/pathology , Protein Serine-Threonine Kinases/genetics , Proteostasis , Pulmonary Fibrosis/genetics , Membrane Proteins/genetics , Pulmonary Surfactant-Associated Protein C/metabolism
13.
Genes Dev ; 31(9): 889-903, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28546511

ABSTRACT

A subset of long noncoding RNAs (lncRNAs) is spatially correlated with transcription factors (TFs) across the genome, but how these lncRNA-TF gene duplexes regulate tissue development and homeostasis is unclear. We identified a feedback loop within the NANCI (Nkx2.1-associated noncoding intergenic RNA)-Nkx2.1 gene duplex that is essential for buffering Nkx2.1 expression, lung epithelial cell identity, and tissue homeostasis. Within this locus, Nkx2.1 directly inhibits NANCI, while NANCI acts in cis to promote Nkx2.1 transcription. Although loss of NANCI alone does not adversely affect lung development, concurrent heterozygous mutations in both NANCI and Nkx2.1 leads to persistent Nkx2.1 deficiency and reprogramming of lung epithelial cells to a posterior endoderm fate. This disruption in the NANCI-Nkx2.1 gene duplex results in a defective perinatal innate immune response, tissue damage, and progressive degeneration of the adult lung. These data point to a mechanism in which lncRNAs act as rheostats within lncRNA-TF gene duplex loci that buffer TF expression, thereby maintaining tissue-specific cellular identity during development and postnatal homeostasis.


Subject(s)
Gene Expression Regulation, Developmental , Homeostasis , Lung/growth & development , Lung/physiology , Nuclear Proteins/metabolism , RNA, Long Noncoding/metabolism , Transcription Factors/genetics , Animals , Epithelial Cells/immunology , Epithelial Cells/metabolism , Humans , Immunity, Cellular , Lung/immunology , Mice , Nuclear Proteins/genetics , RNA, Long Noncoding/genetics , Thyroid Nuclear Factor 1 , Transcription Factors/metabolism
14.
Nature ; 555(7695): 251-255, 2018 03 08.
Article in English | MEDLINE | ID: mdl-29489752

ABSTRACT

Functional tissue regeneration is required for the restoration of normal organ homeostasis after severe injury. Some organs, such as the intestine, harbour active stem cells throughout homeostasis and regeneration; more quiescent organs, such as the lung, often contain facultative progenitor cells that are recruited after injury to participate in regeneration. Here we show that a Wnt-responsive alveolar epithelial progenitor (AEP) lineage within the alveolar type 2 cell population acts as a major facultative progenitor cell in the distal lung. AEPs are a stable lineage during alveolar homeostasis but expand rapidly to regenerate a large proportion of the alveolar epithelium after acute lung injury. AEPs exhibit a distinct transcriptome, epigenome and functional phenotype and respond specifically to Wnt and Fgf signalling. In contrast to other proposed lung progenitor cells, human AEPs can be directly isolated by expression of the conserved cell surface marker TM4SF1, and act as functional human alveolar epithelial progenitor cells in 3D organoids. Our results identify the AEP lineage as an evolutionarily conserved alveolar progenitor that represents a new target for human lung regeneration strategies.


Subject(s)
Epithelial Cells/cytology , Evolution, Molecular , Pulmonary Alveoli/cytology , Regeneration , Stem Cells/cytology , Acute Lung Injury/pathology , Acute Lung Injury/surgery , Animals , Antigens, Surface/metabolism , Axin Protein/metabolism , Biomarkers/metabolism , Cell Cycle , Cell Lineage , Chromatin/genetics , Chromatin/metabolism , Epigenomics , Epithelial Cells/metabolism , Female , Fibroblast Growth Factors/metabolism , Humans , Male , Mice , Neoplasm Proteins/metabolism , Organoids/cytology , Organoids/metabolism , Stem Cells/metabolism , Transcriptome , Wnt Signaling Pathway
17.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Article in English | MEDLINE | ID: mdl-33811184

ABSTRACT

Coronaviruses are adept at evading host antiviral pathways induced by viral double-stranded RNA, including interferon (IFN) signaling, oligoadenylate synthetase-ribonuclease L (OAS-RNase L), and protein kinase R (PKR). While dysregulated or inadequate IFN responses have been associated with severe coronavirus infection, the extent to which the recently emerged SARS-CoV-2 activates or antagonizes these pathways is relatively unknown. We found that SARS-CoV-2 infects patient-derived nasal epithelial cells, present at the initial site of infection; induced pluripotent stem cell-derived alveolar type 2 cells (iAT2), the major cell type infected in the lung; and cardiomyocytes (iCM), consistent with cardiovascular consequences of COVID-19 disease. Robust activation of IFN or OAS-RNase L is not observed in these cell types, whereas PKR activation is evident in iAT2 and iCM. In SARS-CoV-2-infected Calu-3 and A549ACE2 lung-derived cell lines, IFN induction remains relatively weak; however, activation of OAS-RNase L and PKR is observed. This is in contrast to Middle East respiratory syndrome (MERS)-CoV, which effectively inhibits IFN signaling and OAS-RNase L and PKR pathways, but is similar to mutant MERS-CoV lacking innate immune antagonists. Remarkably, OAS-RNase L and PKR are activated in MAVS knockout A549ACE2 cells, demonstrating that SARS-CoV-2 can induce these host antiviral pathways despite minimal IFN production. Moreover, increased replication and cytopathic effect in RNASEL knockout A549ACE2 cells implicates OAS-RNase L in restricting SARS-CoV-2. Finally, while SARS-CoV-2 fails to antagonize these host defense pathways, which contrasts with other coronaviruses, the IFN signaling response is generally weak. These host-virus interactions may contribute to the unique pathogenesis of SARS-CoV-2.


