Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 186
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Annu Rev Neurosci ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594945

ABSTRACT

The cochlear implant (CI) is considered the most successful neuroprosthesis as it enables speech comprehension in the majority of the million otherwise deaf patients. In hearing by electrical stimulation of the auditory nerve, the broad spread of current from each electrode acts as a bottleneck that limits the transfer of sound frequency information. Hence, there remains a major unmet medical need for improving the quality of hearing with CIs. Recently, optogenetic stimulation of the cochlea has been suggested as an alternative approach for hearing restoration. Cochlear optogenetics promises to transfer more sound frequency information, hence improving hearing, as light can conveniently be confined in space to activate the auditory nerve within smaller tonotopic ranges. In this review, we discuss the latest experimental and technological developments of optogenetic hearing restoration and outline remaining challenges en route to clinical translation.

2.
Physiol Rev ; 100(1): 103-144, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31373863

ABSTRACT

In recent years, sensory neuroscientists have made major efforts to dissect the structure and function of ribbon synapses which process sensory information in the eye and ear. This review aims to summarize our current understanding of two key aspects of ribbon synapses: 1) their mechanisms of exocytosis and endocytosis and 2) their molecular anatomy and physiology. Our comparison of ribbon synapses in the cochlea and the retina reveals convergent signaling mechanisms, as well as divergent strategies in different sensory systems.


Subject(s)
Cochlea/physiology , Retina/physiology , Synapses/physiology , Animals , Endocytosis , Exocytosis , Humans , Synaptic Transmission
3.
Physiol Rev ; 100(4): 1467-1525, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32191560

ABSTRACT

Impairments of vision and hearing are highly prevalent conditions limiting the quality of life and presenting a major socioeconomic burden. For a long time, retinal and cochlear disorders have remained intractable for causal therapies, with sensory rehabilitation limited to glasses, hearing aids, and electrical cochlear or retinal implants. Recently, the application of gene therapy and optogenetics to eye and ear has generated hope for a fundamental improvement of vision and hearing restoration. To date, one gene therapy for the restoration of vision has been approved, and ongoing clinical trials will broaden its application including gene replacement, genome editing, and regenerative approaches. Moreover, optogenetics, i.e., controlling the activity of cells by light, offers a more general alternative strategy. Over little more than a decade, optogenetic approaches have been developed and applied to better understand the function of biological systems, while protein engineers have identified and designed new opsin variants with desired physiological features. Considering potential clinical applications of optogenetics, the spotlight is on the sensory systems, particularly the eye and ear. Multiple efforts have been undertaken to restore lost or hampered function in the eye and ear. Optogenetic stimulation promises to overcome fundamental shortcomings of electrical stimulation, namely, poor spatial resolution and cellular specificity, and accordingly to deliver more detailed sensory information. This review aims to provide a comprehensive reference on current gene therapeutic and optogenetic research relevant to the restoration of hearing and vision. We will introduce gene-therapeutic approaches and discuss the biotechnological and optoelectronic aspects of optogenetic hearing and vision restoration.


Subject(s)
Hearing Loss/therapy , Vision Disorders/therapy , Humans , Optogenetics , Visual Prosthesis
4.
EMBO J ; 42(23): e114587, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37800695

ABSTRACT

Our sense of hearing enables the processing of stimuli that differ in sound pressure by more than six orders of magnitude. How to process a wide range of stimulus intensities with temporal precision is an enigmatic phenomenon of the auditory system. Downstream of dynamic range compression by active cochlear micromechanics, the inner hair cells (IHCs) cover the full intensity range of sound input. Yet, the firing rate in each of their postsynaptic spiral ganglion neurons (SGNs) encodes only a fraction of it. As a population, spiral ganglion neurons with their respective individual coding fractions cover the entire audible range. How such "dynamic range fractionation" arises is a topic of current research and the focus of this review. Here, we discuss mechanisms for generating the diverse functional properties of SGNs and formulate testable hypotheses. We postulate that an interplay of synaptic heterogeneity, molecularly distinct subtypes of SGNs, and efferent modulation serves the neural decomposition of sound information and thus contributes to a population code for sound intensity.


Subject(s)
Cochlea , Hair Cells, Auditory, Inner , Hair Cells, Auditory, Inner/physiology , Sound , Synapses/physiology , Spiral Ganglion
5.
Mol Cell Proteomics ; 23(2): 100704, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38128648

ABSTRACT

In the ear, inner hair cells (IHCs) employ sophisticated glutamatergic ribbon synapses with afferent neurons to transmit auditory information to the brain. The presynaptic machinery responsible for neurotransmitter release in IHC synapses includes proteins such as the multi-C2-domain protein otoferlin and the vesicular glutamate transporter 3 (VGluT3). Yet, much of this likely unique molecular machinery remains to be deciphered. The scarcity of material has so far hampered biochemical studies which require large amounts of purified samples. We developed a subcellular fractionation workflow combined with immunoisolation of VGluT3-containing membrane vesicles, allowing for the enrichment of glutamatergic organelles that are likely dominated by synaptic vesicles (SVs) of IHCs. We have characterized their protein composition in mice before and after hearing onset using mass spectrometry and confocal imaging and provide a fully annotated proteome with hitherto unidentified proteins. Despite the prevalence of IHC marker proteins across IHC maturation, the profiles of trafficking proteins differed markedly before and after hearing onset. Among the proteins enriched after hearing onset were VAMP-7, syntaxin-7, syntaxin-8, syntaxin-12/13, SCAMP1, V-ATPase, SV2, and PKCα. Our study provides an inventory of the machinery associated with synaptic vesicle-mediated trafficking and presynaptic activity at IHC ribbon synapses and serves as a foundation for future functional studies.


Subject(s)
Hair Cells, Auditory, Inner , Proteomics , Mice , Animals , Hair Cells, Auditory, Inner/metabolism , Synapses/metabolism , Synaptic Vesicles/metabolism , Qa-SNARE Proteins/metabolism , Membrane Proteins/metabolism
6.
Proc Natl Acad Sci U S A ; 120(49): e2311539120, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38019860

ABSTRACT

In our hearing organ, sound is encoded at ribbon synapses formed by inner hair cells (IHCs) and spiral ganglion neurons (SGNs). How the underlying synaptic vesicle (SV) release is controlled by Ca2+ in IHCs of hearing animals remained to be investigated. Here, we performed patch-clamp SGN recordings of the initial rate of release evoked by brief IHC Ca2+-influx in an ex vivo cochlear preparation from hearing mice. We aimed to closely mimic physiological conditions by perforated-patch recordings from IHCs kept at the physiological resting potential and at body temperature. We found release to relate supralinearly to Ca2+-influx (power, m: 4.3) when manipulating the [Ca2+] available for SV release by Zn2+-flicker-blocking of the single Ca2+-channel current. In contrast, a near linear Ca2+ dependence (m: 1.2 to 1.5) was observed when varying the number of open Ca2+-channels during deactivating Ca2+-currents and by dihydropyridine channel-inhibition. Concurrent changes of number and current of open Ca2+-channels over the range of physiological depolarizations revealed m: 1.8. These findings indicate that SV release requires ~4 Ca2+-ions to bind to their Ca2+-sensor of fusion. We interpret the near linear Ca2+-dependence of release during manipulations that change the number of open Ca2+-channels to reflect control of SV release by the high [Ca2+] in the Ca2+-nanodomain of one or few nearby Ca2+-channels. We propose that a combination of Ca2+ nanodomain control and supralinear intrinsic Ca2+-dependence of fusion optimally links SV release to the timing and amplitude of the IHC receptor potential and separates it from other IHC Ca2+-signals unrelated to afferent synaptic transmission.


Subject(s)
Hair Cells, Auditory, Inner , Hair Cells, Vestibular , Animals , Mice , Hair Cells, Auditory, Inner/metabolism , Glutamic Acid/metabolism , Hearing/physiology , Hair Cells, Vestibular/metabolism , Synapses/metabolism , Cochlea/metabolism , Calcium/metabolism
7.
EMBO J ; 40(5): e106010, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33346936

ABSTRACT

The cochlea encodes sound pressures varying over six orders of magnitude by collective operation of functionally diverse spiral ganglion neurons (SGNs). The mechanisms enabling this functional diversity remain elusive. Here, we asked whether the sound intensity information, contained in the receptor potential of the presynaptic inner hair cell (IHC), is fractionated via heterogeneous synapses. We studied the transfer function of individual IHC synapses by combining patch-clamp recordings with dual-color Rhod-FF and iGluSnFR imaging of presynaptic Ca2+ signals and glutamate release. Synapses differed in the voltage dependence of release: Those residing at the IHC' pillar side activated at more hyperpolarized potentials and typically showed tight control of release by few Ca2+ channels. We conclude that heterogeneity of voltage dependence and release site coupling of Ca2+ channels among the synapses varies synaptic transfer within individual IHCs and, thereby, likely contributes to the functional diversity of SGNs. The mechanism reported here might serve sensory cells and neurons more generally to diversify signaling even in close-by synapses.


Subject(s)
Brain Stem/physiology , Calcium/metabolism , Cochlea/physiology , Evoked Potentials, Auditory, Brain Stem , Hair Cells, Auditory, Inner/physiology , Neurons/physiology , Synapses/physiology , Animals , Brain Stem/cytology , Cochlea/cytology , Escherichia coli Proteins/metabolism , Green Fluorescent Proteins/metabolism , Hair Cells, Auditory, Inner/cytology , Mice , Mice, Inbred C57BL , Neurons/cytology , Recombinant Fusion Proteins/metabolism
8.
EMBO Rep ; 24(9): e56702, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37477166

ABSTRACT

Cochlear inner hair cells (IHCs) form specialized ribbon synapses with spiral ganglion neurons that tirelessly transmit sound information at high rates over long time periods with extreme temporal precision. This functional specialization is essential for sound encoding and is attributed to a distinct molecular machinery with unique players or splice variants compared to conventional neuronal synapses. Among these is the active zone (AZ) scaffold protein piccolo/aczonin, which is represented by its short splice variant piccolino at cochlear and retinal ribbon synapses. While the function of piccolo at synapses of the central nervous system has been intensively investigated, the role of piccolino at IHC synapses remains unclear. In this study, we characterize the structure and function of IHC synapses in piccolo gene-trap mutant rats (Pclogt/gt ). We find a mild hearing deficit with elevated thresholds and reduced amplitudes of auditory brainstem responses. Ca2+ channel distribution and ribbon morphology are altered in apical IHCs, while their presynaptic function seems to be unchanged. We conclude that piccolino contributes to the AZ organization in IHCs and is essential for normal hearing.


Subject(s)
Hair Cells, Auditory, Inner , Neuropeptides , Rats , Animals , Hearing/physiology , Synapses/physiology , Cochlea , Spiral Ganglion/metabolism , Cytoskeletal Proteins/metabolism
9.
Eur J Neurol ; 31(7): e16279, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38556899

ABSTRACT

BACKGROUND AND PURPOSE: This study was undertaken to raise awareness of a role of B cells in immune checkpoint inhibitor (ICI)-associated neurological immune-related adverse events (nirAE). METHODS: A systematic literature review was made, with case observations of a melanoma and a non-small cell lung cancer (NSCLC) patient who developed ICI-associated nirAE with cerebrospinal fluid (CSF) findings indicating B cell involvement. RESULTS: Two patients receiving ipilimumab/nivolumab for melanoma and chemotherapy/pembrolizumab for NSCLC developed nirAE in the form of myocarditis/myositis/myasthenia gravis overlap syndrome (triple M) and cerebellitis plus longitudinal transverse myelitis (c-LETM), respectively. Intrathecal inflammation with chemokine C-X-C motif ligand (CXCL13) elevation was present in both patients; the triple M case had acetylcholine receptor antibodies, antititin reactivity, altered CD4/CD8 T cell ratio in blood, and depressed programmed death-1 (PD-1) expression on CSF T cells; the c-LETM case showed intrathecal antibody production and plasma cells. Both patients insufficiently responded to first-line treatment. The NSCLC case improved upon administration of B cell-depleting therapy with rituximab, whereas the melanoma patient died before escalation therapy was initiated. Literature research revealed one additional ICI-associated LETM case with intrathecal CXCL13 elevation, three cases with ICI-associated aquaporin-4 antibody neuromyelitis spectrum disorder, and evidence of B cell-mediated toxicity based on antibody-mediated immune pathologies in ICI-associated immune-related adverse events. CONCLUSIONS: The case observations highlight the plethora of uncertainties in diagnosis and treatment of ICI-associated nirAE, exemplify the heterogeneity of immune mechanisms involved, and suggest a role of B cells, which may be underdiagnosed. Intrathecal CXCL13 may serve as a biomarker of B cell involvement in nirAE, supported by intrathecal immunoglobulin synthesis, presence of plasma cells, and/or recruitment of cognate immune cells.


Subject(s)
B-Lymphocytes , Chemokine CXCL13 , Immune Checkpoint Inhibitors , Aged , Female , Humans , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/administration & dosage , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , Chemokine CXCL13/cerebrospinal fluid , Immune Checkpoint Inhibitors/adverse effects , Ipilimumab/adverse effects , Ipilimumab/administration & dosage , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , Melanoma/drug therapy , Myelitis, Transverse/chemically induced , Myelitis, Transverse/immunology , Nivolumab/adverse effects , Nivolumab/administration & dosage , T-Lymphocytes/immunology , T-Lymphocytes/drug effects
10.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Article in English | MEDLINE | ID: mdl-33903231

ABSTRACT

The cochlea of our auditory system is an intricate structure deeply embedded in the temporal bone. Compared with other sensory organs such as the eye, the cochlea has remained poorly accessible for investigation, for example, by imaging. This limitation also concerns the further development of technology for restoring hearing in the case of cochlear dysfunction, which requires quantitative information on spatial dimensions and the sensorineural status of the cochlea. Here, we employed X-ray phase-contrast tomography and light-sheet fluorescence microscopy and their combination for multiscale and multimodal imaging of cochlear morphology in species that serve as established animal models for auditory research. We provide a systematic reference for morphological parameters relevant for cochlear implant development for rodent and nonhuman primate models. We simulate the spread of light from the emitters of the optical implants within the reconstructed nonhuman primate cochlea, which indicates a spatially narrow optogenetic excitation of spiral ganglion neurons.


Subject(s)
Cochlea/diagnostic imaging , Cochlear Implantation , Hearing Loss, Sensorineural/therapy , Neurons/metabolism , Animals , Cochlea/pathology , Cochlear Implants , Disease Models, Animal , Evoked Potentials, Auditory, Brain Stem/genetics , Evoked Potentials, Auditory, Brain Stem/physiology , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/physiopathology , Humans , Neurons/pathology , Optogenetics , Spiral Ganglion/diagnostic imaging , Spiral Ganglion/pathology
11.
Dev Dyn ; 252(1): 124-144, 2023 01.
Article in English | MEDLINE | ID: mdl-36284453

ABSTRACT

BACKGROUND: Proper connectivity between type I spiral ganglion neurons (SGNs) and inner hair cells (IHCs) in the cochlea is necessary for conveying sound information to the brain in mammals. Previous studies have shown that type I SGNs are heterogeneous in form, function and synaptic location on IHCs, but factors controlling their patterns of connectivity are not well understood. RESULTS: During development, cochlear supporting cells and SGNs express Semaphorin-3A (SEMA3A), a known axon guidance factor. Mice homozygous for a point mutation that attenuates normal SEMA3A repulsive activity (Sema3aK108N ) show cochleae with grossly normal patterns of IHC innervation. However, genetic sparse labeling and three-dimensional reconstructions of individual SGNs show that cochleae from Sema3aK108N mice lacked the normal synaptic distribution of type I SGNs. Additionally, Sema3aK108N cochleae show a disrupted distribution of GLUA2 postsynaptic patches around the IHCs. The addition of SEMA3A-Fc to postnatal cochleae led to increases in SGN branching, similar to the effects of inhibiting glutamate receptors. Ca2+ imaging studies show that SEMA3A-Fc decreases SGN activity. CONCLUSIONS: Contrary to the canonical view of SEMA3A as a guidance ligand, our results suggest SEMA3A may regulate SGN excitability in the cochlea, which may influence the morphology and synaptic arrangement of type I SGNs.


Subject(s)
Hair Cells, Auditory , Semaphorin-3A , Animals , Mice , Cochlea/metabolism , Neurons/metabolism , Semaphorin-3A/genetics , Semaphorin-3A/metabolism , Spiral Ganglion/metabolism
12.
EMBO J ; 38(5)2019 03 01.
Article in English | MEDLINE | ID: mdl-30733243

ABSTRACT

Ribbon synapses of cochlear inner hair cells (IHCs) operate with high rates of neurotransmission; yet, the molecular regulation of synaptic vesicle (SV) recycling at these synapses remains poorly understood. Here, we studied the role of endophilins-A1-3, endocytic adaptors with curvature-sensing and curvature-generating properties, in mouse IHCs. Single-cell RT-PCR indicated the expression of endophilins-A1-3 in IHCs, and immunoblotting confirmed the presence of endophilin-A1 and endophilin-A2 in the cochlea. Patch-clamp recordings from endophilin-A-deficient IHCs revealed a reduction of Ca2+ influx and exocytosis, which we attribute to a decreased abundance of presynaptic Ca2+ channels and impaired SV replenishment. Slow endocytic membrane retrieval, thought to reflect clathrin-mediated endocytosis, was impaired. Otoferlin, essential for IHC exocytosis, co-immunoprecipitated with purified endophilin-A1 protein, suggestive of a molecular interaction that might aid exocytosis-endocytosis coupling. Electron microscopy revealed lower SV numbers, but an increased occurrence of coated structures and endosome-like vacuoles at IHC active zones. In summary, endophilins regulate Ca2+ influx and promote SV recycling in IHCs, likely via coupling exocytosis to endocytosis, and contributing to membrane retrieval and SV reformation.


Subject(s)
Acyltransferases/physiology , Calcium/metabolism , Exocytosis/physiology , Hair Cells, Auditory/physiology , Presynaptic Terminals/physiology , Synapses/physiology , Synaptic Vesicles/physiology , Animals , Cochlea/cytology , Cochlea/physiology , Endocytosis , Female , Hair Cells, Auditory/cytology , Male , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Synaptic Transmission
13.
Int J Mol Sci ; 24(7)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37047524

ABSTRACT

Therapeutic plasma exchange (TPE) is used for drug-resistant neuroimmunological disorders, but its mechanism of action remains poorly understood. We therefore prospectively explored changes in soluble, humoral, and cellular immune components associated with TPE. We included ten patients with neurological autoimmune disorders that underwent TPE and assessed a panel of clinically relevant pathogen-specific antibodies, total serum immunoglobulin (Ig) levels, interleukin-6 (IL-6, pg/mL), C-reactive protein (CRP, mg/dL), procalcitonin (PCT, µg/L) and major lymphocyte subpopulations (cells/µL). Blood was collected prior to TPE (pre-TPE, baseline), immediately after TPE (post-TPE), as well as five weeks (follow-up1) and 130 days (follow-up2) following TPE. Pathogen-specific antibody levels were reduced by -86% (p < 0.05) post-TPE and recovered to 55% (follow-up1) and 101% (follow-up2). Ig subclasses were reduced by -70-89% (p < 0.0001) post-TPE with subsequent complete (IgM/IgA) and incomplete (IgG) recovery throughout the follow-ups. Mean IL-6 and CRP concentrations increased by a factor of 3-4 at post-TPE (p > 0.05) while PCT remained unaffected. We found no alterations in B- and T-cell populations. No adverse events related to TPE occurred. TPE induced a profound but transient reduction in circulating antibodies, while the investigated soluble immune components were not washed out. Future studies should explore the effects of TPE on particular cytokines and assess inflammatory lymphocyte lineages to illuminate the mode of action of TPE beyond autoantibody removal.


Subject(s)
Nervous System Diseases , Plasma Exchange , Humans , Pilot Projects , Interleukin-6 , Plasmapheresis , Nervous System Diseases/therapy , Retrospective Studies
14.
Int J Mol Sci ; 24(4)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36835478

ABSTRACT

Serum neurofilament light chain (sNfL) is an intensely investigated biomarker in multiple sclerosis (MS). The aim of this study was to explore the impact of cladribine (CLAD) on sNfL and the potential of sNfL as a predictor of long-term treatment response. Data were gathered from a prospective, real-world CLAD cohort. We measured sNfL at baseline (BL-sNfL) and 12 months (12Mo-sNfL) after CLAD start by SIMOA. Clinical and radiological assessments determined fulfilment of "no evidence of disease activity" (NEDA-3). We evaluated BL-sNfL, 12M-sNfL and BL/12M sNfL ratio (sNfL-ratio) as predictors for treatment response. We followed 14 patients for a median of 41.5 months (range 24.0-50.0). NEDA-3 was fulfilled by 71%, 57% and 36% for a period of 12, 24 and 36 months, respectively. We observed clinical relapses in four (29%), MRI activity in six (43%) and EDSS progression in five (36%) patients. CLAD significantly reduced sNfL (BL-sNfL: mean 24.7 pg/mL (SD ± 23.8); 12Mo-sNfL: mean 8.8 pg/mL (SD ± 6.2); p = 0.0008). We found no correlation between BL-sNfL, 12Mo-sNfL and ratio-sNfL and the time until loss of NEDA-3, the occurrence of relapses, MRI activity, EDSS progression, treatment switch or sustained NEDA-3. We corroborate that CLAD decreases neuroaxonal damage in MS patients as determined by sNfL. However, sNfL at baseline and at 12 months failed to predict clinical and radiological treatment response in our real-world cohort. Long-term sNfL assessments in larger studies are essential to explore the predictive utility of sNfL in patients treated with immune reconstitution therapies.


Subject(s)
Multiple Sclerosis , Humans , Cladribine , Prospective Studies , Intermediate Filaments , Neurofilament Proteins , Biomarkers , Recurrence
15.
J Neurosci ; 41(37): 7742-7767, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34353898

ABSTRACT

Rab-interacting molecule (RIM)-binding protein 2 (BP2) is a multidomain protein of the presynaptic active zone (AZ). By binding to RIM, bassoon (Bsn), and voltage-gated Ca2+ channels (CaV), it is considered to be a central organizer of the topography of CaV and release sites of synaptic vesicles (SVs) at the AZ. Here, we used RIM-BP2 knock-out (KO) mice and their wild-type (WT) littermates of either sex to investigate the role of RIM-BP2 at the endbulb of Held synapse of auditory nerve fibers (ANFs) with bushy cells (BCs) of the cochlear nucleus, a fast relay of the auditory pathway with high release probability. Disruption of RIM-BP2 lowered release probability altering short-term plasticity and reduced evoked EPSCs. Analysis of SV pool dynamics during high-frequency train stimulation indicated a reduction of SVs with high release probability but an overall normal size of the readily releasable SV pool (RRP). The Ca2+-dependent fast component of SV replenishment after RRP depletion was slowed. Ultrastructural analysis by superresolution light and electron microscopy revealed an impaired topography of presynaptic CaV and a reduction of docked and membrane-proximal SVs at the AZ. We conclude that RIM-BP2 organizes the topography of CaV, and promotes SV tethering and docking. This way RIM-BP2 is critical for establishing a high initial release probability as required to reliably signal sound onset information that we found to be degraded in BCs of RIM-BP2-deficient mice in vivoSIGNIFICANCE STATEMENT Rab-interacting molecule (RIM)-binding proteins (BPs) are key organizers of the active zone (AZ). Using a multidisciplinary approach to the calyceal endbulb of Held synapse that transmits auditory information at rates of up to hundreds of Hertz with submillisecond precision we demonstrate a requirement for RIM-BP2 for normal auditory signaling. Endbulb synapses lacking RIM-BP2 show a reduced release probability despite normal whole-terminal Ca2+ influx and abundance of the key priming protein Munc13-1, a reduced rate of SV replenishment, as well as an altered topography of voltage-gated (CaV)2.1 Ca2+ channels, and fewer docked and membrane proximal synaptic vesicles (SVs). This hampers transmission of sound onset information likely affecting downstream neural computations such as of sound localization.


Subject(s)
Calcium Channels/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Neurons/metabolism , Synapses/metabolism , Synaptic Vesicles/metabolism , Animals , Calcium/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Mice , Mice, Knockout , Neuronal Plasticity/physiology , Synaptic Transmission/physiology
16.
J Am Chem Soc ; 144(21): 9229-9239, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35584208

ABSTRACT

Artificial control of neuronal activity enables the study of neural circuits and restoration of neural functions. Direct, rapid, and sustained photocontrol of intact neurons could overcome the limitations of established electrical stimulation such as poor selectivity. We have developed fast photoswitchable ligands of glutamate receptors (GluRs) to enable neuronal control in the auditory system. The new photoswitchable ligands induced photocurrents in untransfected neurons upon covalently tethering to endogenous GluRs and activating them reversibly with visible light pulses of a few milliseconds. As a proof of concept of these molecular prostheses, we applied them to the ultrafast synapses of auditory neurons of the cochlea that encode sound and provide auditory input to the brain. This drug-based method afforded the optical stimulation of auditory neurons of adult gerbils at hundreds of hertz without genetic manipulation that would be required for their optogenetic control. This indicates that the new photoswitchable ligands are also applicable to the spatiotemporal control of fast spiking interneurons in the brain.


Subject(s)
Cochlea , Optogenetics , Cochlea/physiology , Ligands , Neurons , Optogenetics/methods , Prostheses and Implants
17.
EMBO J ; 37(24)2018 12 14.
Article in English | MEDLINE | ID: mdl-30396994

ABSTRACT

Optogenetic tools, providing non-invasive control over selected cells, have the potential to revolutionize sensory prostheses for humans. Optogenetic stimulation of spiral ganglion neurons (SGNs) in the ear provides a future alternative to electrical stimulation used in cochlear implants. However, most channelrhodopsins do not support the high temporal fidelity pertinent to auditory coding because they require milliseconds to close after light-off. Here, we biophysically characterized the fast channelrhodopsin Chronos and revealed a deactivation time constant of less than a millisecond at body temperature. In order to enhance neural expression, we improved its trafficking to the plasma membrane (Chronos-ES/TS). Following efficient transduction of SGNs using early postnatal injection of the adeno-associated virus AAV-PHPB into the mouse cochlea, fiber-based optical stimulation elicited optical auditory brainstem responses (oABR) with minimal latencies of 1 ms, thresholds of 5 µJ and 100 µs per pulse, and sizable amplitudes even at 1,000 Hz of stimulation. Recordings from single SGNs demonstrated good temporal precision of light-evoked spiking. In conclusion, efficient virus-mediated expression of targeting-optimized Chronos-ES/TS achieves ultrafast optogenetic control of neurons.


Subject(s)
Channelrhodopsins/biosynthesis , Dependovirus , Gene Expression , Neurons/metabolism , Optogenetics , Spiral Ganglion/metabolism , Transduction, Genetic , Animals , Brain Stem/metabolism , Channelrhodopsins/genetics , Evoked Potentials, Auditory , HEK293 Cells , Humans , Mice , Rats , Rats, Wistar
18.
EMBO J ; 37(1): 139-159, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29146773

ABSTRACT

Paraformaldehyde (PFA) is the most commonly used fixative for immunostaining of cells, but has been associated with various problems, ranging from loss of antigenicity to changes in morphology during fixation. We show here that the small dialdehyde glyoxal can successfully replace PFA Despite being less toxic than PFA, and, as most aldehydes, likely usable as a fixative, glyoxal has not yet been systematically tried in modern fluorescence microscopy. Here, we tested and optimized glyoxal fixation and surprisingly found it to be more efficient than PFA-based protocols. Glyoxal acted faster than PFA, cross-linked proteins more effectively, and improved the preservation of cellular morphology. We validated glyoxal fixation in multiple laboratories against different PFA-based protocols and confirmed that it enabled better immunostainings for a majority of the targets. Our data therefore support that glyoxal can be a valuable alternative to PFA for immunostaining.


Subject(s)
Fixatives/chemistry , Formaldehyde/chemistry , Glyoxal/chemistry , Immunohistochemistry/methods , Microscopy, Fluorescence/methods , Nerve Tissue Proteins/metabolism , Tissue Fixation/methods , Animals , COS Cells , Chlorocebus aethiops , Drosophila melanogaster , HeLa Cells , Humans , Mice
19.
J Cell Sci ; 133(2)2020 01 22.
Article in English | MEDLINE | ID: mdl-31843760

ABSTRACT

High-throughput neurotransmission at ribbon synapses of cochlear inner hair cells (IHCs) requires tight coupling of neurotransmitter release and balanced recycling of synaptic vesicles (SVs) as well as rapid restoration of release sites. Here, we examined the role of the adaptor protein AP180 (also known as SNAP91) for IHC synaptic transmission by comparing AP180-knockout (KO) and wild-type mice using high-pressure freezing and electron tomography, confocal microscopy, patch-clamp membrane capacitance measurements and systems physiology. AP180 was found predominantly at the synaptic pole of IHCs. AP180-deficient IHCs had severely reduced SV numbers, slowed endocytic membrane retrieval and accumulated endocytic intermediates near ribbon synapses, indicating that AP180 is required for clathrin-dependent endocytosis and SV reformation in IHCs. Moreover, AP180 deletion led to a high prevalence of SVs in a multi-tethered or docked state after stimulation, a reduced rate of SV replenishment and a hearing impairment. We conclude that, in addition to its role in clathrin recruitment, AP180 contributes to release site clearance in IHCs.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Clathrin/metabolism , Hair Cells, Auditory, Inner/metabolism , Monomeric Clathrin Assembly Proteins/metabolism , Synaptic Transmission/genetics , Animals , Mice
20.
Proc Natl Acad Sci U S A ; 116(18): 9084-9093, 2019 04 30.
Article in English | MEDLINE | ID: mdl-30975754

ABSTRACT

Encoding the wide range of audible sounds in the mammalian cochlea is collectively achieved by functionally diverse type I spiral ganglion neurons (SGNs) at each tonotopic position. The firing of each SGN is thought to be driven by an individual active zone (AZ) of a given inner hair cell (IHC). These AZs present distinct properties according to their position within the IHC, to some extent forming a gradient between the modiolar and the pillar IHC side. In this study, we investigated whether signaling involved in planar polarity at the apical surface can influence position-dependent AZ properties at the IHC base. Specifically, we tested the role of Gαi proteins and their binding partner LGN/Gpsm2 implicated in cytoskeleton polarization and hair cell (HC) orientation along the epithelial plane. Using high and superresolution immunofluorescence microscopy as well as patch-clamp combined with confocal Ca2+ imaging we analyzed IHCs in which Gαi signaling was blocked by Cre-induced expression of the pertussis toxin catalytic subunit (PTXa). PTXa-expressing IHCs exhibited larger CaV1.3 Ca2+-channel clusters and consequently greater Ca2+ influx at the whole-cell and single-synapse levels, which also showed a hyperpolarized shift of activation. Moreover, PTXa expression collapsed the modiolar-pillar gradients of ribbon size and maximal synaptic Ca2+ influx. Finally, genetic deletion of Gαi3 and LGN/Gpsm2 also disrupted the modiolar-pillar gradient of ribbon size. We propose a role for Gαi proteins and LGN in regulating the position-dependent AZ properties in IHCs and suggest that this signaling pathway contributes to setting up the diverse firing properties of SGNs.


Subject(s)
Cell Polarity/physiology , Hair Cells, Auditory, Inner/metabolism , Synapses/metabolism , Animals , Calcium Channels, L-Type/metabolism , Calcium Signaling/physiology , Cochlea/metabolism , Female , Hair Cells, Auditory/metabolism , Hair Cells, Auditory, Inner/physiology , Hair Cells, Vestibular/metabolism , Hearing/physiology , Immunohistochemistry/instrumentation , Male , Mice , Mice, Knockout , Patch-Clamp Techniques/methods , Sound , Spiral Ganglion/metabolism , Synapses/physiology
SELECTION OF CITATIONS
SEARCH DETAIL