Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Pharm Res ; 40(7): 1657-1672, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36418671

ABSTRACT

PURPOSE: Long-acting formulations of the potent antiretroviral prodrug tenofovir alafenamide (TAF) hold potential as biomedical HIV prevention modalities. Here, we present a rigorous comparison of three animal models, C57BL/6 J mice, beagle dogs, and merino sheep for evaluating TAF implant pharmacokinetics (PKs). METHODS: Implants delivering TAF over a wide range of controlled release rates were tested in vitro and in mice and dogs. Our existing PK model, supported by an intravenous (IV) dosing dog study, was adapted to analyze mechanistic aspects underlying implant TAF delivery. RESULTS: TAF in vitro release in the 0.13 to 9.8 mg d-1 range with zero order kinetics were attained. Implants with equivalent fabrication parameters released TAF in mice and sheep at rates that were not statistically different, but were 3 times higher in dogs. When two implants were placed in the same subcutaneous pocket, a two-week creep to Cmax was observed in dogs for systemic drug and metabolite concentrations, but not in mice. Co-modeling IV and TAF implant PK data in dogs led to an apparent TAF bioavailability of 9.6 in the single implant groups (compared to the IV group), but only 1.5 when two implants were placed in the same subcutaneous pocket. CONCLUSIONS: Based on the current results, we recommend using mice and sheep, with macaques as a complementary species, for preclinical TAF implant evaluation with the caveat that our observations may be specific to the implant technology used here. Our report provides fundamental, translatable insights into multispecies TAF delivery via long-acting implants.


Subject(s)
Anti-HIV Agents , HIV Infections , Pre-Exposure Prophylaxis , Animals , Mice , Dogs , Sheep , Tenofovir , HIV Infections/drug therapy , HIV Infections/prevention & control , Pre-Exposure Prophylaxis/methods , Mice, Inbred C57BL , Adenine , Alanine
2.
PLoS Med ; 15(9): e1002655, 2018 09.
Article in English | MEDLINE | ID: mdl-30265679

ABSTRACT

BACKGROUND: Intravaginal rings (IVRs) for HIV pre-exposure prophylaxis (PrEP) theoretically overcome some adherence concerns associated with frequent dosing that can occur with oral or vaginal film/gel regimens. An innovative pod-IVR, composed of an elastomer scaffold that can hold up to 10 polymer-coated drug cores (or "pods"), is distinct from other IVR designs as drug release from each pod can be controlled independently. A pod-IVR has been developed for the delivery of tenofovir (TFV) disoproxil fumarate (TDF) in combination with emtricitabine (FTC), as daily oral TDF-FTC is the only Food and Drug Administration (FDA)-approved regimen for HIV PrEP. A triple combination IVR building on this platform and delivering TDF-FTC along with the antiretroviral (ARV) agent maraviroc (MVC) also is under development. METHODOLOGY AND FINDINGS: This pilot Phase I trial conducted between June 23, 2015, and July 15, 2016, evaluated the safety, pharmacokinetics (PKs), and acceptability of pod-IVRs delivering 3 different ARV regimens: 1) TDF only, 2) TDF-FTC, and 3) TDF-FTC-MVC over 7 d. The crossover, open-label portion of the trial (N = 6) consisted of 7 d of continuous TDF pod-IVR use, a wash-out phase, and 7 d of continuous TDF-FTC pod-IVR use. After a 3-mo pause to evaluate safety and PK of the TDF and TDF-FTC pod-IVRs, TDF-FTC-MVC pod-IVRs (N = 6) were evaluated over 7 d of continuous use. Safety was assessed by adverse events (AEs), colposcopy, and culture-independent analysis of the vaginal microbiome (VMB). Drug and drug metabolite concentrations in plasma, cervicovaginal fluids (CVFs), cervicovaginal lavages (CVLs), and vaginal tissue (VT) biopsies were determined via liquid chromatographic-tandem mass spectrometry (LC-MS/MS). Perceptibility and acceptability were assessed by surveys and interviews. Median participant age was as follows: TDF/TDF-FTC group, 26 y (range 24-35 y), 2 White, 2 Hispanic, and 2 African American; TDF-FTC-MVC group, 24.5 y (range 21-41 y), 3 White, 1 Hispanic, and 2 African American. Reported acceptability was high for all 3 products, and pod-IVR use was confirmed by residual drug levels in used IVRs. There were no serious adverse events (SAEs) during the study. There were 26 AEs reported during TDF/TDF-FTC IVR use (itching, discharge, discomfort), with no differences between TDF alone or in combination with FTC observed. In the TDF-FTC-MVC IVR group, there were 12 AEs (itching, discharge, discomfort) during IVR use regardless of attribution to study product. No epithelial disruption/thinning was seen by colposcopy, and no systematic VMB shifts were observed. Median (IQR) tenofovir diphosphate (TFV-DP) tissue concentrations of 303 (277-938) fmol/10(6) cells (TDF), 289 (110-603) fmol/10(6) cells (TDF-FTC), and 302 (177.1-823.8) fmol/10(6) cells (TDF-FTC-MVC) were sustained for 7 d, exceeding theoretical target concentrations for vaginal HIV prevention. The study's main limitations include the small sample size, short duration (7 d versus 28 d), and the lack of FTC triphosphate measurements in VT biopsies. CONCLUSIONS: An innovative pod-IVR delivery device with 3 different formulations delivering different regimens of ARV drugs vaginally appeared to be safe and acceptable and provided drug concentrations in CVFs and tissues exceeding concentrations achieved by highly protective oral dosing, suggesting that efficacy for vaginal HIV PrEP is achievable. These results show that an alternate, more adherence-independent, longer-acting prevention device based on the only FDA-approved PrEP combination regimen can be advanced to safety and efficacy testing. TRIAL REGISTRATION: ClinicalTrials.gov NCT02431273.


Subject(s)
Anti-HIV Agents/administration & dosage , HIV Infections/prevention & control , HIV-1 , Pre-Exposure Prophylaxis/methods , Administration, Intravaginal , Adult , Anti-HIV Agents/adverse effects , Anti-HIV Agents/pharmacokinetics , Contraceptive Devices, Female , Cross-Over Studies , Drug Compounding , Drug Delivery Systems , Emtricitabine/administration & dosage , Emtricitabine/adverse effects , Emtricitabine/pharmacokinetics , Female , Humans , Maraviroc/administration & dosage , Maraviroc/adverse effects , Maraviroc/pharmacokinetics , Patient Satisfaction , Tenofovir/administration & dosage , Tenofovir/adverse effects , Tenofovir/pharmacokinetics , Young Adult
3.
Article in English | MEDLINE | ID: mdl-28416548

ABSTRACT

The broadly neutralizing antibody (bNAb) VRC01, capable of neutralizing 91% of known human immunodeficiency virus type 1 (HIV-1) isolates in vitro, is a promising candidate microbicide for preventing sexual HIV infection when administered topically to the vagina; however, accessibility to antibody-based prophylactic treatment by target populations in sub-Saharan Africa and other underdeveloped regions may be limited by the high cost of conventionally produced antibodies and the limited capacity to manufacture such antibodies. Intravaginal rings of the pod design (pod-IVRs) delivering Nicotiana-manufactured VRC01 (VRC01-N) over a range of release rates have been developed. The pharmacokinetics and preliminary safety of VRC01-N pod-IVRs were evaluated in a rhesus macaque model. The devices sustained VRC01-N release for up to 21 days at controlled rates, with mean steady-state VRC01-N levels in vaginal fluids in the range of 102 to 103 µg g-1 being correlated with in vitro release rates. No adverse safety indications were observed. These findings indicate that pod-IVRs are promising devices for the delivery of the candidate topical microbicide VRC01-N against HIV-1 infection and merit further preclinical evaluation.


Subject(s)
Anti-HIV Agents/therapeutic use , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/therapeutic use , HIV Infections/drug therapy , Administration, Intravaginal , Animals , Anti-HIV Agents/administration & dosage , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/therapeutic use , Broadly Neutralizing Antibodies , Female , HIV Antibodies , HIV-1/drug effects , HIV-1/pathogenicity , Macaca mulatta
4.
Antimicrob Agents Chemother ; 60(6): 3759-66, 2016 06.
Article in English | MEDLINE | ID: mdl-27067321

ABSTRACT

Preexposure prophylaxis (PrEP) against HIV using oral regimens based on the nucleoside reverse transcriptase inhibitor tenofovir disoproxil fumarate (TDF) has been effective to various degrees in multiple clinical trials, and the CCR5 receptor antagonist maraviroc (MVC) holds potential for complementary efficacy. The effectiveness of HIV PrEP is highly dependent on adherence. Incorporation of the TDF-MVC combination into intravaginal rings (IVRs) for sustained mucosal delivery could increase product adherence and efficacy compared with oral and vaginal gel formulations. A novel pod-IVR technology capable of delivering multiple drugs is described. The pharmacokinetics and preliminary local safety characteristics of a novel pod-IVR delivering a combination of TDF and MVC were evaluated in the ovine model. The device exhibited sustained release at controlled rates over the 28-day study and maintained steady-state drug levels in cervicovaginal fluids (CVFs). Dilution of CVFs during lavage sample collection was measured by ion chromatography using an inert tracer, allowing corrected drug concentrations to be measured for the first time. Median, steady-state drug levels in vaginal tissue homogenate were as follows: for tenofovir (TFV; in vivo hydrolysis product of TDF), 7.3 × 10(2) ng g(-1) (interquartile range [IQR], 3.0 × 10(2), 4.0 × 10(3)); for TFV diphosphate (TFV-DP; active metabolite of TFV), 1.8 × 10(4) fmol g(-1) (IQR, 1.5 × 10(4), 4.8 × 10(4)); and for MVC, 8.2 × 10(2) ng g(-1) (IQR, 4.7 × 10(2), 2.0 × 10(3)). No adverse events were observed. These findings, together with previous pod-IVR studies, have allowed several lead candidates to advance into clinical evaluation.


Subject(s)
Anti-HIV Agents/pharmacokinetics , Cyclohexanes/pharmacokinetics , Delayed-Action Preparations/pharmacokinetics , HIV Infections/prevention & control , Tenofovir/pharmacokinetics , Triazoles/pharmacokinetics , Vagina/chemistry , Administration, Intravaginal , Animals , Contraceptive Devices, Female , Drug Combinations , Female , Humans , Maraviroc , Models, Animal , Primary Prevention , Sheep , Vagina/drug effects
5.
Antimicrob Agents Chemother ; 59(1): 59-66, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25313219

ABSTRACT

Mother-to-child transmission (MTCT) of HIV-1 remains a global health problem. The World Health Organization (WHO) recommendations advise the administration of a once-daily, oral, prophylactic regimen of the nonnucleoside reverse transcriptase inhibitor nevirapine (NVP) from birth until 4 to 6 weeks of age for infants born to HIV-infected mothers in regions without access to safe and nutritionally adequate alternatives to breast milk. A critical factor driving the successful implementation of the WHO guidelines involves sustaining high adherence to the frequent dosing. With these challenges in mind, we have developed the first injectable, sustained-release NVP formulations with the goal of providing, for 6 weeks or longer, preventative plasma drug levels from a single subcutaneous administration at birth. The long-acting NVP consists of large (>50 µm), monodisperse NVP particles coated with biocompatible polymers that control the drug release kinetics. Two lead formulations exhibiting burst-free, sustained-release kinetics for up to 75 days in vitro were developed. Subsequent in vivo studies in rats demonstrated no toxicity related to the formulations. Rat plasma NVP concentrations were above the analytical assay's limit of quantification for up to 28 days. Pharmacokinetic analysis of the rat plasma NVP concentration-time data allowed absorption rate constants to be calculated. These data then were used to simulate infant NVP exposure from a single injected dose (<200 mg) of our long-acting formulations, demonstrating preliminary feasibility of the technology to maintain safe, preventative NVP plasma levels (0.2 to 3.0 µg ml(-1)) for 6 weeks or longer.


Subject(s)
Acquired Immunodeficiency Syndrome/drug therapy , Acquired Immunodeficiency Syndrome/prevention & control , Infectious Disease Transmission, Vertical/prevention & control , Nevirapine/pharmacokinetics , Nevirapine/therapeutic use , Animals , Breast Feeding , Delayed-Action Preparations/therapeutic use , Humans , Infant , Infant, Newborn , Nevirapine/adverse effects , Nevirapine/blood , Rats , Rats, Sprague-Dawley
6.
Antimicrob Agents Chemother ; 59(7): 3913-9, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25896688

ABSTRACT

Oral or topical daily administration of antiretroviral (ARV) drugs to HIV-1-negative individuals in vulnerable populations is a promising strategy for HIV-1 prevention. Adherence to the dosing regimen has emerged as a critical factor determining efficacy outcomes of clinical trials. Because adherence to therapy is inversely related to the dosing period, sustained release or long-acting ARV formulations hold significant promise for increasing the effectiveness of HIV-1 preexposure prophylaxis (PrEP) by reducing dosing frequency. A novel, subdermal implant delivering the potent prodrug tenofovir alafenamide (TAF) with controlled, sustained, zero-order (linear) release characteristics is described. A candidate device delivering TAF at 0.92 mg day(-1) in vitro was evaluated in beagle dogs over 40 days for pharmacokinetics and preliminary safety. No adverse events related to treatment with the test article were noted during the course of the study, and no significant, unusual abnormalities were observed. The implant maintained a low systemic exposure to TAF (median, 0.85 ng ml(-1); interquartile range [IQR], 0.60 to 1.50 ng ml(-1)) and tenofovir (TFV; median, 15.0 ng ml(-1); IQR, 8.8 to 23.3 ng ml(-1)), the product of in vivo TAF hydrolysis. High concentrations (median, 512 fmol/10(6) cells over the first 35 days) of the pharmacologically active metabolite, TFV diphosphate, were observed in peripheral blood mononuclear cells at levels over 30 times higher than those associated with HIV-1 PrEP efficacy in humans. Our report on the first sustained-release nucleoside reverse transcriptase inhibitor (NRTI) for systemic delivery demonstrates a successful proof of principle and holds significant promise as a candidate for HIV-1 prophylaxis in vulnerable populations.


Subject(s)
Adenine/analogs & derivatives , Anti-HIV Agents/pharmacokinetics , Anti-HIV Agents/therapeutic use , HIV Infections/prevention & control , Reverse Transcriptase Inhibitors/pharmacokinetics , Reverse Transcriptase Inhibitors/therapeutic use , Adenine/administration & dosage , Adenine/pharmacokinetics , Adenine/therapeutic use , Alanine , Animals , Anti-HIV Agents/administration & dosage , Dogs , Drug Implants , Equipment Design , HIV-1/drug effects , Male , Monocytes/metabolism , Prodrugs , Reverse Transcriptase Inhibitors/administration & dosage , Tenofovir/analogs & derivatives
7.
Antimicrob Agents Chemother ; 58(4): 2262-7, 2014.
Article in English | MEDLINE | ID: mdl-24492360

ABSTRACT

Topical administration of live commensal bacteria to the vaginal tract holds significant potential as a cost-effective strategy for the treatment of sexually transmitted infections and the delivery of mucosal vaccines. Probiotic-releasing intravaginal rings (IVRs) embody significant theoretical advantages over traditional daily-dosage forms, such as sustained and controlled delivery leading to improved adherence to therapy compared to that of frequent dosing. The conventional IVR designs, however, are not amenable to the delivery of live bacteria. We have developed a novel pod-IVR technology where polymer-coated tablets ("pods") of Lactobacillus gasseri strain ATCC 33323, a commensal microorganism of human origin, are embedded in silicone IVRs. The release rate of bacterial cells is controlled by the diameter of a delivery channel that exposes a portion of the pod to external fluids. In vitro studies demonstrated that the prototype devices released between 1.1×10(7) and 14×10(7) cells per day for up to 21 days in a controlled sustained fashion with stable burst-free release kinetics. The daily release rates were correlated with the cross-sectional area of the delivery channel. Bacteria in the IVR pods remained viable throughout the in vitro studies and formed biofilms on the surfaces of the devices. This proof-of-principle study represents the first demonstration of a prolonged, sustained release of bacteria from an intravaginal device and warrants further investigation of this device as a nonchemotherapeutic agent for the restoration and maintenance of normal urogenital flora.


Subject(s)
Administration, Intravaginal , Drug Delivery Systems/methods , Probiotics/administration & dosage , Vagina/microbiology , Delayed-Action Preparations , Female , Humans , Lactobacillus/physiology
8.
Antimicrob Agents Chemother ; 58(9): 5125-35, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24936594

ABSTRACT

Preexposure prophylaxis using oral regimens involving the HIV nucleoside reverse transcriptase inhibitors tenofovir disoproxil fumarate (TDF) and emtricitabine (FTC) demonstrated efficacy in three clinical trials. Adherence was determined to be a key parameter for success. Incorporation of the TDF-FTC combination into intravaginal rings (IVRs) for sustained mucosal delivery could increase product adherence and efficacy compared with those of oral and vaginal gel formulations. A novel pod-IVR technology capable of delivering multiple drugs is described; this constitutes the first report of an IVR delivering TDF and FTC, as well as a triple-combination IVR delivering TDF, FTC, and the entry inhibitor maraviroc (MVC). The pharmacokinetics and preliminary local safety of the two combination pod-IVRs were evaluated in the pig-tailed macaque model. The devices exhibited sustained release at controlled rates over the 28-day study period. Median steady-state drug levels in vaginal tissues in the TDF-FTC group were 30 µg g(-1) (tenofovir [TFV], in vivo hydrolysis product of TDF) and 500 µg g(-1) (FTC) and in the TDF-FTC-MVC group were 10 µg g(-1) (TFV), 150 µg g(-1) (FTC), and 20 µg g(-1) (MVC). No adverse events were observed, and there were no toxicological findings. Mild-to-moderate increases in inflammatory infiltrates were observed in the vaginal tissues of some animals in both the presence and the absence of the IVRs. The IVRs did not disturb the vaginal microbiota, and levels of proinflammatory cytokines remained stable throughout the study. Pod-IVR candidates based on the TDF-FTC combination have potential for the prevention of vaginal HIV acquisition and merit clinical investigation.


Subject(s)
Anti-HIV Agents/adverse effects , Anti-HIV Agents/pharmacokinetics , HIV Infections/drug therapy , HIV-1/drug effects , Adenine/administration & dosage , Adenine/adverse effects , Adenine/analogs & derivatives , Adenine/pharmacokinetics , Administration, Intravaginal , Animals , Anti-HIV Agents/administration & dosage , Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/adverse effects , Delayed-Action Preparations/pharmacokinetics , Deoxycytidine/administration & dosage , Deoxycytidine/adverse effects , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacokinetics , Emtricitabine , Female , Macaca , Organophosphonates/administration & dosage , Organophosphonates/adverse effects , Organophosphonates/pharmacokinetics , Reverse Transcriptase Inhibitors/administration & dosage , Reverse Transcriptase Inhibitors/adverse effects , Reverse Transcriptase Inhibitors/pharmacokinetics , Tenofovir , Vagina/drug effects , Vagina/virology , Vaginal Creams, Foams, and Jellies/administration & dosage , Vaginal Creams, Foams, and Jellies/adverse effects , Vaginal Creams, Foams, and Jellies/pharmacokinetics
9.
Tissue Barriers ; 12(1): 2186672, 2024 01 02.
Article in English | MEDLINE | ID: mdl-36899465

ABSTRACT

The injectable progestin depot-medroxyprogesterone acetate (DMPA) is a popular contraceptive choice in sub-Saharan Africa although mouse models indicate it weakens genital epithelial integrity and barrier function and increases susceptibility to genital infection. The intravaginal ring NuvaRing® is another contraceptive option that like DMPA suppresses hypothalamic pituitary ovarian (HPO) axis function with local release of progestin (etonogestrel) and estrogen (ethinyl estradiol). As we previously reported that treating mice with DMPA and estrogen averts the loss of genital epithelial integrity and barrier function induced by DMPA alone, in the current investigation we compared genital levels of the cell-cell adhesion molecule desmoglein-1 (DSG1) and genital epithelial permeability in rhesus macaques (RM) treated with DMPA or a NuvaRing®re-sized for RM (N-IVR). While these studies demonstrated comparable inhibition of the HPO axis with DMPA or N-IVR, DMPA induced significantly lower genital DSG1 levels and greater tissue permeability to intravaginally administered low molecular mass molecules. By identifying greater compromise of genital epithelial integrity and barrier function in RM administered DMPA vs. N-IVR, our results add to the growing body of evidence that indicate DMPA weakens a fundamental mechanism of anti-pathogen host defense in the female genital tract.


Subject(s)
Contraceptive Agents, Female , Desogestrel , Medroxyprogesterone Acetate , Humans , Female , Animals , Mice , Medroxyprogesterone Acetate/adverse effects , Contraceptive Agents, Female/adverse effects , Progestins , Macaca mulatta , Ethinyl Estradiol/pharmacology , Estrogens/pharmacology , Genitalia
10.
Sci Rep ; 14(1): 11573, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773172

ABSTRACT

GSK2838232 (GSK8232) is a second-generation maturation inhibitor (MI) developed for the treatment of HIV with excellent broad-spectrum virological profiles. The compound has demonstrated promising clinical results as an orally administered agent. Additionally, the compound's physical and pharmacological properties present opportunities for exploitation as long-acting parenteral formulations. Despite unique design constraints including solubility and dose of GSK8232, we report on three effective tunable drug delivery strategies: active pharmaceutical ingredient (API) suspensions, ionic liquids, and subdermal implants. Promising sustained drug release profiles were achieved in rats with each approach. Additionally, we were able to tune drug release rates through a combination of passive and active strategies, broadening applicability of these formulation approaches beyond GSK8232. Taken together, this report is an important first step to advance long-acting formulation development for critical HIV medicines that do not fit the traditional profile of suitable long-acting candidates.


Subject(s)
Drug Liberation , Animals , Rats , Hydrophobic and Hydrophilic Interactions , Delayed-Action Preparations , Anti-HIV Agents/administration & dosage , Anti-HIV Agents/chemistry , Anti-HIV Agents/pharmacology , Anti-HIV Agents/pharmacokinetics , Drug Delivery Systems/methods , Ionic Liquids/chemistry , Rats, Sprague-Dawley , Male , Solubility , HIV Infections/drug therapy , Anti-Retroviral Agents/administration & dosage , Anti-Retroviral Agents/chemistry
11.
Antimicrob Agents Chemother ; 57(8): 3994-7, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23752507

ABSTRACT

Multipurpose technologies that simultaneously protect from sexually transmitted infections and unintended pregnancy are urgently needed. Pod-intravaginal rings (IVRs) formulated with the antiretroviral agents (ARVs) tenofovir, nevirapine, and saquinavir and the contraceptives etonogestrel and estradiol were evaluated in sheep. Steady-state concentrations were maintained for 28 days with controlled, sustained delivery. This proof-of-principle study demonstrates that pod IVRs can deliver three ARVs from different mechanistic classes and a progestin-estrogen combination over the wide range needed for putative preventative efficacy.


Subject(s)
Anti-Retroviral Agents/pharmacokinetics , Contraceptive Agents/pharmacokinetics , Intrauterine Devices, Medicated , Adenine/administration & dosage , Adenine/analogs & derivatives , Adenine/pharmacokinetics , Administration, Intravaginal , Animals , Anti-Retroviral Agents/administration & dosage , Biopsy , Contraceptive Agents/administration & dosage , Desogestrel/administration & dosage , Desogestrel/pharmacokinetics , Drug Evaluation, Preclinical , Estradiol/administration & dosage , Estradiol/pharmacokinetics , Female , Models, Animal , Nevirapine/administration & dosage , Nevirapine/pharmacokinetics , Organophosphonates/administration & dosage , Organophosphonates/pharmacokinetics , Saquinavir/administration & dosage , Saquinavir/pharmacokinetics , Sexually Transmitted Diseases, Viral/prevention & control , Sheep , Tenofovir , Time Factors
12.
bioRxiv ; 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36747683

ABSTRACT

The injectable progestin depot-medroxyprogesterone acetate (DMPA) is a popular contraceptive choice in sub-Saharan Africa although mouse models indicate it weakens genital epithelial integrity and barrier function and increases susceptibility to genital infection. The intravaginal ring NuvaRing® is another contraceptive option that like DMPA suppresses hypothalamic pituitary ovarian (HPO) axis function with local release of progestin (etonogestrel) and estrogen (ethinyl estradiol). As we previously reported that treating mice with DMPA and estrogen averts the loss of genital epithelial integrity and barrier function induced by DMPA alone, in the current investigation we compared genital levels of the cell-cell adhesion molecule desmoglein-1 (DSG1) and genital epithelial permeability in rhesus macaques (RM) treated with DMPA or a NuvaRing®re-sized for RM (N-IVR). While these studies demonstrated comparable inhibition of the HPO axis with DMPA or N-IVR, DMPA induced significantly lower genital DSG1 levels and greater tissue permeability to intravaginally administered low molecular mass molecules. By identifying greater compromise of genital epithelial integrity and barrier function in RM administered DMPA vs. N-IVR, our results add to the growing body of evidence that indicate DMPA weakens a fundamental mechanism of anti-pathogen host defense in the female genital tract.

13.
Antimicrob Agents Chemother ; 56(2): 875-82, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22123689

ABSTRACT

Vaginal microbicides may play an important role in protecting women from HIV infection. A strong synergy between HSV and HIV has been observed, and epidemiological studies demonstrate that HSV infection increases the risk of HIV acquisition. Incorporation of the antiretroviral tenofovir (TFV) along with the antiherpetic acyclovir (ACV) into combination intravaginal rings (IVRs) for sustained mucosal delivery of both compounds could lead to increased microbicide product adherence and efficacy compared with conventional vaginal formulations. A novel, dual-protection "pod IVR" platform developed in-house and delivering ACV and TFV was evaluated in rabbit and sheep models. The devices were safe and exhibited sustained release of both drugs independently and at controlled rates over the 28-day studies. Daily release rates were estimated based on residual drug content of the used devices: rabbits, 343 ± 335 µg day(-1) (ACV) and 321 ± 207 µg day(-1) (TFV); sheep, 174 ± 14 µg day(-1) (ACV) and 185 ± 34 µg day(-1) (TFV). Mean drug levels in sheep vaginal samples were as follows: secretions, 5.25 ± 7.31 µg ml(-1) (ACV) and 20.6 ± 16.2 µg ml(-1) (TFV); cervicovaginal lavage fluid, 118 ± 113 ng ml(-1) (ACV) and 191 ± 125 ng ml(-1) (TFV); tissue, 173 ng g(-1) (ACV) and 93 ng g(-1) (TFV). An in vitro-in vivo correlation was established for both drugs and will allow the development of future formulations delivering target levels for prophylaxis and therapy. These data suggest that the IVR based on the pod design has potential in the prevention of transmission of HIV-1 and other sexually transmitted pathogens.


Subject(s)
Acyclovir/administration & dosage , Adenine/analogs & derivatives , HIV Infections/prevention & control , HIV-1/drug effects , Herpes Genitalis/prevention & control , Herpesvirus 2, Human/drug effects , Organophosphonates/administration & dosage , Acyclovir/adverse effects , Acyclovir/pharmacokinetics , Adenine/administration & dosage , Adenine/adverse effects , Adenine/pharmacokinetics , Administration, Intravaginal , Animals , Anti-HIV Agents/administration & dosage , Anti-HIV Agents/adverse effects , Anti-HIV Agents/pharmacokinetics , Antiviral Agents/administration & dosage , Antiviral Agents/adverse effects , Antiviral Agents/pharmacokinetics , Delayed-Action Preparations , Disease Models, Animal , Drug Combinations , Drug Delivery Systems , Equipment Design , Female , HIV Infections/transmission , HIV Infections/virology , Herpes Genitalis/transmission , Herpes Genitalis/virology , Humans , Organophosphonates/adverse effects , Organophosphonates/pharmacokinetics , Rabbits , Sexually Transmitted Diseases, Viral/prevention & control , Sexually Transmitted Diseases, Viral/transmission , Sexually Transmitted Diseases, Viral/virology , Tenofovir , Treatment Outcome
14.
Antimicrob Agents Chemother ; 56(11): 5952-60, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22964245

ABSTRACT

Antiretroviral-based microbicides applied topically to the vagina may play an important role in protecting women from HIV infection. Incorporation of the nucleoside reverse transcriptase inhibitor tenofovir (TFV) into intravaginal rings (IVRs) for sustained mucosal delivery may lead to increased microbicide product adherence and efficacy compared with those of conventional vaginal formulations. Formulations of a novel "pod IVR" platform spanning a range of IVR drug loadings and daily release rates of TFV were evaluated in a pig-tailed macaque model. The rings were safe and exhibited sustained release at controlled rates over 28 days. Vaginal secretion TFV levels were independent of IVR drug loading and were able to be varied over 1.5 log units by changing the ring configuration. Mean TFV levels in vaginal secretions were 72.4 ± 109 µg ml(-1) (slow releasing) and 1.84 ± 1.97 mg ml(-1) (fast releasing). The mean TFV vaginal tissue concentration from the slow-releasing IVRs was 76.4 ± 54.8 µg g(-1) and remained at steady state 7 days after IVR removal, consistent with the long intracellular half-life of TFV. Intracellular tenofovir diphosphate (TFV-DP), the active moiety in defining efficacy, was measured in vaginal lymphocytes collected in the study using the fast-releasing IVR formulation. Mean intracellular TFV-DP levels of 446 ± 150 fmol/10(6) cells fall within a range that may be protective of simian-human immunodeficiency virus strain SF162p3 (SHIV(SF162p3)) infection in nonhuman primates. These data suggest that TFV-releasing IVRs based on the pod design have potential for the prevention of transmission of human immunodeficiency virus type 1 (HIV-1) and merit further clinical investigation.


Subject(s)
Adenine/analogs & derivatives , Contraceptive Devices, Female/veterinary , Delayed-Action Preparations/pharmacokinetics , Organophosphonates/pharmacokinetics , Reverse Transcriptase Inhibitors/pharmacokinetics , Vagina/metabolism , Adenine/pharmacokinetics , Administration, Intravaginal , Animals , Cytokines/metabolism , Female , Half-Life , Lymphocytes/chemistry , Macaca nemestrina , Tenofovir , Vagina/cytology , Vagina/drug effects
15.
Cancers (Basel) ; 14(11)2022 May 31.
Article in English | MEDLINE | ID: mdl-35681725

ABSTRACT

When a cell is damaged, it must decide how to respond. As a consequence of a variety of stresses, cells can induce well-regulated programmes such as senescence, a persistent proliferative arrest that limits their replication. Alternatively, regulated programmed cell death can be induced to remove the irreversibly damaged cells in a controlled manner. These programmes are mainly triggered and controlled by the tumour suppressor protein p53 and its complex network of effectors, but how it decides between these wildly different responses is not fully understood. This review focuses on the key proteins involved both in the regulation and induction of apoptosis and senescence to examine the key events that determine cell fate following damage. Furthermore, we examine how the regulation and activity of these proteins are altered during the progression of many chronic diseases, including cancer.

16.
Expert Opin Drug Deliv ; 19(1): 47-58, 2022 01.
Article in English | MEDLINE | ID: mdl-34958283

ABSTRACT

INTRODUCTION: Adolescent girls and young women (AGYW), as well as pre- and post-menopausal women globally would benefit from expanded choice to address their sexual and reproductive health (SRH) needs related to Human Immunodeficiency Virus (HIV), sexually transmitted infections (STIs) and pregnancy prevention. Lack of adequate preventative vaccines for HIV/STIs reinforces public health prioritization for options women may use to mitigate risk for infectious disease and unplanned pregnancy. Drug releasing intravaginal rings (IVRs) represent one such technology that has garnered attention based on the modality's success as a pre-exposure prophylaxis (PrEP) delivery option in HIV risk reduction. AREAS COVERED: This article provides a synopsis of three IVR technologies in active clinical development for prevention of HIV, STI, and unintended pregnancy demonstrating advancements in terms of compatibility with a wide range of drug types with a focus on dapivirine-based silicone rings (International Partnership for Microbicides (IPM), tenofovir-based polyurethane rings (Conrad), and pod-based rings (Oak Crest Institute of Science)). EXPERT OPINION: The goals of IVR research are to reduce burdens of HIV/STIs and unplanned pregnancies. Through the evolution of IVR technologies, the potential exists to trigger integration of health-care services through formulation of products with multiple indications.


Subject(s)
Contraceptive Devices, Female , HIV Infections , Sexually Transmitted Diseases , Adolescent , Female , HIV Infections/drug therapy , HIV Infections/prevention & control , Humans , Pharmaceutical Preparations , Pregnancy , Sexually Transmitted Diseases/drug therapy , Sexually Transmitted Diseases/prevention & control , Tenofovir/therapeutic use
17.
BMJ Open ; 12(1): e052880, 2022 Jan 06.
Article in English | MEDLINE | ID: mdl-34992111

ABSTRACT

INTRODUCTION: Young African women bear a disproportionately high risk for HIV acquisition. HIV technologies that empower women to protect themselves are needed. Safe, potent antiretroviral agents such as tenofovir alafenamide (TAF), formulated as long-acting subdermal implants, offer an innovative solution. METHODS AND ANALYSIS: CAPRISA 018 is a phase I/II trial to evaluate the safety, acceptability, tolerability and pharmacokinetics (PKs) of a TAF free base subdermal silicone implant containing 110 mg of TAF with an anticipated 0.25 mg/day release rate.The phase I trial (n=60) will assess the safety of one implant inserted in six participants (Group 1), followed by dose escalation components (Groups 2 and 3) assessing the safety, tolerability and PK of one to four TAF 110 mg implants releasing between 0.25 mg and 1 mg daily in 54 healthy women at low risk for HIV infection. Data from this phase I trial will be used to determine the dosing, implant location and implant replacement interval for the phase II trial.The phase II component (Group 4) will assess extended safety, PK, tolerability and acceptability of the implant in 490 at risk women, randomised in a 1:1 ratio to the TAF implant and placebo tablet or to the placebo implant and an oral pre-exposure prophylaxis tablet. Safety will be assessed by calculating the percentage change in creatinine clearance from baseline at weeks 4, 12, 24, 36, 72, 96 and 120, compared with the percentage change in the control group. ETHICS AND DISSEMINATION: The South African Health Products Regulatory Authority and the University of KwaZulu-Natal's Biomedical Research Ethics Committee have approved the trial. Results will be disseminated through open access peer reviewed publications, conference presentations, public stakeholder engagement and upload of data into the clinical trials registry. TRIAL REGISTRATION NUMBER: PACTR201809520959443.


Subject(s)
Anti-HIV Agents , HIV Infections , Alanine , Anti-HIV Agents/adverse effects , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Delayed-Action Preparations/therapeutic use , Female , HIV Infections/drug therapy , HIV Infections/prevention & control , Humans , Tenofovir/analogs & derivatives , Tenofovir/therapeutic use
18.
Front Immunol ; 13: 975676, 2022.
Article in English | MEDLINE | ID: mdl-36110842

ABSTRACT

Novel therapeutics against the global threat of multidrug-resistant Neisseria gonorrhoeae are urgently needed. Gonococci evade killing by complement by binding factor H (FH), a key inhibitor of the alternative pathway. FH comprises 20 short consensus repeat (SCR) domains organized as a single chain. Gonococci bind FH through domains 6 and 7, and C-terminal domains 18 through 20. Previously, we showed that a chimeric protein comprising (from the N- to C-terminus) FH domains 18-20 (containing a point mutation in domain 19 to prevent lysis of host cells) fused to human IgG1 Fc (called FH*/Fc1) killed gonococci in a complement-dependent manner and reduced the duration and bacterial burden in the mouse vaginal colonization model of gonorrhea. Considering the N. gonorrhoeae-binding FH domains 18-20 are C-terminal in native FH, we reasoned that positioning Fc N-terminal to FH* (Fc1/FH*) would improve binding and bactericidal activity. Although both molecules bound gonococci similarly, Fc1/FH* displayed a 5-fold lower IC50 (the concentration required for 50% killing in complement-dependent bactericidal assays) than FH*/Fc1. To further increase complement activation, we replaced human IgG1 Fc in Fc1/FH* with Fc from human IgG3, the most potent complement-activating IgG subclass, to obtain Fc3/FH*. Bactericidal activity was further increased ~2.3-fold in Fc3/FH* compared to Fc1/FH*. Fc3/FH* killed (defined by <50% survival) 45/45 (100%) diverse PorB1B-expessing gonococci, but only 2/15 PorB1A-expressing isolates, in a complement-dependent manner. Decreased Fc3/FH* binding accounted for the limited activity against PorB1A strains. Fc3/FH* was efficacious against all four tested PorB1B gonococcal strains in the mouse vaginal colonization model when administered at a dose of 5 µg intravaginally, daily. Furthermore, Fc3/FH* retained bactericidal activity when reconstituted following lyophilization or spray-drying, suggesting feasibility for formulation into intravaginal rings. In conclusion, Fc3/FH* represents a promising prophylactic immunotherapeutic against multidrug-resistant gonococci.


Subject(s)
Gonorrhea , Neisseria gonorrhoeae , Animals , Complement Factor H/metabolism , Complement System Proteins/metabolism , Disease Models, Animal , Female , Gonorrhea/drug therapy , Humans , Immunoglobulin G/metabolism , Mice , Neisseria gonorrhoeae/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/pharmacology
19.
Sci Rep ; 12(1): 8224, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35581262

ABSTRACT

Global efforts aimed at preventing human immunodeficiency virus type one (HIV-1) infection in vulnerable populations appear to be stalling, limiting our ability to control the epidemic. Long-acting, controlled drug administration from subdermal implants holds significant potential by reducing the compliance burden associated with frequent dosing. We, and others, are exploring the development of complementary subdermal implant technologies delivering the potent prodrug, tenofovir alafenamide (TAF). The current report addresses knowledge gaps in the preclinical pharmacology of long-acting, subdermal TAF delivery using several mouse models. Systemic drug disposition during TAF implant dosing was explained by a multi-compartment pharmacokinetic (PK) model. Imaging mass spectrometry was employed to characterize the spatial distribution of TAF and its principal five metabolites in local tissues surrounding the implant. Humanized mouse studies determined the effective TAF dose for preventing vaginal and rectal HIV-1 acquisition. Our results represent an important step in the development of a safe and effective TAF implant for HIV-1 prevention.


Subject(s)
Anti-HIV Agents , HIV Infections , Adenine , Alanine/therapeutic use , Animals , Female , HIV Infections/drug therapy , HIV Infections/prevention & control , Mice , Tenofovir/analogs & derivatives , Tenofovir/therapeutic use
20.
AIDS Res Hum Retroviruses ; 37(6): 409-420, 2021 06.
Article in English | MEDLINE | ID: mdl-33913760

ABSTRACT

The ability to successfully develop a safe and effective vaccine for the prevention of HIV infection has proven challenging. Consequently, alternative approaches to HIV infection prevention have been pursued, and there have been a number of successes with differing levels of efficacy. At present, only two oral preexposure prophylaxis (PrEP) products are available, Truvada and Descovy. Descovy is a newer product not yet indicated in individuals at risk of HIV-1 infection from receptive vaginal sex, because it still needs to be evaluated in this population. A topical dapivirine vaginal ring is currently under regulatory review, and a long-acting (LA) injectable cabotegravir product shows strong promise. Although demonstrably effective, daily oral PrEP presents adherence challenges for many users, particularly adolescent girls and young women, key target populations. This limitation has triggered development efforts in LA HIV prevention options. This article reviews efforts supported by the Bill & Melinda Gates Foundation, as well as similar work by other groups, to identify and develop optimal LA HIV prevention products. Specifically, this article is a summary review of a meeting convened by the foundation in early 2020 that focused on the development of LA products designed for extended delivery of tenofovir alafenamide (TAF) for HIV prevention. The review broadly serves as technical guidance for preclinical development of LA HIV prevention products. The meeting examined the technical feasibility of multiple delivery technologies, in vivo pharmacokinetics, and safety of subcutaneous (SC) delivery of TAF in animal models. Ultimately, the foundation concluded that there are technologies available for long-term delivery of TAF. However, because of potentially limited efficacy and possible toxicity issues with SC delivery, the foundation will not continue investing in the development of LA, SC delivery of TAF products for HIV prevention.


Subject(s)
Anti-HIV Agents , HIV Infections , Pre-Exposure Prophylaxis , Adenine/therapeutic use , Adolescent , Alanine , Animals , Anti-HIV Agents/therapeutic use , Female , HIV Infections/drug therapy , HIV Infections/prevention & control , Humans , Tenofovir/analogs & derivatives
SELECTION OF CITATIONS
SEARCH DETAIL