Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters

Publication year range
1.
Anal Chem ; 96(27): 10920-10926, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38934123

ABSTRACT

Chemiluminescence (CL)-based analytical methods utilize luminophores that need to be activated with an oxidizing agent to trigger CL emission. Despite its susceptibility to decomposition when exposed to external light or trace metals, hydrogen peroxide (H2O2) has been widely used to develop chemiluminescent methods due to the limited number of suitable alternatives for activating chemiluminescent luminophores. Also, analytical methods based on the well-known luminol/H2O2 CL system have low sensitivity. Dissolved oxygen (DO) is a naturally abundant and environmentally benign alternative oxidant for luminol and other CL luminophores. However, DO alone is inactive and needs an efficient catalyst or a coreaction accelerator for its activation. Because of the narrow bandgap of VS4 (ca. 1.12 eV), it can facilitate fast electron-transfer kinetics with an acceptor molecule such as DO. Here, we introduce vanadium tetrasulfide (VS4) to boost CL for the first time. Under the optimized conditions, VS4 nanodendrite catalyzes the generation of reactive oxygen species by activating DO which subsequently reacts with luminol to generate intense CL. It enhances the CL intensity of luminol/DO by about 10,000 times. Surprisingly, hemin remarkably quenches the generated CL of luminol/DO/VS4 nanodendrites, which is completely opposite to its typical enhancement of luminol CL. Based on the remarkable concentration-dependent quenching of the luminol/DO/VS4 nanodendrite CL by hemin, we have developed a sensitive CL method that can selectively detect hemin in the linear concentration range of 1-250 nM and achieved a limit of detection of 0.11 nM. The practical utility of the developed method was demonstrated by the determination of hemin in a pharmaceutical drug for the treatment of acute intermittent porphyria and in human serum. This study demonstrates that VS4 holds great promise in analytical method development.

2.
J Fluoresc ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38773031

ABSTRACT

Assessing medication adherence through the determination of antihypertensive drugs in biological matrices holds significant importance. Amlodipine (AP), a potent antihypertensive medication extensively prescribed for hypertensive patients, is particularly noteworthy in this context. This article aims to introduce a rapid, simple, improved sensitivity, and reproducibility in detecting AP in its pure form, tablet formulation, and spiked human plasma than the other reported methods. The proposed method utilizes a fluorescence approach, relying on the inhibition of the intramolecular photoinduced electron transfer (PET) effect of the lone pair of the N-atom in the primary amino moiety of AP. This inhibition is achieved by acidifying the surrounding medium using 0.2 M acetic acid. By blocking PET, the target AP drug is sensitively detected, at [Formula: see text] 423 nm over a concentration range 25-500 ng mL- 1 showcasing an exceptionally low quantitation limit of 1.41 ng mL- 1. Notably, this innovative technique was successfully applied to detect AP in its solid dosage form and spiked human plasma. Remarkably, matrix interference was found to be insignificant, underscoring the robustness and applicability of the established approach. The combination of speed, sensitivity, and reproducibility makes this method particularly suitable for assessing medication adherence in patients prescribed AP for hypertension.

3.
J Fluoresc ; 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39190286

ABSTRACT

A newly green method for the sensitive quantification of cloperastine, a cough suppressant, in spiked human plasma and its pharmaceutical formulation was designed for the first time. The established method depends on the enhancement of the weak fluorescence of cloperastine using 50 mM sulfuric acid to impair the photoinduced electron transfer produced from the nitrogen atom of piperidine moiety in cloperastine. This full protonation in an acid medium leads to an enhancement in the fluorescence of cloperastine, permitting its linear determination from 0.2 to 5.0 µg/mL with LOD and LOQ of 0.04 and 0.13 µg/mL, respectively. Moreover, the studied drug was estimated in its pharmaceutical market formulations as well as spiked human plasma. Furthermore, the greenness of the described method was evaluated.

4.
Luminescence ; 39(7): e4814, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39011865

ABSTRACT

Olopatadine (OLP) is widely utilized as an effective antihistaminic drug for alleviating ocular itching associated with allergic conjunctivitis. With its frequent usage in pharmacies, there arises a pressing need for a cost-effective, easily implementable, environmentally sustainable detection method with high sensitivity. This study presents a novel signal-on fluorimetric method for detecting OLP in both its pure form and aqueous humor. The proposed approach depends on enhancing the weak intrinsic fluorescence emission of OLP, achieving a remarkable increase of up to 680% compared to its intrinsic fluorescence. This enhancement is achieved by forming micelles around protonated OLP using an acetate buffer (pH 3.6) and incorporating a solution of sodium dodecyl sulfate (SDS) surfactant. A strong correlation (R = 0.9996) is observed between the concentration of OLP and fluorescence intensities ranging from 1.0 to 100.0 ng mL-1 with a limit of detection of 0.22 ng mL-1. This described method is successfully employed for quantifying OLP in both its powder form and pharmaceutical eye drops. Furthermore, it demonstrates robust performance in determining OLP in artificial aqueous humor with a percentage recovery of 99.05 ± 1.51, with minimal interference from matrix interferents. Moreover, the greenness of the described method was evaluated.


Subject(s)
Aqueous Humor , Fluorometry , Olopatadine Hydrochloride , Olopatadine Hydrochloride/analysis , Aqueous Humor/chemistry , Green Chemistry Technology , Spectrometry, Fluorescence , Limit of Detection
5.
Anal Chem ; 95(36): 13614-13619, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37639529

ABSTRACT

9-Mesityl-10-methylacridinium ion (Acr+-Mes) is a donor-acceptor molecule with a much longer lifetime and a higher energy electron transfer excited state than natural photosynthetic reaction centers. Unlike lucigenin with a coplanar geometry, Acr+-Mes has an orthogonal geometry. There is no π conjugation between Acr+ and Mes. Due to its special electron donor-acceptor structure, it does not rely on strong alkalinity to generate an electron transfer state like lucigenin, which makes it possible to achieve chemiluminescence (CL) under weakly alkaline or neutral conditions. In this study, we report Acr+-Mes CL for the first time. Acr+-Mes generates about 400 times stronger CL intensity than lucigenin under neutral conditions (pH = 7) using KHSO5 as the coreactant. Moreover, Co2+ can enhance Acr+-Mes/KHSO5 CL remarkably. Acr+-Mes/KHSO5 CL enables Co2+ detection with a linear range of 0.5-500 nM and a limit of detection of 28 pM (S/N = 3). This method was tested for the detection of Co2+ in lake water, and the standard recovery rate of 96.8-107% was achieved. This study provides a new way to develop efficient CL systems in neutral solutions.

6.
Saudi Pharm J ; 31(1): 125-134, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36685304

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the leading causes of mortality worldwide; therefore, searching for an effective treatment for this illness is of great importance. In the present work, in vitro cytotoxic activity of the ethanol extract of the aerial parts of Cynara cardunculus L. against human liver carcinoma cells (Hep G2) was tested. Additionally, the antitumor activity of the extract was confirmed using chemically induced rat liver carcinogenesis with diethylnitrosamine (DEN). Moreover, bioguided fractionation and column chromatographic separation of the active compounds were carried out. The extract of C. cardunculus showed a promising cytotoxic activity according to the protocols of the National Cancer Institute. Bioguided chromatographic separation of the ethanol extract of C. cardunculus led to the isolation of seven secondary metabolites including two sesquiterpene lactones as the principal active components of the methylene chloride soluble fraction, grosheimin (IC50 = 7.49 µg/mL) and cynaropicrin (IC50 = 13.9 µg/mL). The compounds were characterized by different spectroscopic techniques such as EI-MS, IR and NMR. Additionally, in silico analysis of the two active compounds revealed their ability to bind with caspase-3 via hydrogen bonds interactions to initiate apoptosis of cancer cells. The results shed the light on the significance of C. cardunculus as a potential source of antitumor agents.

7.
Anal Chem ; 94(18): 6853-6859, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35476395

ABSTRACT

The ability to estimate and quantify biothiols in biological fluids is very significant for attaining a detailed understanding of biothiols-related pathological diseases. Most of the developed methods for biothiols detection are not suitable for this purpose owing to their low sensitivity, poor selectivity, and long experimental procedures. In this study, a novel and simple structure electrochemical probe has been synthesized for the first time for the selective determination of biothiols. The developed probe is based on using 2,4-dinitrobenzenesulfonyl moiety (DNBS) as a selective recognition moiety for biothiols. The electrochemical probe was successfully fabricated through a facile one-step reaction between 2,4-dinitrobenzenesulfonyl chloride (DNBS-Cl) and p-aminophenol. The successful synthesis of the probe was confirmed by using different characterization techniques such as an NMR spectroscopy, Fourier-transform infrared (FT-IR) spectroscopy, and mass spectrometry. Biothiols can selectively cleave the DNBS moiety through an aromatic nucleophilic substitution (ANS) reaction within 10 min to release p-aminophenol, which is a highly electrochemical active molecule that can be selectively detected easily by cyclic voltammetry at low potential. The probe has been employed for the quantification of cysteine, glutathione, and homocysteine with a LOD of 1.50, 3.48, and 4.67 µM, respectively. Excellent recoveries have been achieved in the range of 95.44-98.71% for the determination of the total biothiols in the human plasma sample.


Subject(s)
Cysteine , Fluorescent Dyes , Cysteine/chemistry , Fluorescent Dyes/chemistry , Glutathione/analysis , Homocysteine , Humans , Spectrometry, Fluorescence , Spectroscopy, Fourier Transform Infrared , Sulfhydryl Compounds/analysis
8.
Molecules ; 27(23)2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36500623

ABSTRACT

The emergence of resistant microbes threatens public health on our planet, and the emergence of resistant bacteria against the most commonly used antibiotics necessitates urgent alternative therapeutic options. One way to fight resistant microbes is to design new antimicrobial agents, however, this approach takes decades of research. An alternative or parallel approach is to target the virulence of bacteria with natural or synthetic agents. Active constituents from medicinal plants represent a wide library to screen for natural anti-virulence agents. Caraway is used as a traditional spice and in some medicinal applications such as carminative, antispasmodic, appetizer, and expectorant. Caraway essential oil is rich in terpenes that were previously reported to have antimicrobial activities. In our study, we tested the caraway essential oil in sub-inhibitory concentration as a virulence agent against the Gram-negative bacteria Pseudomonas aeruginosa. Caraway essential oil in sub-inhibitory concentration dramatically blocked protease activity, pyocyanin production, biofilm formation, and quorum sensing activity of P. aeruginosa. The gas chromatography-mass spectroscopy (GC-MS) profile of caraway fruit oil identified 13 compounds representing 85.4% of the total oil components with carvone and sylvestrene as the main constituents. In conclusion, caraway essential oil is a promising virulence-attenuating agent that can be used against topical infections caused by P. aeruginosa.


Subject(s)
Oils, Volatile , Pseudomonas aeruginosa , Oils, Volatile/pharmacology , Gas Chromatography-Mass Spectrometry , Biofilms , Virulence Factors , Quorum Sensing , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacteria
9.
Molecules ; 27(5)2022 Feb 27.
Article in English | MEDLINE | ID: mdl-35268677

ABSTRACT

Milk represents an integrated meal for newborns; its whey protein is rich in many health beneficial components and proteins. The current study aimed to investigate the differences between colostrum and mature milk from Mediterranean and Murrah buffaloes using labeled proteomics and bioinformatics tools. In the current work, LC-MS/MS analysis led to identification of 780 proteins from which 638 were shared among three independent TMT experiments. The significantly changed proteins between the studied types were analyzed using gene ontology enrichment and KEGG pathways, and their interactions were generated using STRING database. Results indicated that immunological, muscular development and function, blood coagulation, heme related, neuronal, translation, metabolic process, and binding proteins were the main terms. Overall, colostrum showed higher levels of immunoglobulins, myosins, actin, neurofascin, syntaxins, thyroglobulins, and RNA-binding proteins, reflecting its importance in the development and activity of immunological, muscular, cardiac, neuronal, and thyroid systems, while lactoferrin and ferritin were increased in mature milk, highlighting its role in iron storage and hemoglobin formation.


Subject(s)
Colostrum , Humans
10.
Luminescence ; 36(1): 73-78, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32706928

ABSTRACT

A new fluorimetric procedure is described for analysis of milnacipran in its bulk, tablet dosage forms, as well as in biological human samples such as plasma and urine. The suggested method relies on the construction of a derivative with strong fluorescence called dihydropyridine derivative. This derivative resulted from the interaction of the primary amino group in the studied drug and acetylacetone/formaldehyde in McIlvaine buffer (pH 5). The fluorescent dihydropyridine derivative was measured at 470 nm. Influences of experimental variables namely pH, reagent concentration and temperature were examined and optimized. The calibration curve showed linearity over the range of 0.15-1.25 µg ml-1 of milnacipran with an R2 value of 0.9998. The detection limit was 0.02 µg ml-1 and the determination limit was 0.07 µg ml-1 . The developed procedure was successfully used in the assay of the studied drug in Avermilan® tablets with excellent selectivity. In addition, the reaction was applied to estimate the drug in spiked human plasma and urine with mean percentage recoveries of 100.04 ± 1.61 and 99.78 ± 0.81% for urine and plasma, respectively.


Subject(s)
Fibromyalgia , Fibromyalgia/drug therapy , Formaldehyde , Humans , Milnacipran , Spectrometry, Fluorescence , Tablets
11.
Analyst ; 145(7): 2709-2715, 2020 Apr 07.
Article in English | MEDLINE | ID: mdl-32077455

ABSTRACT

Herein, we report luminol-silicotungstic acid (STA) chemiluminescence (CL) for the first time. The luminol-STA system resulted in remarkable CL enhancement (65 times) compared with the known classical luminol-H2O2 system because of the generation of the strong oxidizing agent tungsten trioxide from STA. Based on the quenching effect of uric acid, the new CL system is applied for the sensitive and selective assay of uric acid in its pure state (LOD 0.75 nM) and in real human urine with excellent recoveries in the range of 99.6-102.3%. Furthermore, this system permits the efficient detection of STA (LOD, 0.24 µM).


Subject(s)
Luminescent Measurements/methods , Luminol/chemistry , Silicates/chemistry , Tungsten Compounds/chemistry , Uric Acid/urine , Humans , Hydrogen Peroxide/chemistry , Hydrogen-Ion Concentration , Limit of Detection , Oxidation-Reduction , Oxides/chemistry , Tungsten/chemistry
12.
Molecules ; 25(6)2020 Mar 16.
Article in English | MEDLINE | ID: mdl-32187997

ABSTRACT

Bacterial resistance represents one of the emerging obstacles in plants, animals, and humans that impairs treatment with antibacterial agents. Targeting of the bacterial quorum sensing system is one of the strategies to overcome this problem. Recently, research has been focused on natural and food components which can function as quorum sensing inhibitors. In this study, a methanol extract from Salix tetrasperma stem bark was phytochemically profiled by LC-MS analysis. This resulted in the identification of 38 secondary metabolites with (epi)catechin-(epi)catechin, epicatechin, tremulacin, salicortin, and trichocarposide as the major constituents. The extracts of both stem bark and the previously profiled flower of S. tetrasperma were tested for anti-quorum sensing activity in a common and widely distributed pathogen Pseudomonas aeruginosa. The natural products inhibited swimming and swarming motilities, as well as proteolytic and hemolytic activities in a dose-dependent manner. Molecular docking of the constituents from both extracts against the quorum sensing controlling systems Lasl/LasR, rhll/rhlR, and PQS/MvfR showed that epicatechin, (epi)catechin-(epi)catechin, p-hydroxy benzoyl galloyl glucose, p-hydroxy benzoyl protocatechuic acid glucose, and caffeoylmalic acid could be the main active components. This study supports the importance of secondary metabolites, especially polyphenols, as quorum sensing inhibitors.


Subject(s)
Polyphenols/pharmacology , Pseudomonas aeruginosa/pathogenicity , Quorum Sensing/drug effects , Salix/chemistry , Animals , Biofilms/drug effects , Flowers/chemistry , Hemolysis/drug effects , Humans , Microbial Sensitivity Tests , Models, Molecular , Plant Bark/chemistry , Protease Inhibitors/pharmacology , Thermodynamics , Virulence/drug effects
13.
Luminescence ; 33(6): 1026-1032, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29927539

ABSTRACT

One of the most commonly used drugs in treatment of schizophrenia is flupentixol dihydrochloride, therefore it is important to develop a simple, low cost and sensitive spectrofluorimetric method for the estimation of flupentixol dihydrochloride. The yellow fluorescent product that is generated from the nucleophilic substitution reaction of the free lone pair of the alcoholic hydroxyl group of the drug and 4-chloro-7-nitrobenzofurazan (NBD-Cl) in Mcllvaine buffer pH 7.0 was estimated at 510 nm (λex 460 nm). The variables that affect the development of the reaction product were explored and optimized. The linear range of this method was 0.5-2.5 µg ml-1 with a limit of quantitation equal to 0.29 µg ml-1 . Our method was successfully applied for the assurance of flupentixol in tablet form with average percentage recovery of 99.08 ± 1.01% without obstruction from the basic excipients exhibits. Furthermore, our strategy was extended to study the content uniformity testing of flupentixol in Fluaxnol® tablets.


Subject(s)
Benzoxazoles/chemistry , Fluorescent Dyes/chemistry , Flupenthixol/analysis , Hydrochloric Acid/analysis , Molecular Structure , Spectrometry, Fluorescence
14.
J Fluoresc ; 27(4): 1323-1330, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28293815

ABSTRACT

A simple and sensitive spectrofluorimetric method has been developed and validated for determination of oseltamivir phosphate (OSP). The proposed method is based on condensation reaction of the primary amino group of OSP with ninhydrin and phenylacetaldehyde in buffered medium (pH 6.5). The formed yellow fluorescent product exhibits excitation and emission maxima at 390 and 460 nm, respectively. The selectivity improvement of our proposed method is based on the water insolubility of the oseltamivir carboxylic acid (OSC) the active metabolite of OSP, which contains the same primary amino group as OSP but cannot, condensed with ninhydrin and phenylacetaldehyde reagents. The different experimental parameters affecting the formation and stability of the reaction product were carefully studied and optimized. The fluorescence intensity concentration plot is rectilinear in the range of 2-15 µg ml-1 with detection and quantitation limits of 0.32 and 0.98 µg ml-1, respectively. The proposed method was successfully applied for determination of OSP in commercial capsules, suspension and spiked human plasma with good percentage recovery. In addition, the developed procedure was extended to study the stability of OSP under different stress conditions; including acid and alkali hydrolysis, oxidation, photolysis, and thermal degradation. Furthermore, the kinetic of alkaline and acidic degradation of the cited drug were investigated. The apparent first order degradation rate constants were 0.258 and 0.318 K h-1 with half times of 2.68 and 2.17 h, for acidic and alkaline degradation, respectively.


Subject(s)
Antiviral Agents/blood , Capsules/analysis , Oseltamivir/blood , Phosphates/blood , Spectrometry, Fluorescence/methods , Fluorescence , Humans , Oxidation-Reduction
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123725, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38070312

ABSTRACT

The ability to determine antihistaminic drugs in biological matrices is critical for the medication adherence assessment. Among these antihistaminic medications, cyproheptadine (CPD); that is acting as a potent first-generation antihistaminic drug that has been extensively prescribed for allergic patients. Most of the established approaches for CPD detection are not appropriate for this purpose owing to their weak sensitivity, lack of rapidity, and complicated experimental procedures. Herein, we present a very fast, highly sensitive, and reproducible approach for the detection of CPD in its pure form, tablet formulation, and spiked human plasma. The photoluminescence approach depends on hindering the intramolecular photoinduced electron transfer (PET) effect of the lone pair of the N-atom present on the piperidine ring of CPD by making the surrounding medium acidic using 1.0 M acetic acid. Based on blocking PET, the target CPD drug has been sensitively detected from 5.0 to 500 ng mL-1 with a very low detection and quantitation limit of 7.01 and 21.25 ng mL-1, respectively. Moreover, the established approach was used for checking the tablet content uniformity testing for each tablet and spiked human plasma, and noteworthy, the matrices interference was insignificant.


Subject(s)
Cyproheptadine , Electrons , Humans , Spectrometry, Fluorescence/methods , Tablets
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 312: 124060, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38402704

ABSTRACT

A green, rapid and sensitive fluorimetric method to quantify levodropropizine (LVP) in human plasma was exploited for the first time. The proposed method adopts LVP's intrinsic fluorescence in distilled water at a detecting emission of 345 nm following excitation at 240 nm. LVP displayed linearity across concentrations ranging from 50 to 1000 ng mL-1, with a detection limit of 0.77 ng mL-1 and a quantification limit of 2.33 ng mL-1. Thorough validation confirmed its reliability, successfully determining LVP in tablets with an average recovery of 98.64 ± 1.07 %. Furthermore, the method's applicability extended to estimate the studied drug in spiked human plasma with excellent obtained percentage recoveries (98.68 ± 1.28-100.14 ± 1.23).


Subject(s)
Plasma , Propylene Glycols , Humans , Spectrometry, Fluorescence/methods , Reproducibility of Results , Fluorometry , Tablets
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124395, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38714004

ABSTRACT

This study aims to develop a novel and selective method for the detection of natamycin (E235) in yoghurt. The suggested method adopts an application of Hantzsch reaction to turn on the fluorescence behavior of natamycin (blue fluorescence), allowing its sensitive and selective determination in yoghurt samples without any overlapping at 485 nm. The originality of the research lies in the fact that this application takes place for the first time, also the detection (LOD) and quantification (LOQ) limits were very low (0.02 and 0.06µg mL-1, respectively) with a linear concentration range of 0.1-1.0 µgmL-1. Moreover, the developed method was employed for the detection of E235 in yoghurt sample with a good recoveries (98.80 ± 1.20-99.20 ± 1.15 (%), over a concentration range of 0.5-1.0 µgmL-1, (LOD = 0.04 and LOQ = 0.12 µgmL-1). Furthermore, the specificity and convenient application of our intended method is an attempt to determine E235 in milk anddairy products with easily followable steps.


Subject(s)
Limit of Detection , Natamycin , Spectrometry, Fluorescence , Yogurt , Yogurt/analysis , Natamycin/analysis , Spectrometry, Fluorescence/methods , Milk/chemistry , Reproducibility of Results , Food Contamination/analysis
18.
BMC Complement Med Ther ; 24(1): 49, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38254071

ABSTRACT

BACKGROUND: The continuous evolution of drug-resistant influenza viruses highlights the necessity for repurposing naturally-derived and safe phytochemicals with anti-influenza activity as novel broad-spectrum anti-influenza medications. METHODS: In this study, nitrogenous alkaloids were tested for their viral inhibitory activity against influenza A/H1N1 and A/H5N1 viruses. The cytotoxicity of tested alkaloids on MDCK showed a high safety range (CC50 > 200 µg/ml), permitting the screening for their anti-influenza potential. RESULTS: Herein, atropine sulphate, pilocarpine hydrochloride and colchicine displayed anti-H5N1 activities with IC50 values of 2.300, 0.210 and 0.111 µg/ml, respectively. Validation of the IC50 values was further depicted by testing the three highly effective alkaloids, based on their potent IC50 values against seasonal influenza A/H1N1 virus, showing comparable IC50 values of 0.204, 0.637 and 0.326 µg/ml, respectively. Further investigation suggests that colchicine could suppress viral infection by primarily interfering with IAV replication and inhibiting viral adsorption, while atropine sulphate and pilocarpine hydrochloride could directly affect the virus in a cell-free virucidal effect. Interestingly, the in silico molecular docking studies suggest the abilities of atropine, pilocarpine, and colchicine to bind correctly inside the active sites of the neuraminidases of both influenza A/H1N1 and A/H5N1 viruses. The three alkaloids exhibited good binding energies as well as excellent binding modes that were similar to the co-crystallized ligands. On the other hand, consistent with in vitro results, only colchicine could bind correctly against the M2-proton channel of influenza A viruses (IAVs). This might explicate the in vitro antiviral activity of colchicine at the replication stage of the virus replication cycle. CONCLUSION: This study highlighted the anti-influenza efficacy of biologically active alkaloids including colchicine. Therefore, these alkaloids should be further characterized in vivo (preclinical and clinical studies) to be developed as anti-IAV agents.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A Virus, H5N1 Subtype , Influenza A virus , Influenza, Human , Humans , Colchicine/pharmacology , Pilocarpine , Influenza, Human/drug therapy , Molecular Docking Simulation , Seasons , Phytochemicals/pharmacology , Atropine , Antiviral Agents/pharmacology
19.
Z Naturforsch C J Biosci ; 68(7-8): 285-92, 2013.
Article in English | MEDLINE | ID: mdl-24066513

ABSTRACT

The phytochemical investigation of an aqueous ethanolic extract of Galinsoga parviflora Cav. (Asteraceae) resulted in the isolation and identification of eleven compounds namely: triacontanol, phytol, beta-sitosterol, stigmasterol, 7-hydroxy-beta-sitosterol, 7-hydroxystigmasterol, beta-sitosterol-3-O-beta-D-glucoside, 3,4-dimethoxycinnamic acid, protocatechuic acid, fumaric acid, and uracil. Furthermore, 48 volatile constituents were identified in the hydrodistilled oil of the aerial parts. The ethanolic extract at a content of 400 mg/kg body weight (BW) exerted 87% reduction in the alanine aminotransferase enzyme level in cirrhotic rats compared with the standard silymarin (150 mg/kg BW) and also exerted a reduction in the blood glucose level equivalent to that of glibenclamide (5 mg/kg BW) in diabetic rats. The ethanolic extract, light petroleum and ethyl acetate fractions exhibited substantial antimicrobial activity against Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli, Aspergillus niger, and Candida albicans. The ethyl acetate fraction showed strong antioxidant activity at a concentration of 150 mg/mL as compared with 0.1 M ascorbic acid. The cytotoxic effect against the MCF-7 cell line was found to be weak.


Subject(s)
Asteraceae/chemistry , Plant Extracts/pharmacology , Animals , Drug Evaluation, Preclinical , Humans , MCF-7 Cells , Male , Plant Extracts/chemistry , Rats
20.
Lab Chip ; 23(19): 4160-4172, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37668185

ABSTRACT

Pathogenic bacteria and viruses are the main causes of infectious diseases all over the world. Early diagnosis of such infectious diseases is a critical step in management of their spread and treatment of the infection in its early stages. Therefore, the innovation of smart sensing platforms for point-of-care diagnosis of life-threatening infectious diseases such as COVID-19 is a prerequisite to isolate the patients and provide them with suitable treatment strategies. The developed diagnostic sensors should be highly sensitive, specific, ultrafast, portable, cheap, label-free, and selective. In recent years, different nanosensors have been developed for the detection of bacterial and viral pathogens. We focus here on label-free miniaturized nanosensing platforms that were efficiently applied for pathogenic detection in biological matrices. Such devices include nanopore sensors and nanostructure-integrated lab-on-a-chip sensors that are characterized by portability, simplicity, cost-effectiveness, and ultrafast analysis because they avoid the time-consuming sample preparation steps. Furthermore, nanopore-based sensors could afford single-molecule counting of viruses in biological specimens, yielding high-sensitivity and high-accuracy detection. Moreover, non-invasive nanosensors that are capable of detecting volatile organic compounds emitted from the diseased organ to the skin, urine, or exhaled breath were also reviewed. The merits and applications of all these nanosensors for analysis of pathogenic bacteria and viruses in biological matrices will be discussed in detail, emphasizing the importance of artificial intelligence in advancing specific nanosensors.


Subject(s)
COVID-19 , Communicable Diseases , Nanopores , Viruses , Humans , Artificial Intelligence , COVID-19/diagnosis , Bacteria
SELECTION OF CITATIONS
SEARCH DETAIL