Subject(s)
Epithelial Cells/immunology , Epithelial Cells/virology , Immunity, Innate , Lung/pathology , Myocytes, Cardiac/immunology , Myocytes, Cardiac/virology , RNA, Double-Stranded/metabolism , SARS-CoV-2/immunology , A549 Cells , Endoribonucleases/metabolism , Humans , Middle East Respiratory Syndrome Coronavirus/immunology , Middle East Respiratory Syndrome Coronavirus/physiology , Nose/virology , Virus Replication , eIF-2 Kinase
18.
Article in English | MEDLINE | ID: mdl-36413377

ABSTRACT

An improved understanding of the human lung necessitates advanced systems models informed by an ever-increasing repertoire of molecular omics, cellular, imaging, and pathological datasets. To centralize and standardize information across broad lung research efforts we expanded the LungMAP.net website into a new gateway portal. This portal connects a broad spectrum of research networks, bulk and single-cell multi-omics data and a diverse collection of image data that span mammalian lung development, and disease. The data are standardized across species and technologies using harmonized data and metadata models that leverage recent advances including those from the Human Cell Atlas, diverse ontologies, and the LungMAP CellCards initiative. To cultivate future discoveries, we have aggregated a diverse collection of single-cell atlases for multiple species (human, rhesus, mouse), to enable consistent queries across technologies, cohorts, age, disease, and drug treatment. These atlases are provided as independent and integrated queryable datasets, with an emphasis on dynamic visualization, figure generation, re-analysis, cell-type curation, and automated reference-based classification of user-provided single-cell genomics datasets (Azimuth). As this resource grows, we intend to increase the breadth of available interactive interfaces, supported data types, data portals and datasets from LungMAP and external research efforts.

19.
Semin Cell Dev Biol ; 100: 88-100, 2020 04.
Article in English | MEDLINE | ID: mdl-31761445

ABSTRACT

The respiratory system is the main site of gas exchange with the external environment in complex terrestrial animals. Within the trachea and lungs are multiple different tissue niches each consisting of a myriad of cells types with critical roles in air conduction, gas exchange, providing important niche specific cell-cell interactions, connection to the cardiovascular system, and immune surveillance. How the respiratory system responds to external insults and executes the appropriate regenerative response remains challenging to study given the plethora of cell and tissue interactions for this to occur properly. This review will examine the various cell types and tissue niches found within the respiratory system and provide a comparison between mouse and human lungs and trachea to highlight important similarities and differences. Defining the critical gaps in knowledge in human lung and tracheal regeneration is critical for future development of therapies directed towards respiratory diseases.


Subject(s)
Lung/cytology , Lung/metabolism , Regeneration , Animals , Humans , Mice
20.
J Virol ; 95(12)2021 05 24.
Article in English | MEDLINE | ID: mdl-33789998

ABSTRACT

The COVID-19 pandemic poses a serious global health threat. The rapid global spread of SARS-CoV-2 highlights an urgent need to develop effective therapeutics for blocking SARS-CoV-2 infection and spread. Stimulator of Interferon Genes (STING) is a chief element in host antiviral defense pathways. In this study, we examined the impact of the STING signaling pathway on coronavirus infection using the human coronavirus OC43 (HCoV-OC43) model. We found that HCoV-OC43 infection did not stimulate the STING signaling pathway, but the activation of STING signaling effectively inhibits HCoV-OC43 infection to a much greater extent than that of type I interferons (IFNs). We also discovered that IRF3, the key STING downstream innate immune effector, is essential for this anticoronavirus activity. In addition, we found that the amidobenzimidazole (ABZI)-based human STING agonist diABZI robustly blocks the infection of not only HCoV-OC43 but also SARS-CoV-2. Therefore, our study identifies the STING signaling pathway as a potential therapeutic target that could be exploited for developing broad-spectrum antiviral therapeutics against multiple coronavirus strains in order to face the challenge of future coronavirus outbreaks.IMPORTANCE The highly infectious and lethal SARS-CoV-2 is posing an unprecedented threat to public health. Other coronaviruses are likely to jump from a nonhuman animal to humans in the future. Novel broad-spectrum antiviral therapeutics are therefore needed to control known pathogenic coronaviruses such as SARS-CoV-2 and its newly mutated variants, as well as future coronavirus outbreaks. STING signaling is a well-established host defense pathway, but its role in coronavirus infection remains unclear. In the present study, we found that activation of the STING signaling pathway robustly inhibits infection of HCoV-OC43 and SARS-CoV-2. These results identified the STING pathway as a novel target for controlling the spread of known pathogenic coronaviruses, as well as emerging coronavirus outbreaks.


Subject(s)
COVID-19/metabolism , Coronavirus OC43, Human/metabolism , Membrane Proteins/metabolism , SARS-CoV-2/metabolism , Signal Transduction , A549 Cells , Animals , COVID-19/genetics , Chlorocebus aethiops , Coronavirus OC43, Human/genetics , HEK293 Cells , Humans , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/metabolism , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , SARS-CoV-2/genetics , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL